System power supply for car stereos BA3915B

The BA3915B is an one-chip power supply IC for use in car audio systems. The IC has seven output systems : one 5V output (V_{DD}), four 8.5V outputs (COM, FM, AM, AR), and two high-side switch outputs (ANT, AMP). The 5V outputs operate all the time if only the BCAD input is provided. The other outputs operate with BACKUP and ACC inputs, and their ON / OFF is controlled by the STANDBY and MODE inputs.

Applications

Car audio systems

Features

- ACC and BACKUP voltages are monitored, compared with the internally set values; one-shot pulses are output to MUTE, which synchronizes with the rising and falling of the STANDBY input.
- 2) ACC voltage is monitored, compared with the internally set value, and the result is output to ACCB.
- All outputs use a PNP transistor with low saturation voltage.
- Output current limit circuit prevents damage to the IC due to short-circuiting.
- 5) Overvoltage protection circuit provides protection against surges from the ACC or BACKUP input.
- 6) Compact 16-pin POWER package allows large power dissipation.

Parameter	Symbol	Limits	Unit		
Power supply voltage	BACKUP/ACC	24	V		
Power dissipation	Pd	3400	mW		
Operating temperature	Topr	$-30 \sim +85$	°C		
Storage temperature	Tstg	$-55 \sim +150$	Ĵ		
Peak applied voltage	BACKUP/BCAP/ACC Peak	50*1	V		

•Absolute maximum ratings (Ta = 25° C)

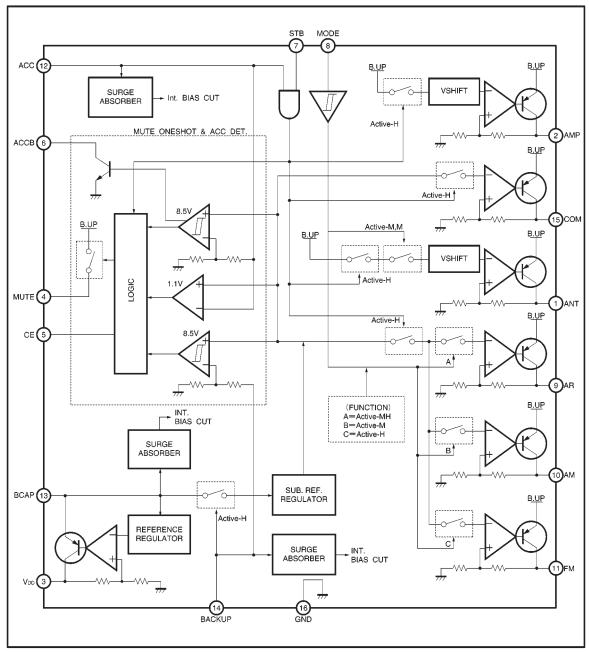
*1 tr \geq 1 ms, applied time is less than 200 ms.

Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Recommended power supply voltage	BACKUP/BCAP/ACC	10	13.2	16	V
Operable voltage	BACKUP/BCAP/ACC	9.6	13.2	24	V
MUTE section operating voltage	BACKUP	4.0	_	_	V

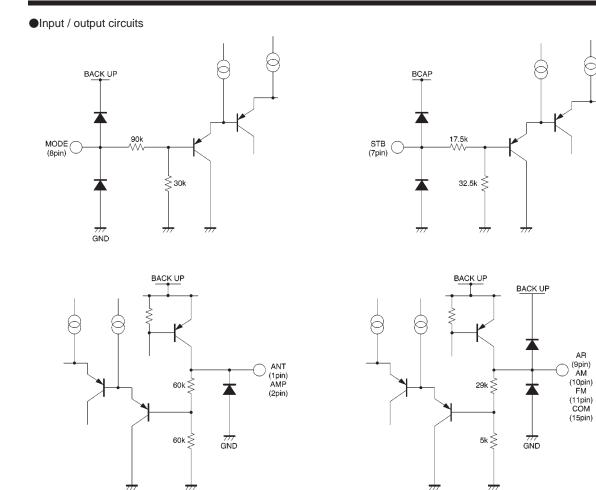
Note: Not intended to ensure electrical characteristics (in particular, during a voltage drop)

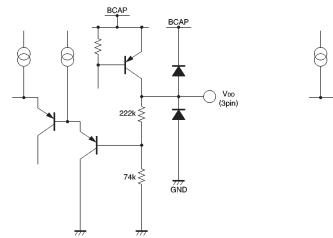
Note: When the BACKUP input voltage becomes less than about 3 V, all the outputs except

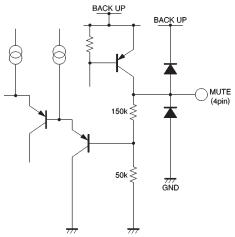

VDD are shut down together with the logic bias voltage.

