

## WORD-WIDE FlashFile™ MEMORY FAMILY 28F160S3, 28F320S3

Includes Extended Temperature Specifications

- Two 32-Byte Write Buffers
  - 2.7 μs per Byte Effective Programming Time
- Low Voltage Operation
  - 2.7V or 3.3V Vcc
  - 2.7V, 3.3V or 5V V<sub>PP</sub>
- 100 ns Read Access Time (16 Mbit) 110 ns Read Access Time (32 Mbit)
- High-Density Symmetrically-Blocked Architecture
  - 32 64-Kbyte Erase Blocks (16 Mbit)
  - 64 64-Kbyte Erase Blocks (32 Mbit)
- System Performance Enhancements
   STS Status Output
- Industry-Standard Packaging
  - μBGA\* package, SSOP, and TSOP (16 Mbit)
  - μBGA\* package and SSOP (32 Mbit)

- Cross-Compatible Command Support
  - Intel Standard Command Set
  - Common Flash Interface (CFI)
  - Scaleable Command Set (SCS)
- 100,000 Block Erase Cycles
- Enhanced Data Protection Features
  - Absolute Protection with  $V_{PP} = GND$
  - Flexible Block Locking
  - Block Erase/Program Lockout during Power Transitions
- Configurable x8 or x16 I/O
- Automation Suspend Options
  - Program Suspend to Read
  - Block Erase Suspend to Program
  - Block Erase Suspend to Read
- ETOX<sup>™</sup> V Nonvolatile Flash Technology

Intel's Word-Wide FlashFile™ memory family provides high-density, low-cost, non-volatile, read/write storage solutions for a wide range of applications. The Word-Wide FlashFile memories are available at various densities in the same package type. Their symmetrically-blocked architecture, flexible voltage, and extended cycling provide highly flexible components suitable for resident flash arrays, SIMMs, and memory cards. Enhanced suspend capabilities provide an ideal solution for code or data storage applications. For secure code storage applications, such as networking, where code is either directly executed out of flash or downloaded to DRAM, the Word-Wide FlashFile memories offer three levels of protection: absolute protection with V<sub>PP</sub> at GND, selective block locking, and program/erase lockout during power transitions. These alternatives give designers ultimate control of their code security needs.

This family of products is manufactured on Intel's 0.4  $\mu m$  ETOX<sup>TM</sup> V process technology. It comes in the industry-standard 56-lead SSOP and  $\mu BGA$  packages. In addition, the 16-Mb device is available in the industry-standard 56-lead TSOP package.

June 1997 Order Number: 290608-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The 28F160S3 and 28F320S3 may contain design defects or errors known as errata. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
or call 1-800-879-4683
or visit Intel's website at http:\\www.intel.com

COPYRIGHT © INTEL CORPORATION, 1997

CG-041493

\*Third-party brands and names are the property of their respective owners.



