AN5829S

Sound multiplex decoder IC for the U.S. televisions

Overview

The AN5829S is a multiplex sound demodulation IC dedicated to the U.S. television and incorporates a bidirectional I²C interface (adjustment, mode SW), an AGC circuit and external stereo input switches (2 systems).

Features

- Stereo demodulation, SAP demodulation, dbx noise reduction, AGC, external stereo input SW and I²C bus interface are integrated in a single chip
- Bi-directional I²C bus makes it possible to monitor MPX input level, separation adjustment (3 places), mode changeover and receiving status.
- Eliminated external parts (multi-sound block: 21 pieces \rightarrow 14 pieces
- Lower power dissipation ($V_{CC} = 5 \text{ V}, I_{TOT} = 18 \text{ mA}$)

Applications

• Televisions and VCRs for the North American market

Package

• SOP024-P-0375C

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	AGC timing	13	SAP carrier detection
2	External input 1 L-ch	14	Composite input
3	External input 1 R-ch	15	Pilot signal detection
4	75 μs filter offset cancel	16	Stereo PLL filter
5	dbx offset cancel	17	GND
6	Wideband timing	18	SCL
7	V _{CC}	19	SDA
8	Wideband level sensor input	20	PE for ZAP
9	Spectral filter	21	L-ch output
10	Spectral timing	22	R-ch output
11	Spectral level sensor input	23	External input 2 R-ch.
12	SAP noise level detection	24	External input 2 L-ch.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	6.0	V
Supply current	I _{CC}	25	mA
Power dissipation *2	P _D	150	mW
Operating ambient temperature *1	T _{opr}	-20 to +75	°C
Storage temperature ^{*1}	T _{stg}	-55 to +125	°C

Note) The use of this IC, which builds in dbx-TV noise reduction, requires a license agreement with THAT Corporation.

*1: Except fot the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*2: $T_a = 75^{\circ}C$

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V _{CC}	4.5 to 5.5	V

Electrical Characteristics at $V_{CC} = 5 V$, NR: On, $T_a = 25^{\circ}C$

Input level (at 100% modulation) L+R: 75 mV[rms] (pre-emphasis off)

L-R: 150 mV[rms] (dbx noise reduction off)

Pilot: 15 mV[rms]

