

Overview

The LC7385, 7385M CMOS DTMF Receiver LSIs integrate bandsplit filter and digital decoder functions for the 16 DTMF digits used in touch-tone telephone systems.

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Pin	Functions
-----	-----------

Pin No.	Name	1/0	Description
1	IN+	I	Input amp non-inverting input
2	IN-	Ι	Input amp inverting input
3	GS	0	Input amp output
4	V _{REF}	0	Reference voltage output (V _{DD} /2)
5	B/Ħ	I	Q1 to Q4 output format selection: Binary 2-of-8 when HIGH Hexadecimal when LOW
6	PD	I	Standby mode when set to HIGH
7 8	OSC1 OSC2	I O	Clock pins. 3.579545MHz crystal is connected between OSC1 and OSC2.
9	V _{SS}		Power supply. Normally 0V
10	TOE	I	Q1 to Q4 3-state output selection: Enabled when HIGH High-impedance when LOW
11 12	Q ₁		
12	Q2 Q3	0	3-state data output
14		1	
15	StD	0	Goes HIGH when valid tone pair duration exceeds set guard time.
16	ESt	0	Goes HIGH when valid tone pair is detected.
17	St/GT	I/O	Used to set guard time.
18	V _{DD}		Power supply. Normally 5V

Absolute Maximum Ratings at $Ta = 25 \pm 2^{\circ}C$, $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	unit
Maximum Supply Voltage	V _{DD} max		-0.3 to $+7.0$	v
Input Voltage	V _{IN}		-0.3 to V _{DD} + 0.3	V V
Input Current	I _{IN}		-10 to +10	mA
Output Voltage	Vour	······································	-0.3 to V _{DD} +0.3	v
Power Dissipation	P _D [·]	$-40^{\circ}C \leq Ta \leq +85^{\circ}C$	DIP-18 250	
-	гD	-40 C $= 18 = +80$ C	MFP-18 180	mW
Operating Temperature	Topr		-40 to +85	°C
Storage Temperature	Tstg		-50 to +125	°C

Allowable Operating Conditions at Ta = -40 to $+85^{\circ}C$, $V_{SS} = 0V$

Parameter	Symbol	Condition	min	typ	max	unit	Pin No.
Operating Voltage	V _{DD}		4.75		5.25	v	
Input 'H'-Level Voltage	VIH		0.7V _{DD} 0.85V _{DD}			V	6,10
Input 'L'-Level Voltage	V _{IL}				0.3V _{DD}	v	6.10
	' ^{IL}				$0.15V_{DD}$	V	5

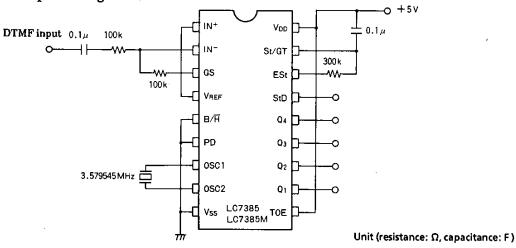
Note: When soldering the 18-pin MFP package, solder it manually or use the infrared reflow method. Do not use the dip-soldering method. The conditions for the infrared reflow method are 235°C max., 10sec.

Parameter	Symbol	Condition	min	typ	max	unit	Pin No.
Operating Supply Current	I _{DD} (op)			3.0	7.0	mA	· · · · · · · · · · · · · · · · · · ·
Standby Supply Current	I _{DD} (st)	PD=5V	1		100	μA	
Output 'H'-Level Current	I _{OH}	V _{OUT} =4.6V		-0.8	-0.4	mA	11,12,13 14,15,16
				-3.0	-1.2	mA	17
			1.0	2.5		mA	11.12.13
Output 'L'-Level Current	IOL	$V_{OUT} = 0.4V$					14.15.16
			1.2	3.0		mA	17
OFF-State Output Current	IOZH	$TOE = 0V, V_{OUT} = 5V$			10	μA	11,12,13
	I _{OZL}	$TOE = 0V, V_{OUT} = 5V$	° <u>∽</u> 10			μA	14
Input 'H'-Level Current	I _{IH}	V _{IN} =5V			10	μA	1,2,10
Input 'L'-Level Current	IIL	$V_{IN} = 0V$	-10			μA	1,2,5,6
Pull-up (source) Current	I _{SO}	TOE=0V	-15	-5		μA	10
Pull-down (sink) Current	I _{SI}	PD,B/H = 5V		5	15	μA	5,6
St/GT Threshold Voltage	V _{TST}			2.35		v	17
V _{REF} Output Voltage	VREF	No load	2.4		2.7	v	4
VREF Output Resistance	R _{REF}			1		kΩ	4

