Optical disc ICs

4-channel BTL driver for CD-ROM drives BA5952AFP

The BA5952AFP is a four-channel BTL driver IC for driving the motors and actuators in products such as CD ROM drives. Two of the channels use current feedback to minimize the current phase shift caused by the influence of load inductance.

Applications

CD-ROM drives, DVD drives, DVD ROM drives.

Features

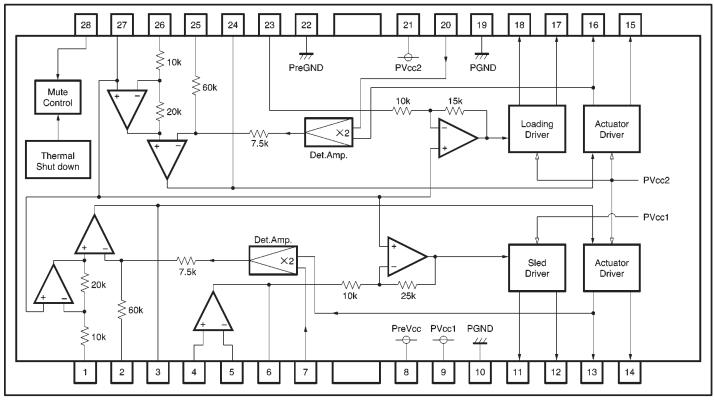
- Two channels are current-drive-type BTL drivers for two-shaft actuators. One channel is a voltage-drivetype BTL driver for transport motors, and the last is a current-drive-type BTL driver for loading motors.
- 2) Wide dynamic range (4.0V (typ.) when $PreV_{CC} = 12V$, $PV_{CC} = 5V$, and $R_L = 8\Omega$).
- 3) Level shift circuit on chip.
- 4) Thermal shutdown circuit on chip.

- Dual-shaft actuator drivers
 These drivers use current feedback to minimize the current phase shift cause by the influence of load inductance. Output structure is power op-amp to minimize back-rush noise.
- * Transport motor driver
 - Differential input and signal addition is possible by connecting general-purpose op-amps to the inputs.
- * Loading driver

Performs forward and reverse drive with transistor logic input. Can also be used as a linear BTL driver.

Prameter	Symbol	Limits	Unit
Power supply voltage	PreVcc、PVcc1/2	13.5	V
Power dissipation	Pd	1.7*	W
Operating temperature	Topr	-35~+85	Ĉ
Storage temperature	Tstg	-55~+150	Ĵ

• Absolute maximum ratings (Ta = 25° C)

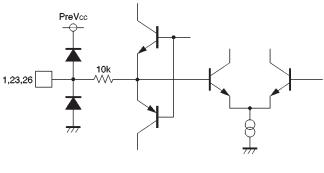

* When mounted on a 70mm \times 70mm \times 1.6mm glass epoxy board. Reduced by 13.6mW for each increase in Ta_of 1 °C over 25°C.

•Recommended operating conditions (Ta = 25° C)

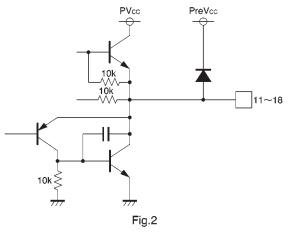
Parameter	Symbol	Limits	Unit
Power supply voltage	PreVcc	4.3~13.2	V
	PVcc1	4.3~PreVcc	V
	PVcc2	4.3~PreVcc	V

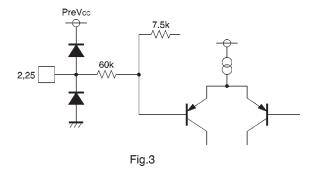
Block diagram

Pin descriptions

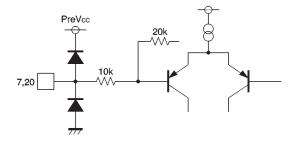
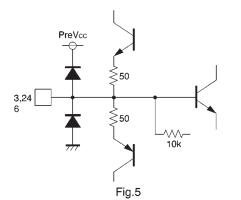
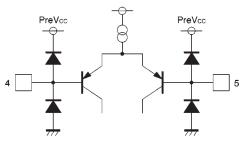
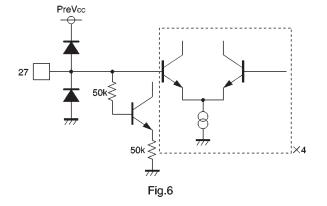