SAP: 45 mV[rms] (dbx noise reduction off)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Total circuit current	I _{CC}	No signal	11	18	25	mA
Mono output level	V _{0(MON)}	f = 1 kHz, (mono) 100%mod	430	480	530	mV[rms]
Mono frequency characteristics-1	V _{1(MON)}	f = 300 Hz, (mono) 30%mod	- 0.5	0	0.5	dB
Mono frequency characteristics-2	V _{2(MON)}	f = 8 kHz, (mono) 30%mod	-1.2	- 0.1	0.7	dB
Mono distortion ratio	THD _(MON)	f = 1 kHz, (mono) 100%mod		—	0.7	%
Mono noise level	V _{N(MON)}	Input short-circuit, BPF (A curve)		_	-60	dBV
(L), (R) output voltage difference	V _{LR(MON)}	f = 1 kHz, (mono) 100%mod	- 0.5	0	0.5	dB
Stereo output level	V _{0(ST)}	f = 1 kHz, (L(R)-only) 100% mod	380	480	580	mV[rms]
Stereo frequency characteristics-1	V _{1(ST)}	f = 300 Hz, (L(R)-only) 30% mod	- 0.7	0	0.7	dB
Stereo frequency characteristics-2	V _{2(ST)}	f = 3 kHz, (L(R)-only) 30% mod	-1	0	1	dB
Stereo frequency characteristics-3	V _{3(ST)}	f = 8 kHz, (L(R)-only) 30% mod	-2.5	- 0.5	1.5	dB
Stereo distortion ratio	THD _(ST)	f = 1 kHz, (L(R)-only) 100% mod		_	1	%
Stereo noise level	V _{N(ST)}	f = 15.73 kHz, (f _H), 15 mV[rms] f _H , 2 f _H Trap+BPF			-60	dBV
Stereo discrimination level	V _{TH(ST)}	$f = 15.73 \text{ kHz} (f_H)$	4	8	13	mV[rms]
Stereo discrimination hysteresis	V _{HY(ST)}	$f = 15.73 \text{ kHz} (f_H)$	0.5	_	5	dB
SAP output level	V _{0(SAP)}	f = 1 kHz, (SAP) 100%mod	370	500	680	mV[rms]
SAP frequency characteristics-1	V _{1(SAP)}	f = 300 Hz, (SAP) 30%mod	-1	0	1	dB
SAP frequency characteristics-2	V _{2(SAP)}	f = 3 kHz, (SAP) 30%mod	-2.5	- 0.5	1	dB
SAP distortion ratio	THD _(SAP)	f = 1 kHz, (SAP) 100%		—	1.5	%
SAP noise level	V _{N(SAP)}	$f = 78.7 \text{ kHz}, (5f_H), V = 45 \text{ mV}[\text{rms}], BPF$		—	-70	dBV
SAP discrimination level	V _{TH(SAP)}	$f = 78.7 \text{ kHz}, (5f_H)$	11	—	26	mV[rms]
SAP discrimination hysteresis	V _{HY(SAP)}	$f = 78.7 \text{ kHz}, (5f_{\text{H}})$	0.5	—	5	dB
$SAP \rightarrow Stereo crosstalk$	C _{T1}	(SAP)1 kHz, 100%mod (Stereo) pilot-signal			-50	dB
Stereo \rightarrow SAP crosstalk	C _{T2}	(Stereo) 1 kHz, 100%mod (SAP) carrier-signal			-50	dB
$SAP \rightarrow Mono crosstalk$	C _{T3}	(SAP) 1 kHz, 100%mod		—	-50	dB
Mono \rightarrow SAP crosstalk	C _{T4}	(Mono) 1 kHz, 100%mod (SAP) carrier-signal			-56	dB
AUX 1, AUX 2 to INT crosstalk	C _{T5}	$f = 1 \text{ kHz}, V_{IN} = 500 \text{ mV}[\text{rms}]$		_	50	dB
INT, AUX 2 to AUX 1 crosstalk	C _{T6}	INT: (mono) 1 kHz, 100%mod EXT: f = 1 kHz, 500 mV[rms]		-	50	dB
INT, AUX 1 to AUX 2 crosstalk	C _{T7}	INT: (mono) 1 kHz, 100%mod EXT: f = 1 kHz, 500 mV[rms]		-	50	dB

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
AGC gain 1 ^{*1}	V _{AGC1}	$f = 1 \text{ kHz}, V_{IN(EXT)} = 50 \text{ mV}[rms]$	67	100	140	mV[rms]	
AGC gain 2 *1	V _{AGC2}	$f = 1 \text{ kHz}, V_{IN(EXT)} = 500 \text{ mV}[rms]$	180	270	390	mV[rms]	
I ² C interface							
Sink current at ACK	I _{ACK}	Maximum pin 2 sink current at ACK	1	2	20	mA	
SCL, SDA signal input high level	V _{IHI}		3.5	_	5.0	V	
SCL, SDA signal input low level	V _{ILO}		0	_	0.9	V	
Input available maximum frequency	f _{Imax}			_	100	kbit/s	

Electrical Characteristics at $V_{CC} = 5 \text{ V}$, NR: On, $T_a = 25^{\circ}C$ (continued)