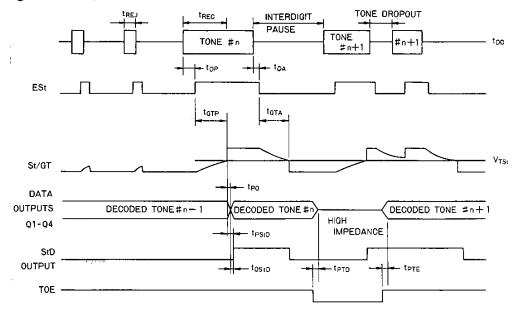
DC Electrical Characteristics at $Ta = 25 \pm 2^{\circ}C$, $V_{DD} = 5V$, $V_{SS} = 0V$

Input Amplifier Characteristics at $Ta = 25 \pm 2^{\circ}C$, $V_{DD} = 5V$, $V_{SS} = 0V$

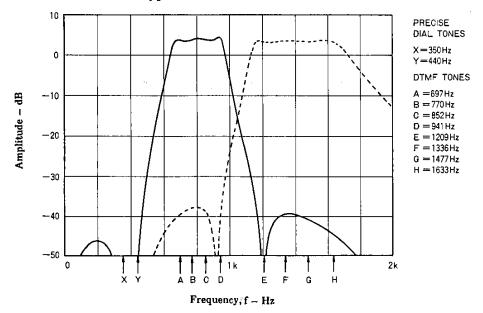
Parameter	Symbol	Condition	min	typ	max	unit
Input Offset Voltage	VIO		- 25		+25	mV
Input Offset Current	I _{IO}	$V_{SS} \leq V_{IN} \leq V_{DD}$	······	±100		nA
Power Supply Rejection	PSRR	1kHz	······	60		dB
Common Mode Rejection	CMRR		·	60		dB
Open-Loop Voltage Gain	A ₀			65	· . · .	dB
0dB Gain Bandwidth	f _T	·····		1.5		MHz
Maximum Output Voltage	Vo	$R_L \ge 100 k\Omega$		4.5		Vp-p
Tolerable Capacitive Load	CL			100		pF
Tolerable Resistive Load	RL	······································		50		kΩ
Common Mode Range	V _{CM}	No load	·····	3.0		Vp-p


Parameter	Symbol	Condition	min	typ	max	unit
Valid Input Signal Level	• .	1, 2, 3, 5, 6, 9	- 29		1.1	dBm
Twist Accept Limit		2, 3, 6, 9, 11		±10		dB
Frequency Deviation Accept Limit		2, 3, 5, 9			±1.5% ±2Hz	
Frequency Deviation Accept Limit		2, 3, 5	±3.5			%
Third Tone Tolerance		2, 3, 4, 5, 9, 10		-16		dB
Dial tone Tolerance		2, 3, 4, 5, 8, 9, 10		+18		dB
Noise Tolerance		2, 3, 4, 5, 7, 9, 10		12		dB
Tone Present Detection Time	t _{DP}	See timing diagram	5	11	14	ms
Tone Absent Detection Time	t _{DA}	See timing diagram.	0.5	4.0	8.5	ms
Tone Duration Accept	tREC		40			ms
Tone Duration Reject	t _{REJ}	Adjustable. See Guard			20	ms
Interdigit Pause Accept	t_{ID}	Time Adjustment.	40			ms
Interdigit Pause Reject	t _{DO}	ĺ			20	ms
Propagation Delay $(St \rightarrow Q)$	t _{PQ}	TOE = 5V, No load		8	11	μs
Propagation Delay $(St \rightarrow StD)$	t _{PSTD}	TOE=5V, No load		12		μs
Output Data Set-Up (Q→StD)	tQSTD	TOE = 5V, No load		4.5		μs
Output Enable Delay	t _{PTE}	$R_{L} = 10k, C_{L} = 50pF$	-	50	100	ns
Output Disable Delay	tPTD	$R_{L} = 10k, C_{L} = 50pF$		300		ns
Clock Frequency	fosc		3.5759	3.5795	3.5831	MHz
Clock Capacitive Load	C _{XO}	OSC2			30	pF

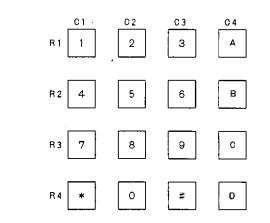
AC Characteristics at $Ta = 25 \pm 2^{\circ}C$, $V_{DD} = 5V$, $V_{SS} = 0V$, $f_{OSC} = 3.579545MHz$