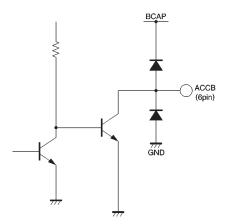
ROHM

BA3915B


227





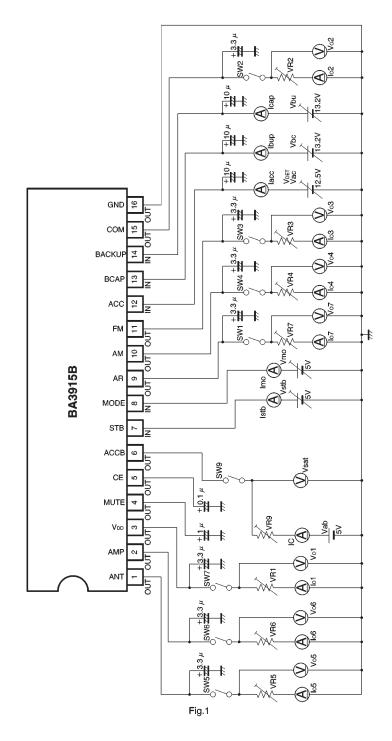

Pin No. Pin name Function 1 ANT 12.6V power supply output pin for antenna drive AMP 2 12.6V power supply output pin for amplifiers 3 Vdd 5.0V power supply output pin for microcontroller; always output when BACKUP input is provided 4 MUTE One-shot pulse output CE Capacitor connection pin for one-shot pulse time constant (TM) setting 5 6 ACCB NPN transistor open collector output; ON when ACC is 8.5 V (typical) or more 7 STANDBY Only VDD is output when LOW; COM, FM, AM, AR, ANT, and AMP can be output when HIGH 8 MODE 3-mode input controls ON/OFF of FM, AM, AR, ANT, and AMP outputs AR 9 8.5V power supply output pin for AR 10 AM 8.5V power supply output pin for AM tuner 11 FM 8.5V power supply output pin for FM tuner 12 ACC Accessory power supply connection 13 BCAP Capacitor connection pin for VDD backup 14 BACKUP Backup power supply connection COM 15 8.5V power supply output pin for COMMON 16 GND Ground

●Pin descriptions (Ta = 25°C, BACKUP / ACC = 13.2V)

BA3915B

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circu
BCAP supply current 1	CAP1		0.40	0.55	mA	BCAP=12.5V, BUP=0V	Fig.1
BACKUP standby supply current	Івир	-	0.18	0.20	mA	BUP=13.2V, BCAP=12.5V	Fig.1
BCAP supply current 2	ICAP2	_	1.30	1.75	mA	BUP=13.2V, BCAP=12.5V	Fig.1
$\langle V_{DD} \rangle$							
Output voltage	V ₀₁	4.75	5.00	5.25	V	I ₀₁ =80mA	Fig.1
Voltage regulation	Δ V011	-	100	300	mV	lo1=80mA	Fig.1
Load regulation	V011	-	50	170	mV	lo1=0→80mA	Fig.1
Minimum I/O voltage differential	ΔV012	_	0.4	0.7	V	lo1=80mA	Fig.1
Output current capacity	lo1	80	-	-	mA		Fig.1
Ripple rejection ratio	RR1	41	45	-	dB	f=100Hz, V _{RR} =-10dBV	Fig.2
(COM)						•	1
Output voltage	V _{O2}	8.05	8.50	8.95	V	I ₀₂ =300mA	Fig.1
Voltage regulation	Δ V _{O21}	_	100	300	mV	I ₀₂ =300mA	Fig.1
Load regulation	V021	_	50	170	mV	lo₂=0→300mA	Fig.1
Minimum I/O voltage differential	ΔV022	_	0.4	0.7	V	lo2=300mA	Fig.1
Output current capacity	lo2	300	-	_	mA		Fig.1
Ripple rejection ratio	RR2	41	45	-	dB	f=100Hz, V _{BB} =-10dBV	Fig.2
$\langle FM \rangle$			1	1	1	I	1
Output voltage	Vos	8.05	8.50	8.95	V	lo3=300mA	Fig.1
Voltage regulation	ΔV031	_	100	300	mV	lo3=300mA	Fig.1
Load regulation	V031	_	50	170	mV	lo₃=0→300mA	Fig.1
Minimum I/O voltage differential	ΔV032	_	0.4	0.7	mV	I ₀₃ =300mA	Fig.1
Output current capacity	lo3	300	-	-	mA		Fig.1
Ripple rejection ratio	RR3	41	45	-	dB	f=100Hz, V _{RR} =-10dBV	Fig.2
<pre> < AM ></pre>						I	
Output voltage	Vo4	8.05	8.50	8.95	V	l₀₄=200mA	Fig.1
Voltage regulation	ΔV041	_	100	300	mV	l₀₄=200mA	Fig.1
Load regulation	V041	_	50	170	mV	l₀₄=0→200mA	Fig.1
Minimum I/O voltage differential	ΔV042	_	0.4	0.7	v	l₀₄=200mA	Fig.1
Output current capacity	I 04	200	-	-	mA		Fig.1
Ripple rejection ratio	RR4	36	40	-	dB	f=100Hz, V _{BB} =-10dBV	Fig.2
〈ANT〉	1		1	1		1	
Minimum I/O voltage differential	ΔV_{052}	_	0.6	1.1	V	lo₅=250mA	Fig.1
Load regulation	V051	_	180	540	mV	lo₅=0→250mA	Fig.1
Output current capacity	los	250	-	-	mA		Fig.1
(AMP)	1	I	1	1	1	1	-
Minimum I/O voltage differential	ΔV_{062}	_	0.6	1.1	V	I ₀₆ =100mA	Fig.1
Load regulation	V061	_	100	300	mV	lo6=0→100mA	Fig.1
Output current capacity	106	100	_	_	mA		Fig.1