Note) *1: 00H register: D7 = 0, D6 = 1

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Stereo separation (100%)-1	Sep ₁₀₀₋₁	f = 300 Hz, (L(R)-only) 100%mod	20	35		dB
Stereo separation (100%)-2	Sep ₁₀₀₋₂	f = 1 kHz, (L(R)-only) 100 % mod	17	28	_	dB
Stereo separation (100%)-3	Sep ₁₀₀₋₃	f = 3 kHz, (L(R)-only) 100% mod	20	35		dB
Stereo separation (100%)-4	Sep ₁₀₀₋₄	f = 8 kHz, (L(R)-only) 100% mod	10	18		dB
Stereo separation (30%)-1	Sep ₃₀₋₁	f = 300 Hz, (L(R)-only) 30%mod	22	35		dB
Stereo separation (30%)-2	Sep ₃₀₋₂	f = 1 kHz, (L(R)-only) 30% mod	20	35	_	dB
Stereo separation (30%)-3	Sep ₃₀₋₃	f = 3 kHz, (L(R)-only) 30% mod	22	35		dB
Stereo separation (30%)-4	Sep ₃₀₋₄	f = 8 kHz, (L(R)-only) 30% mod	14	22		dB
Stereo separation (10%)-1	Sep ₁₀₋₁	f = 300 Hz, (L(R)-only) 10%mod	20	35	_	dB
Stereo separation (10%)-2	Sep ₁₀₋₂	f = 1 kHz, (L(R)-only) 10%mod	20	35	_	dB
Stereo separation (10%)-3	Sep ₁₀₋₃	f = 3 kHz, (L(R)-only) 10% mod	20	30	_	dB
Stereo separation (10%)-4	Sep ₁₀₋₄	f = 8 kHz, (L(R)-only) 10% mod	14	22		dB
I ² C interface			1			
Bus free before start	t _{BUF}		4.0			μs
Start condition set-up time	t _{SU.STA}	_	4.0			μs
Start condition hold time	t _{HD.STA}		4.0			μs
Low period SCL, SDA	t _{LO}		4.0			μs
High period SCL	t _{HI}		4.0			μs
Rise time SCL, SDA	t _r	_			1.0	μs
Fall time SCL, SDA	t _f	_			0.35	μs
Data set-up time (write)	t _{SU.DAT}	—	0.25			μs
Data hold time (write)	t _{HD.DAT}		0.3		_	μs
Acknowledge set-up time	t _{SU.ACK}				3.5	μs
Acknowledge hold time	t _{HD.ACK}	—	0			μs
Stop condition set-up time	t _{SU.STO}		4.0			μs

Electrical Characteristics at $V_{CC} = 5 \text{ V}$, NR: On, $T_a = 25^{\circ}C$ (continued)

Terminal Equivalent Circuits

SDB00030CEB

6

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
4	(4)	OFCAN1: 75 µs filter output Offset cancel pin	2.2
5	(5)	OFCAN2: dbx output Offset cancel pin	2.2
6	6 29 Ω 29 Ω 15 μA 15 μA GND	WBTIME: Wide expander effective value detec- tion recovery time set-up pin	2.2
7		V _{CC} : V _{CC} pin	V _{CC}
8	v_{cc} (8) $14.4 k\Omega$ (9) T 2.2 V GND	WBDET: RMS detection circuit input pin of wide band expander	2.2

<u> </u>		/ ·· ·	
I erminal	Equivalent Circuits	(continued))

Pin No.	Equivalent circuit	Description	DC voltage (V)
9	$(9) + (230 \Omega) + (18 k\Omega) $	SPEFIL: Variable de-emphasis level adjusting pin	2.2
10	10	SPETIME: RMS detection recovery time pin of variable de-emphasis	0.2
11	V_{cc}	SPEDET: RMS detection circuit input pin of variable de-emphasis	2.2
12	V_{cc}	NOISEDET: Noise detecting pin of SAP malfunc- tion-prevention-circuit(Mute SAP de- modulation at detecting noise.)	V _{CC} – 2 V _{BE}

	Terminal	Equivalent Circuits	(continued)
--	----------	---------------------	-------------

Terminal Equivalent Circuits (continued)

	Terminal	Equivalent	Circuits	(continued)
--	----------	------------	----------	-------------

Pin No.	Equivalent circuit	Description	DC voltage (V)
22	22 430 Q 430 Q 430 Q C C C C C C C C C C C C C	R OUT: R-ch. line out output pin	2.2
23	V_{cc}	AUX2R: External input 2 L-ch. input pin	2.2
24	24 20.7 kΩ 13.8 kΩ 2.2 V GND	AUX2L: External input 2 R-ch. input pin	2.2

Usage Notes

1. AGC set-up method

By turning on AGC, the AGC performs 0 dB at a small signal input, Boost at a medium signal and gain reduction at a big signal. It can also control the I/O characteristics of AGC by I²C as shown below:

2. Guarantee of I²C operating temperature

I²C bus control operation at an operating ambient temperature is theoretially guranteed based on IC design by means of the inspection using about 50% faster clock speed at the normal temperature ($T_a = 25^{\circ}$ C).

Namely it is a theoretical value based on IC design, therefore it is not guranteed at the shipping inspection because the inspection under a high and low temperature is not conducted.