## **CONTENTS**

| PAGE                                        | PAGE                                                      |
|---------------------------------------------|-----------------------------------------------------------|
| 1.0 INTRODUCTION5                           | 4.9 Byte/Word Write Command27                             |
| 1.1 New Features5                           | 4.10 STS Configuration Command28                          |
| 1.2 Product Overview5                       | 4.11 Block Erase Suspend Command28                        |
| 1.3 Pinout and Pin Description6             | 4.12 Program Suspend Command28                            |
| 2.0 PRINCIPLES OF OPERATION10               | 4.13 Set Block Lock-Bit Commands29                        |
| 2.1 Data Protection11                       | 4.14 Clear Block Lock-Bits Command29                      |
|                                             | 5.0 DESIGN CONSIDERATIONS39                               |
| 3.0 BUS OPERATION12                         | 5.1 Three-Line Output Control39                           |
| 3.1 Read12                                  | 5.2 STS and WSM Polling39                                 |
| 3.2 Output Disable12                        | 5.3 Power Supply Decoupling39                             |
| 3.3 Standby12                               | 5.4 V <sub>PP</sub> Trace on Printed Circuit Boards39     |
| 3.4 Deep Power-Down12                       | 5.5 V <sub>CC</sub> , V <sub>PP</sub> , RP# Transitions39 |
| 3.5 Read Query Operation12                  | 5.6 Power-Up/Down Protection39                            |
| 3.6 Read Identifier Codes Operation13       |                                                           |
| 3.7 Write13                                 | 6.0 ELECTRICAL SPECIFICATIONS40                           |
| 4.0 COMMAND DEFINITIONS13                   | 6.1 Absolute Maximum Ratings40                            |
| 4.1 Read Array Command16                    | 6.2 Operating Conditions40                                |
| 4.2 Read Query Mode Command17               | 6.2.1 Capacitance41                                       |
| 4.2.1 Query Structure Output17              | 6.2.2 AC Input/Output Test Conditions41                   |
| 4.2.2 Query Structure Overview19            | 6.2.3 DC Characteristics42                                |
| 4.2.3 Block Status Register20               | 6.2.4 AC Characteristics - Read-Only Operations44         |
| 4.2.4 CFI Query Identification String21     | 6.2.5 AC Characteristics - Write Operations .46           |
| 4.2.5 System Interface Information22        | 6.2.6 Reset Operations48                                  |
| 4.2.6 Device Geometry Definition23          | 6.2.7 Erase, Program, And Lock-Bit                        |
| 4.2.7 Intel-Specific Extended Query Table24 | Configuration Performance49                               |
| 4.3 Read Identifier Codes Command25         | APPENDIX A: Device Nomenclature and                       |
| 4.4 Read Status Register Command25          | Ordering Information51                                    |
| 4.5 Clear Status Register Command26         | ADDENDIV D. Additional Information 50                     |
| 4.6 Block Erase Command26                   | APPENDIX B: Additional Information52                      |
| 4.7 Full Chip Erase Command26               |                                                           |

**■ ADVANCE INFORMATION** 

4.8 Write to Buffer Command......27



## **REVISION HISTORY**

| Number | Description      |
|--------|------------------|
| -001   | Original version |

4



## 1.0 INTRODUCTION

This datasheet contains 16- and 32-Mbit Word-Wide FlashFile™ memory (28F160S3 and 28F320S3) specifications. Section 1 provides a flash memory overview. Sections 2, 3, 4, and 5 describe the memory organization and functionality. Section 6 covers electrical specifications for extended temperature product offerings.

#### 1.1 New Features

The Word-Wide FlashFile memory family maintains basic compatibility with Intel's 28F016SA and 28F016SV. Key enhancements include:

- Common Flash Interface (CFI) Support
- Scaleable Command Set (SCS) Support
- Low Voltage Technology
- Enhanced Suspend Capabilities

They share a compatible Status Register, basic software commands, and pinout. These similarities enable a clean migration from the 28F016SA or 28F016SV. When upgrading, it is important to note the following differences:

- Because of new feature and density options, the devices have different manufacturer and device identifier codes. This allows for software optimization.
- · New software commands.
- To take advantage of low voltage on the 28F160S3 and 28F320S3, allow V<sub>PP</sub> connection to V<sub>CC</sub>. The 28F160S3 and 28F320S3 do not support a 12V V<sub>PP</sub> option.

## 1.2 Product Overview

The Word-Wide FlashFile memory family provides density upgrades with pinout compatibility for the 16- and 32-Mbit densities. They are high-performance memories arranged as 1 Mword and 2 Mwords of 16 bits or 2 Mbyte and 4 Mbyte of 8 bits. This data is grouped in thirty-two and sixty-four 64-Kbyte blocks that can be erased, locked and unlocked in-system. Figure 1 shows the block diagram, and Figure 5 illustrates the memory organization.

This family of products are optimized for fast factory programming and low power designs. Specifically designed for 3V systems, the 28F160S3 and 28F320S3 support read operations at 2.7V–3.6V Vcc with block erase and program operations at 2.7V–3.6V and 5V V<sub>PP</sub>. High programming performance is achieved through highly-optimized write buffers. A 5V V<sub>PP</sub> option is available for even faster factory programming. For a simple low power design, V<sub>CC</sub> and V<sub>PP</sub> can be tied to 2.7V. Additionally, the dedicated V<sub>PP</sub> pin gives complete data protection when V<sub>PP</sub>  $\leq$  V<sub>PPI K</sub>.

A Common Flash Interface (CFI) permits OEM-specified software algorithms to be used for entire families of devices. This allows device-independent, JEDEC ID-independent, and forward- and backward-compatible software support for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility.