Electrical characteristics (unless otherwise noted, Ta = 25°C, BACKUP / ACC = 13.2V)

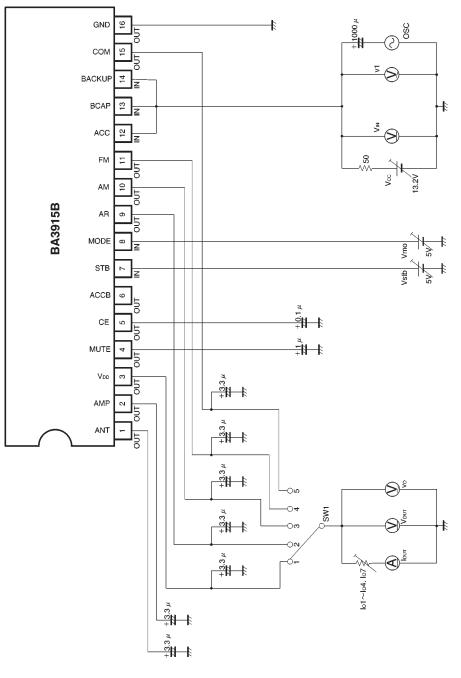
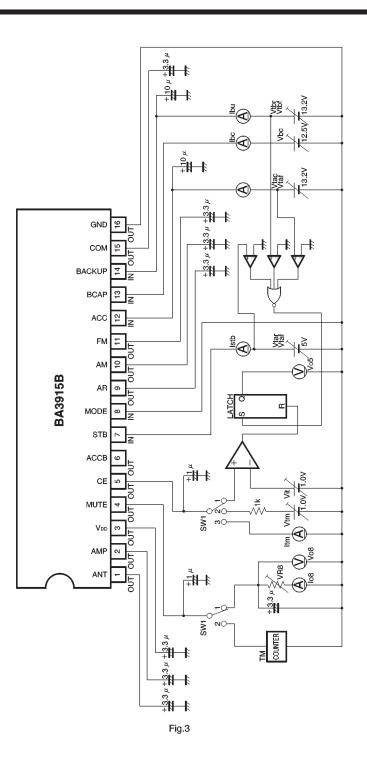


