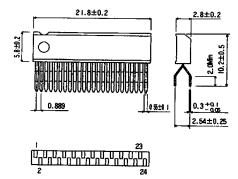
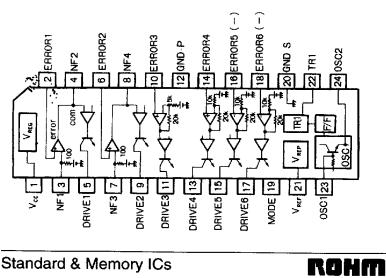
BA6149LS

Regulator, switching, 6 outputs


The BA6149LS is an IC that consists of six switching regulator circuits

Features


- ۰ available in an SZIP24 package
- control circuits for all regulator circuits . are contained in the IC
- high efficiency pulse width modulation ٠ system is used
- triangular wave generator produces a very clean stable output
- six output voltages
- output voltages can be switched on • and off (except 5 V output)

Dimensions (Units : mm)

BA6149LS (SZIP24)

Block diagram

Parameter	Symbol	Limits	Unit	Conditions
Power supply voltage	V _{cc}	20	V	
Power dissipation	Pd	500	mW	Reduce power by 5 mW/°C for each degree above 25°C.
Drive current	ld	30	mA	
Operational temperature	T _{opr}	-10 ~ +70	°C	
Storage temperature	T _{stg}	-25 ~ +125	°C	

Absolute maximum ratings ($T_a = 25^{\circ}C$)

Electrical characteristics (T_a = 25°C, V_{CC} = 12 V) (Sheet 1 of 2)

Parameter	Symbol	Min	Typical	Max	Unit	Conditions
Power supply voltage	V _{CC}	8		18	V	
Circuit current	I _{CC}		7	11	mA	
Reference voltage	V _{ref}	2.38	2.53	2.68	V	
Triangular wave oscillation frequency	f _T	100.88	101.88	102.88	kHz	f ₀ = 815 kHz
5 V system output voltage	V ₀₅	4.7	5.0	5.3	V	$I_{L} = 227 \text{ mA}$
9 V system output voltage	V ₀₉	8.60	9.15	9.70	V	$I_{L} = 100 \text{ mA}$
M1 system output voltage	V _{CY}	4.5	5	5.5	V	I _L = 100 mA
M2 system output voltage	V _{CA}	3.0	3.5	4.0	V	I _L = 50 mA
M3 system output voltage	V _{SR}	3.0	3.5	4.0	V	I _L = 55 mA
M4 system output voltage	V _{TR}	3.0	3.5	4.0	V	I _L = 200 mA
M1 input regulation	V _{r1}	40	80	160	mV	$I_L = 100 \text{ mA}, \ 10 \le V_{CC} \le 16$
M2 input regulation	V _{r2}	30	60	120	mV	$I_{L} = 50 \text{ mA}, \ 10 \le V_{CC} \le 16$
M3 input regulation	V _{r3}	30	60	120	mV	$I_{L} = 55 \text{ mA}, \ 10 \le V_{CC} \le 16$
M4 input regulation	V _{r4}	30	60	120	mV	$I_L = 200 \text{ mA}, \ 10 \le V_{CC} \le 16$
Low level power-saving mode	VL	0		1.5	v	
High level power-saving mode	V _H	3.5		6	v	All output voltage < 0.5 V except for V _{O5}
9 V system error amplifier open loop gain	G _{O9}	70			dB	
5 V system error amplifier open loop gain	V _{O5}	70			dB	
9 V system ripple	R _{P9}		2	5	mV _{pk-pk}	$I_L = 100 \text{ mA}$
5 V system ripple	R _{P5}		2	5	mV _{pk-pk}	I _L = 227 mA
M system ripple	R _{PM}	1	30	50	mV _{pk-pk}	$I_L = 100 \text{ mA}$