Pin No.	Pin name	Function
1	VINFC	Focus drive input
2	CFCerr1	For connection of capacitor for the error amp filter
3	CFCerr2	For connection of capacitor for the error amp filter
4	VINSL+	Op-amp input (+) for the sled driver
5	VINSL-	Op-amp input $(-)$ for the sled driver
6	VOSL	Op-amp output for the sled driver
7	VNFFC	Focus driver feedback pin
8	PreVcc	Pre Vcc
9	PVcc1	Power Vcc for sled driver block
10	PGND	Ground for sled driver block
11	VOSL-	Sled driver output (-)
12	VOSL+	Sled driver output (+)
13	VOFC-	Focus driver output (-)
14	VOFC+	Focus driver output (+)

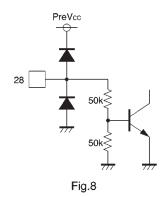
Pin No.	Pin name	Function
15	νοτκ+	Tracking driver output (+)
16	VOTK-	Tracking driver output (-)
17	VOLD+	Loading driver output (+)
18	VOLD-	Loading driver output (-)
19	PGND	Power ground
20	VNFTK	Tracking driver feedback pin
21	PVcc2	Power ground
22	PreGND	Pre ground
23	VINLD	Loading driver input
24	CTKerr2	For connection of capacitor for the error amp filter
25	CTKerr1	For connection of capacitor for the error amp filter
26	VINTK	Tracking driver input
27	BIAS	Bias input
28	MUTE	Mute control


Notes: The indicated polarities for the output pins are for when all inputs are (+).


The output H bridge power supply pins are PVcc2 for the focus, tracking, and loading channels, and Vcc1 for the pre-block uses PreVcc. Always ensure that PreVcc≧PVcc.

Input/output circuits


Fig.4

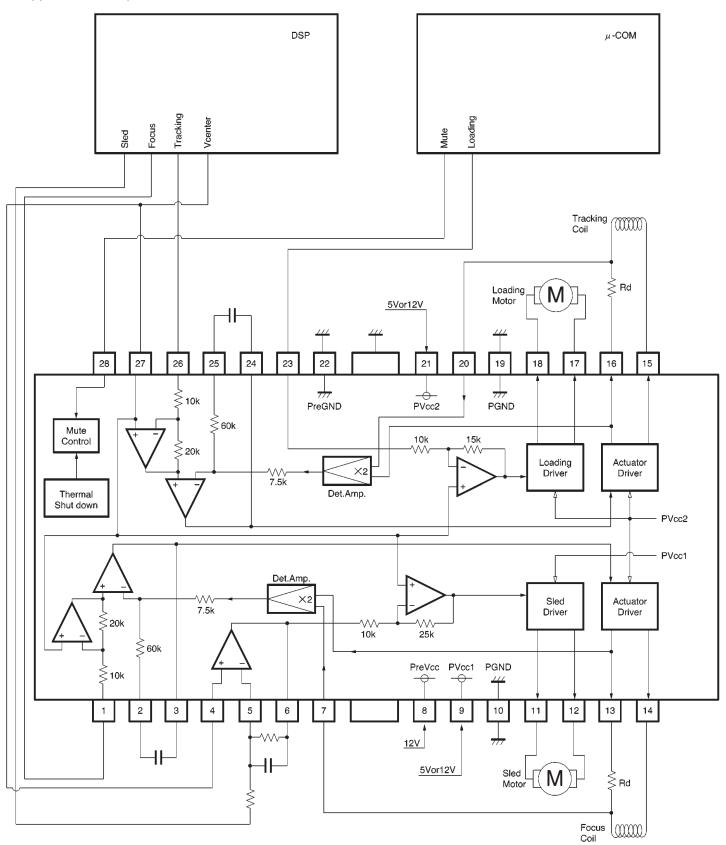
Downloaded from Elcodis.com electronic components distributor

•Electrical characteristics (unless otherwise noted, Ta = 25° C, PreV_{cc} = 12V, PV_{cc}1 = PV_{cc}2 = 5V,

BIAS = 2.5V, $R_{L} = 8\Omega$, $Rd = 0.5\Omega$, C = 100pF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	lcc	_	18	27	mA	
〈Actuator driver〉	1					
Output offset current	loo	-6	_	6	mA	
Maximum output amplitude	Vом	3.6	4.0	_	V	
Transmission gain	gm	1.3	1.5	1.7	A/V	VIN=BIAS±0.2V
$\langle Transport motor driver \rangle$	•					
Input op-amp same phase input range	VICM	-0.3	_	11.0	V	
Input bias current (outflow current)	Івор	_	30	300	nA	
Output high level voltage	Vонор	10.8	11.1	_	V	
Output low level voltage	VOLOP	_	0.8	1.1	V	
Output offset voltage	Voofsl	-100	0	100	mV	
Maximum output amplitude	Vomsl	3.6	4.0	_	V	
Closed-circuit voltage gain	Gvsl	18.0	20.0	22.0	dB	VIN=BIAS±0.2V
$\langle { m Loading \ driver} angle$						
Offset voltage	Voofld	-50	0	50	mV	
Maximum output amplitude	Vomld	3.6	4.0	_	V	
Voltage gain	Gvld	13.5	15.5	17.5	dB	VIN=BIAS±0.2V
F/R gain differential	∆ Gvld	0	1	2	dB	VIN=BIAS±0.2V
〈Mute logic〉						
Mute on voltage	Μυτε1	0	_	0.5	V	All channels off
Mute off voltage	Μυτε2	2.0	_	_	V	All channels on

ONot designed for radiation resistance.