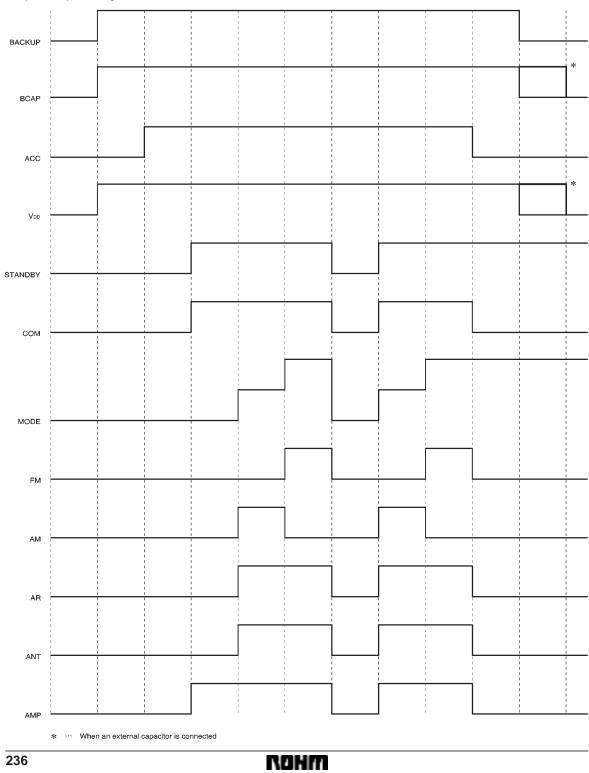
BA3915B

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circu
$\langle AR \rangle$							
Output voltage	V 07	8.05	8.50	8.95	V	lo7=200mA	Fig.1
Voltage regulation	ΔV071	_	100	300	mV	lo7=200mA	Fig.1
Load regulation	V071	-	50	170	mV	lo7=0→200mA	Fig.1
Minimum I/O voltage differential	Δ V072	—	0.4	0.7	V	lo7=200mA	Fig.1
Output current capacity	I 07	200	—	-	mA		Fig.1
Ripple rejection ratio	RR7	41	45	-	dB	f=100Hz, V _{RR} =-10dBV	Fig.2
〈MUTE〉							
Output voltage	Vo8	4.3	4.9	5.5	V	los=10mA	Fig.3
Pulse CE output current	Ітм	0.6	1.0	1.4	μA	los=10mA	Fig.3
Pulse threshold voltage	Vтм	0.9	1.0	1.1	V	108=10mA	Fig.3
Pulse width	ТМ	_	0.1	-	SEC	CE=0.1 μF	Fig.3
(ACC)							
Output A rising threshold	VTAR1	1.0	1.1	1.2	V	TM is counted from ACC = VTAR2	Fig.3
Pulse A rising threshold	VTAR2	8.0	8.5	9.0	V		Fig.3
Output A falling threshold	VTAF1	8.0	8.5	9.0	V		Fig.3
Pulse A falling threshold	VTAF2	1.0	1.1	1.2	V		Fig.3
(BACKUP)						1	
Output B rising threshold	VTBR1	4.7	5.0	5.3	V		Fig.3
Pulse B rising threshold	VTBR2	8.0	8.5	9.0	v		Fig.3
Output B falling threshold	VTBF1	8.0	8.5	9.0	V		Fig.3
Pulse B falling threshold	VTBF2	4.7	5.0	5.3	V		Fig.3
(STANDBY)							1
Output S rising threshold	VTSR1	1.6	1.9	2.2	v		Fig.3
Pulse S rising threshold	VTSR2	2.6	2.9	3.2	v		Fig.3
Output S falling threshold	VTSF1	2.6	2.9	3.2	v		Fig.3
Pulse S falling threshold	VTSF2	1.6	1.9	2.2	v		Fig.3
(MODE)						I	
OFF MODE threshold	VTR1	_	_	1.1	v	OFF MODE	Fig.1
AM ON threshold	VTR2	1.25	1.5	1.75	v	AM MODE WITH ANT, AMP & AR	Fig.1
FM ON threshold	Vtr3	2.5	3.0	3.5	v	FM MODE WITH ANT, AMP & AR	Fig.1
AM hysteresis width	VAHY	0.1	0.2	0.3	v	AM MODE WITH ANT, AMP & AR	Fig.1
FM hysteresis width	VFHY	0.1	0.2	0.3	v	FM MODE WITH ANT, AMP & AR	Fig.1
Input current	Імо	15	40	65	μA	MODE=5V	Fig.1
(STANDBY)	1		1	1		1	
Standby level	VSB1	_	_	2.4	v		Fig.1
Active level	VSB2	3.2	_	-	v		Fig.1
Input current	VSTB	75	100	125	μA	STANDBY=5V	Fig.1
(ACCB)			1		, ,	1	
Detected voltage	VDET	8.0	8.5	9.0	V	Same as VTAF	Fig.1
Output saturation voltage when ON	VSAT1	_	0.5	0.9	v	ACC=13.2V lo9=2mA	Fig.1