3. Electrostatic breakdown

Pay attention to the following levels: Pin 6: 200 pF, 130 V Pin 10: 200 pF, 150 V Pin 22: 200 pF, 190 V

Technical Information

[1] I²C bus

As transfer messages, SCL and SDA are transfered synchronously and serially. SCL is a constant clock frequency and SDA is address data for controlling a receiving side and is sent in parallel by synchronizing with SCL. Data are in principle sent by 8-bit 3-octet (byte) and there exists an acknowledge bit per octet. The frame structure is mentioned below:

1) Start condition

When SDA becomes from high to low at SCL = high, the receiver gets ready to receive.

2) Stop condition

When SDA becomes from low to high at SCL = high, the receiver stops receiving.

3) Slave address

Specified for each device. If any addresses of other devices are sent, receiving will be stopped.

4) Sub-address

Specified for each function.

5) Data

Data for controlling

6) Acknowledge bit

This is the bit that informs the master of data reception every octet. The master sends the high signal and the receiver sends back the low signal as shown with the dotted line in the above figure, thus the master acknowledges reception on the receiver side. If the low signal is not sent back, the reception will be stopped.

Except for the start and stop conditions, SDA does not change at SCL = high.

Technical Information

[1] I²C bus (continued)

- 1. Receiving mode (continued)
 - <I²C of this IC>
 - 1) Enhances adjustment-free mechanism of the TV set thanks to DAC control 3 and 9 switches
 - 2) Auto-increment function
 - Sub address 0 *: Auto-increment mode
 - (Data sequential transfer leads to the sequential change of sub address, so that the data is inputted.)
 - Sub address 8 *: Data renewal mode
 - (With sequential data transfer, data are inputted in the same sub address.)
 - 3) I^2C bus protocol
 - Slave address

• Format (normal)

		· · ·							
	S	Slave address	W	А	Sub address	А	Data byte	Α	Р
coi	† Start nditi	on		Wr	Acknowledge bi ite Mode: 0	t		coi	f Stop nditior

• Auto-increment mode/data renewal mode

S	Slave address	W	А	Sub address	А	Data 1	А	Data 2	Α	\square	Data n	Α	Р
		-			-		-		-		<u> </u>		

- 4) As the initial state of DAC is not guaranteed, never fail to input the following data in a power on mode.
 - "06" register: "04"
 - "00" register: adjustment data
 - "01" register: adjustment data
 - "02" register: "00"
 - "05" register: adjustment data
- 2. Transmission mode (read mode)

I²C bus protocol

- Slave address: 10110111 (B7H)
- Format

- Technical Information (continued)
- [1] I²C bus (continued)
 - Sub address byte and data byte format

Write mode (slave add.: 10110110)

Sub	Upper MS	В]	Lower LSB			
address	D7	D6	D5	D4	D3	D2	D1	D0
"00"	- AGC	Cadj. ──►	4		Input level	adjustment		
"01"	AUXselect 0: AUX1 1: AUX2	AUX SW 0: Off 1: On	-	— High fr	equency sep	paration adju	istment —	
"02"	$\begin{array}{l} \text{Adj.: } 1 \rightarrow \text{On} \\ \text{L:VGA out} \\ \text{R:VCO } f_{\text{H}} \end{array}$	Mute: $1 \rightarrow On$ L: Mute R: Mute	$\begin{array}{c} AGC \\ 1 \rightarrow On \end{array}$	0	$\begin{array}{c} \text{FMONO: } 1 \rightarrow \text{On} \\ \text{L: } \text{L+R} \\ \text{R: } \text{L+R} \end{array}$	0	$\begin{array}{c} \text{St/SAP} \\ 0 \rightarrow \text{SAP} \end{array}$	(L+R)/SAP $0 \rightarrow SAP$
"05"	*	*	*	*	← Low fr	equency sep	paration adju	istment —►
"06"	*	*	*	*	*	*	0	0
							* :	= Don't care

Read mode (slave add.: 10110111)

Upper MS	В		Data	Lower LSB			
D7	D6	D5	D4	D3	D2	D1	D0
Pilot det. 1 \rightarrow DET	SAP det. $1 \rightarrow DET$	*	*	*	*	*	*

* = Don't care

Technical Information (continued)

[2] Noise detecting operation in SAP receiving mode

Pin 14 input	"02" register	Pin 12, pin 13	SW1	SW2	I ² C SAP det.	Pin 21, pin 22
		DC voltage				
Noise: Small	"00"	$V_{12} > V_{13}$	b	с	3.5 V to 5 V	SAP
Noise: Large	"00"	$V_{12} < V_{13}$	а	а	0 V to 0.9 V	L+R

Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.