Conditions

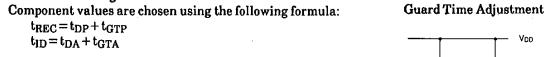
- 1. dBm = decibels above or below a reference power of 1mW into a 600Ω load
- 2. All 16 DTMF tones
- 3. 40ms DTMF tone duration and 40ms pause duration
- 4. Nominal DTMF frequencies
- 5. Both tones in composite signal have an equal amplitude.
- 6. Tone pair deviated by $\pm 1.5\% \pm 2Hz$
- 7. Bandwidth limited (0 to 3kHz) Gaussian noise
- 8. 350Hz and 440Hz + 2% dial tone frequencies
- 9. Error rate better than 1 in 10,000
- 10. Referenced to lowest level frequency component in DTMF signal
- 11. Twist = ratio of high-frequency tone level to low-frequency tone level


Single-Ended Input Configuration

Timing Diagram

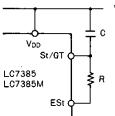

Typical Filter Characteristics

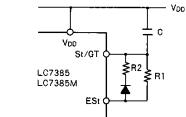
FL	FH	KEY	TOE		B/H∓	="L"			B/H	="H"	
		NET	TUE	Q4	Q3	Q2	Q1	Q4	Q3	Q2	Q1
697	1209	1	Н	L	L	L	н	L.	L	L	Ŀ
697	1336	2	Н	L	L	н	L	L	L	L	Н
697	1477	3	Н	L	L	н	н	L	L	н	L
770	1209	4	Н	ιL	н	L	L	L.	н	L	
770	1336	5	н	L L	н	L	н	Ĺι	н	L	Н
770	1477	6	Н	1 L	н	н	Ŀ	L	н	н	L
852	1209	7	Н		н	н	н	н		L	
852	1336	8	Н	н	L	L	L	н	L	L	н
852	1477	9	Н	н	L	L	н	н	L	н	L
941	1336	0	Н	İн	L	н	L	н	н	L	н
941	- 1209	*	Н	Н	L	н	н	н	н	L	L
941	1477	#	Н	Н	н	L	L	н	н	н	L
697	1633	A	Н	н	н	L	н	L	L	н	н
770	1633	В	н	н	н	н	L	L	н	н	н
852	1633	C C	Н	н	н	н	н	н	1 L	н	Η
941	1633	D	н	L	L	L	L L	н	н	н	н
_	-		L	Z	Ζ	z	Z	Z	Z	Z	Z
			• · · · · · · · · · · · · · · · · · · ·		•			ROI	w m	COL	_ n


Note : Z = High impedance

DTMF Dialing Matrix

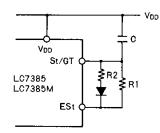
- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall: ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

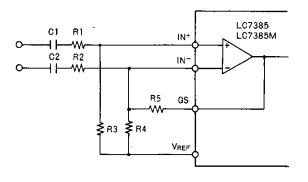

Guard Time Setting



(a) Basic Circuit $t_{GTP} = RC \cdot In [V_{DD} / (V_{DD} - V_{TST})]$ $t_{GTA} = RC \cdot In (V_{DD} / V_{TST})$

 $t_{GTA} = R_1 C \cdot \ln (V_{DD} / V_{TST})$


(b) $t_{GTP} < t_{GTA}$



(c) $t_{GTP} > t_{GTA}$ $t_{GTP} = R_1 C \cdot \ln [V_{DD} / (V_{DD} - V_{TST})]$ $t_{GTA} = R_1 R_2 / (R_1 + R_2) \cdot C \cdot \ln (V_{DD} / V_{TST})$

 $t_{GTP} = R_1 R_2 / (R_1 + R_2) \cdot C \cdot In [V_{DD} / (V_{DD} - V_{TST})]$

Differential Input Configuration

Example of component values

 $C_{1} = C_{2} = 0.01 \mu F$ $R_{1} = R_{2} = R_{5} = 100 k\Omega$ $R_{4} = 60 k\Omega, R_{3} = 37.5 k\Omega$ $R_{3} = \frac{R_{4}R_{5}}{R_{4} + R_{5}}$

Voltage gain : $Av = \frac{R_5}{R_1}$

Input impedance = $2\sqrt{R_1^2 + (\frac{1}{2\pi fc_1})^2}$