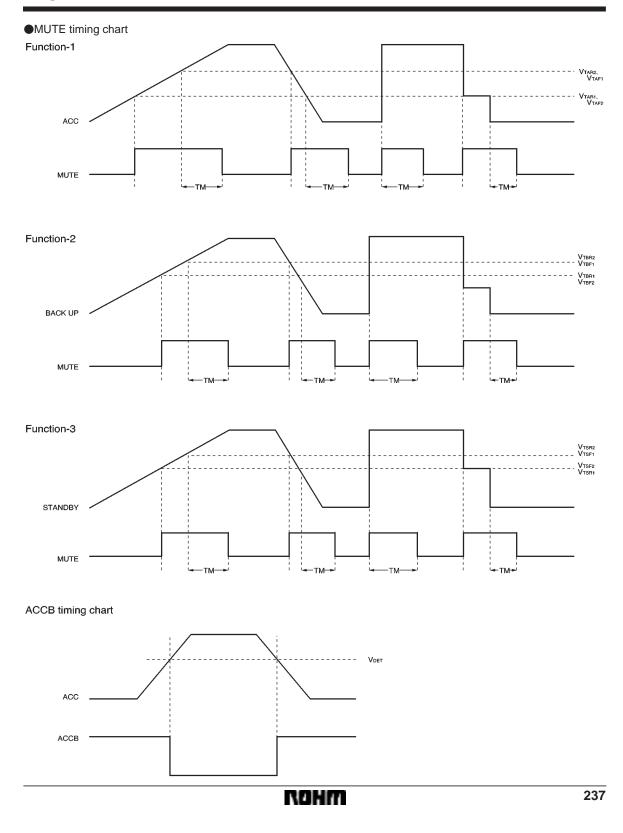
rohm

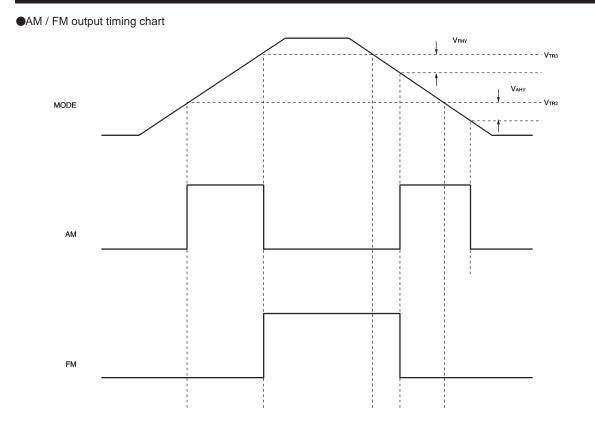
Measurement circuits

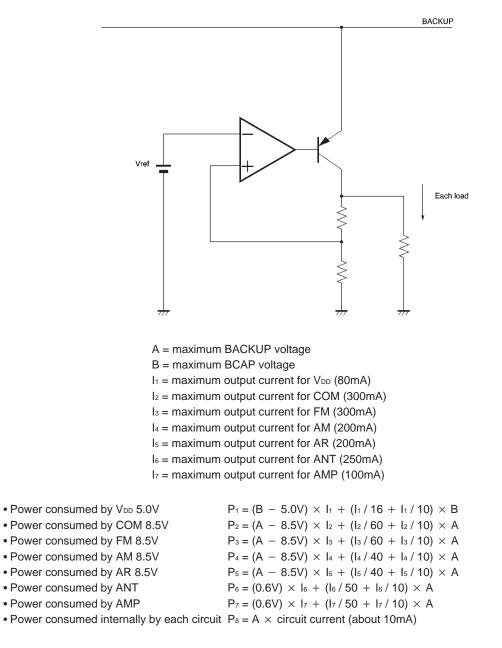

Fig.2

234




BA3915B

BA3915B



238

•Estimate of allowable power dissipation

Except under transitional conditions, the power dissipation of this IC is 3.4W per unit at 25°C. See Fig. 4 for heat reduction characteristics, including some cases where heat sinks are used.

 $P_{MAX} = P_1 + P_2 + (P_3 \text{ or } P_4, \text{ whichever is larger}) + P_5 + P_6 + P_7 + P_8$

Operation notes

(1) Although the quality of this IC is rigorously controlled, the IC may be destroyed when the supply voltage or the operating temperature exceeds their absolute maximum ratings. Because short mode or open mode cannot be specified when the IC is destroyed, be sure to take physical safety measures, such as fusing, if any of the absolute maximum ratings might be exceeded.