Measurement circuit

100 μ H -000 28≶ VMT 2.5V $V_{IN}2$ Vin4 -///\ 8Ω $0.5\Omega \gtrsim$ (A) 102 100pF 5V +V Vo4 <u>///</u> Vo2 27 26 23 22 28 25 24 21 20 19 18 17 16 15 \$10k 7/// PreGND PVcc2 \ge 60k Mute 10k 10k Control Ŵ ≥20k M Loading Actuator -∕∕∕∕~ 7.5k Driver Driver Det Thermal Amp. Shut down PVcc2 PVcc1 Det Amp. ∕∕∕∕~ 7.5k Sled Actuator Driver Driver ≥20k $\Lambda \Lambda \Lambda$ MΛ 10k 25k \leq 60k PreVcc PVcc1 PGND \leq 10k 111 4 6 7 10 12 13 1 2 3 5 8 9 11 14 Vo3 Vo1 777 (v) (\mathbf{V}) 777 ╢ 5V IQ(A Vin1 sw **2** -O 100pF 8Ω ∕√√∕ (A) lo1 O φı $0.5\Omega \lesssim$ 29 12V VBOP(V) ≦1M ≤8Ω 7/7 1M 000 100 µ H Vin3 777

Fig.9

Application example

ROHM

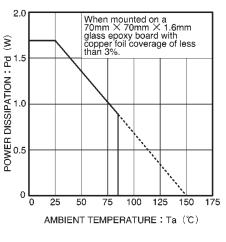
Operation notes

(1) This IC has a built in thermal shutdown circuit that mutes the output current when the chip temperature reaches $175^{\circ}C$ (typ.). The hysteresis is set to $25^{\circ}C$ (typ.), so the driver circuits start up again when the chip temperature falls to $150^{\circ}C$ (typ.).

(2) The driver buffer is switched off when the supply voltage falls below 3.8V (typ.), and is switched back on when the voltage reaches 4.0V (typ.) again.

(3) The mute circuit logic is active low.

(4) Mute is applied when the buffer pin voltage falls below 1.4V (typ.). Normally, operate with this at 1.8V at least. (5) Connect a bypass capacitor between the bases of the power supply pins of this IC.


 $\langle Supplement \rangle$

Current-feedback driver

The transmission gain (output current/input voltage) is given by:

$$g_m = \frac{1}{R_d + R_{WIRE}} (A / V)$$

 R_{WIRE} is the total gold wire resistance inside the package (0.15 $\Omega\pm0.05\Omega$) (typ.).

Electrical characteristics curves

Fig. 11 Thermal dissipation curve

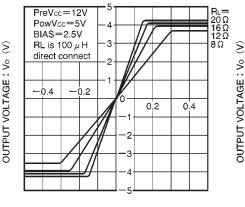
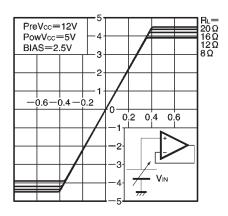
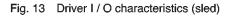




Fig. 12 Driver I / O characteristics (focus and tracking)

INPUT VOLTAGE : VIN (V)

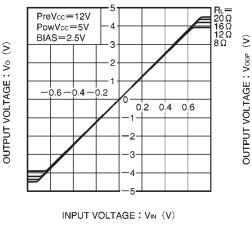


Fig. 14 Driver I / O characteristics (loading)

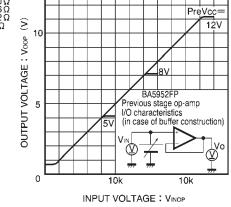
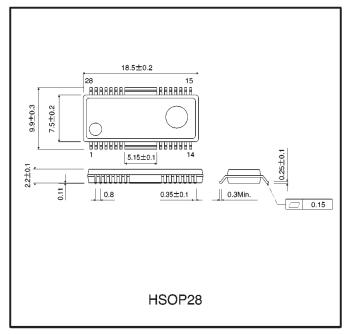



Fig. 15 Op-amp I / O characteristics

External dimensions (Units: mm)