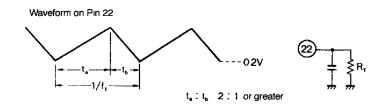
592

rohm

Standard & Memory ICs

7828999 0012716 847 🎟

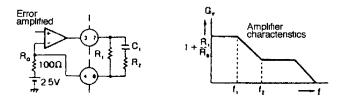
Parameter	Symbol	Min	Typical	Max	Unit	Conditions
9 V system error amplifier closed loop gain	G _{V9}	35	38	41	dB	$R_N = 10 \text{ k}\Omega$, f = 100 kHz
5 V system error amplifier closed loop gain	G _{V5}	34.5	37.5	40.5	dB	$R_N = 10 \text{ k}\Omega$, f = 100 kHz
9 V system error amplifier phase characteristics	ф9		55	70	deg	f = 100 kHz
5 V system error amplifier phase characteristics	ф 5		55	70	deg	f = 100 kHz


Electrical characteristics ($T_a = 25^{\circ}C$, $V_{CC} = 12$ V) (Sheet 2 of 2)

Precautions for use

Oscillation frequency

The maximum oscillation frequency (f_{OMax}) is about 850 kHz. The actual triangular frequency (f_T) is $f_O/8$.


Make sure to set the resistance R_T such that in the triangular wave, $t_a \geq 67\%$, as shown in the figure below.

DC gain

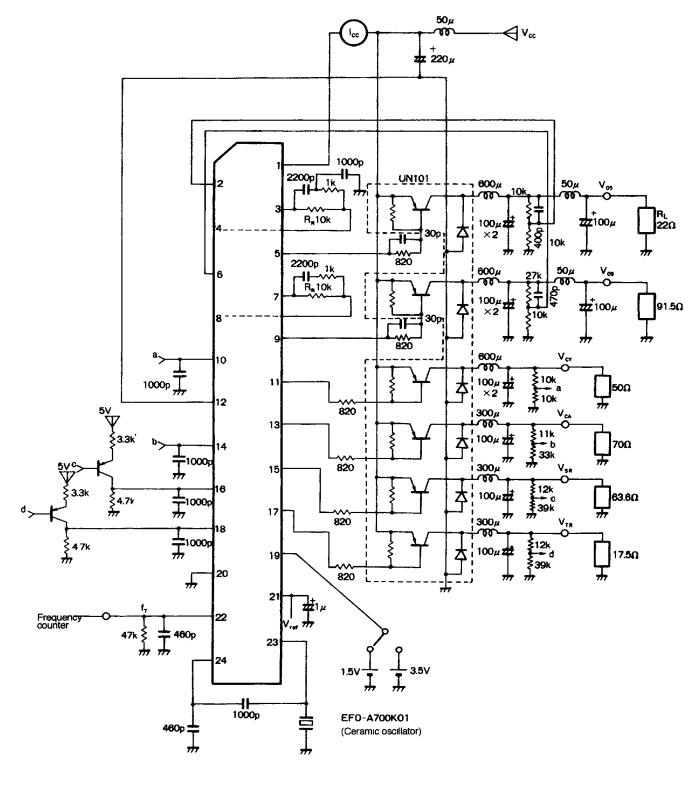
The 5 V and 9 V system error amplifier DC gain is determined by the feedback resistor (R1).

Make sure to use a resistor such that $10 \text{ k}\Omega \leq R_1 \leq 100 \text{ k}\Omega$.

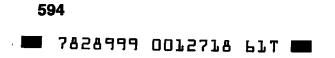
Error amplifier

The motor system error amplifier DC gain is set internally as follows:

 $G_{OM1} \cong 14 \text{ dB}, G_{OM2} \cong 10 \text{ dB}, G_{OM3} = G_{OM4} \cong 10 \text{ dB},$


For the M3 and M4 systems, the input/output phase characteristics run in reverse.

Standard & Memory ICs


rohm

593

Figure 1 Test circuit

ROHM

Standard & Memory ICs