(2) Operating power supply voltage

When operating within the proper ranges of power supply voltage and ambient temperature, most circuit functions are guaranteed. Although the rated values of electrical characteristics cannot be absolutely guaranteed, characteristic values do not change drastically within the proper ranges.

(3) Power dissipation (Pd)

Refer to the power dissipation characteristics (Fig. 4) and the rough estimation of IC power dissipation given on a separate page. Make sure your design allows the maximum required power within the operating temperature range.

(4) Overvoltage protection circuit

The overvoltage protection circuit turns OFF all outputs when the potential difference between BACKUP (pin 14), BCAP (pin 13), or ACC (pin 12) and GND (pin 16) is more than about 26V at normal temperature. Make sure to use the IC within this voltage limit.

(5) Preventing oscillation at each output

To stop output oscillation, make sure to connect a capacitor having a capacitance of 10μ F or greater between GND and each of the ANT (pin 1), AMP (pin 2), V_{DD} (pin 3), AM (pin 10), FM (pin 11), and COM (pin 15) output pins. We recommend using a tantalum electrolytic capacitor whose capacitance is unsusceptible to temperature.

(6) Overcurrent protection circuit

An overcurrent protection circuit is installed on the ANT (pin 1), AMP (pin 2), V_{DD} (pin 3), AM (pin 10), FM (pin 11), and COM (pin 15) outputs, based on the respective output current. This prevents IC destruction due to overcurrent, by limiting the current with a curve shape of "7" in the voltage-current graph. The IC is designed with margins so that current flow will be restricted and latching will be prevented even if a large current suddenly flows through

a large capacitor. The circuit should be carefully set because output current is further restricted when output voltage is less than $1V_F$ (considered as short mode).

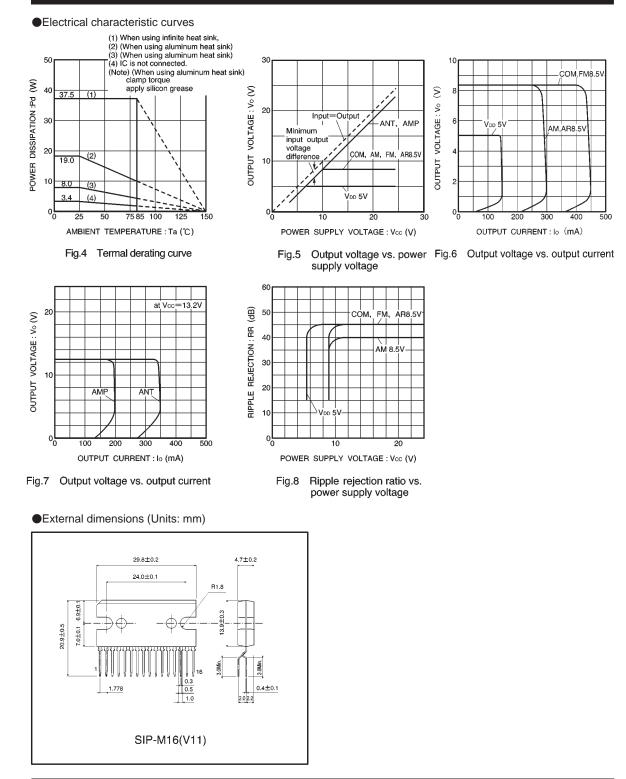
(7) Thermal protection circuit

A built-in thermal protection circuit prevents thermal damage to the IC. All outputs except V_{DD} are switched OFF when the circuit operates, and revert to the original state when the temperature drops to a certain level.

(8) BACKUP-ACC potential difference

If the BACKUP voltage exceeds the ACC voltage, a current flows through a protection diode connected internally between BACKUP and ACC. If the potential difference is more than $1V_{F}$, this diode is fully turned on.

(9) BCAP pin external diode


Voltage is supplied to BCAP from BACKUP through an external diode. The maximum current consumption is about 100mA. A reverse bias will be applied to the diode if the BACKUP pin becomes 0V. Select a diode that has sufficient electrical characteristics to cope with the above conditions.

(10) Grounding

Each ground trace must be adequately short from GND (pin 16). Make sure to arrange the ground traces in a pattern that prevents mutual interference.

(11) We recommend installing a bypass line in your application if there is a mode where potential difference between each output and input (V_{CC}) or GND is reversed from the normal state.

BA3915B