Scaleable Command Set (SCS) allows a single, simple software driver in all host systems to work with all SCS-compliant flash memory devices, independent of system-level packaging (e.g., memory card, SIMM, or direct-to-board placement). Additionally, SCS provides the highest system/device data transfer rates and minimizes device and system-level implementation costs.

A Command User Interface (CUI) serves as the interface between the system processor and internal device operation. A valid command sequence written to the CUI initiates device automation. An internal Write State Machine (WSM) automatically executes the algorithms and timings necessary for block erase, program, and lock-bit configuration operations.

A block erase operation erases one of the device's 64-Kbyte blocks typically within t<sub>WHQV2/EHQV2</sub> independent of other blocks. Each block can be independently erased 100,000 times. Block erase suspend mode allows system software to suspend block erase to read or write data from any other block.

Data is programmed in byte, word or page increments. Program suspend mode enables the system to read data or execute code from any other flash memory array location.



The device incorporates two Write Buffers of 32 bytes (16 words) to allow optimum-performance data programming. This feature can improve system program performance by up to four times over non-buffer programming.

Individual block locking uses a combination of block lock-bits to lock and unlock blocks. Block lock-bits gate block erase, full chip erase, program and write to buffer operations. Lock-bit configuration operations (Set Block Lock-Bit and Clear Block Lock-Bits commands) set and clear lock-bits.

The Status Register and the STS pin in RY/BY# mode indicate whether or not the device is busy executing an operation or ready for a new command. Polling the Status Register, system software retrieves WSM feedback. STS in RY/BY# mode gives an additional indicator of WSM activity by providing a hardware status signal. Like the Status Register, RY/BY#-low indicates that the WSM is performing a block erase, program, or lock-bit operation. RY/BY#-high indicates that the WSM is ready for a new command, block erase is suspended (and program is inactive), program is suspended, or the device is in deep power-down mode.

The Automatic Power Savings (APS) feature substantially reduces active current when the device is in static mode (addresses not switching).

The BYTE# pin allows either x8 or x16 read/writes to the device. BYTE# at logic low selects 8-bit mode with address  $A_0$  selecting between the low byte and high byte. BYTE# at logic high enables 16-bit operation with address  $A_1$  becoming the lowest order address. Address  $A_0$  is not used in 16-bit mode.

When one of the  $CE_X\#$  pins ( $CE_0\#$ ,  $CE_1\#$ ) and RP# pins are at  $V_{CC}$ , the component enters a CMOS standby mode. Driving RP# to GND enables a deep power-down mode which significantly reduces power consumption, provides write protection, resets the device, and clears the Status Register. A reset time ( $t_{PHQV}$ ) is required from RP# switching high until outputs are valid. Likewise, the device has a wake time ( $t_{PHEL}$ ) from RP#-high until writes to the CUI are recognized.

## 1.3 Pinout and Pin Description

The 16-Mbit device is available in the 56-lead TSOP, 56-lead SSOP and  $\mu$ BGA packages. The 32-Mb device is available in the 56-lead SSOP and  $\mu$ BGA packages. The pinouts are shown in Figures 2, 3 and 4.

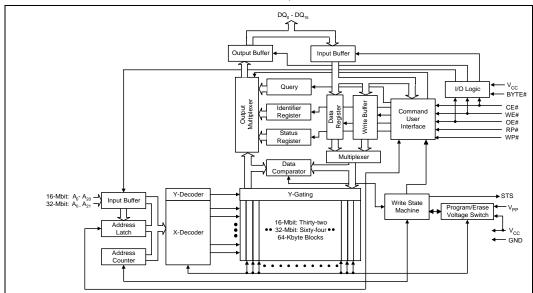



Figure 1. Block Diagram

6



**Table 1. Pin Descriptions** 

| Sym                                     | Туре                    | Name and Function                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>0</sub> -A <sub>21</sub>         | INPUT                   | <b>ADDRESS INPUTS:</b> Address inputs for read and write operations are internally latched during a write cycle. $A_0$ selects high or low byte when operating in x8 mode. In x16 mode, $A_0$ is not used; input buffer is off.                                                                                                                                                                                                   |
|                                         |                         | 16-Mbit $\rightarrow$ A <sub>0</sub> -A <sub>20</sub> 32-Mbit $\rightarrow$ A <sub>0</sub> -A <sub>21</sub>                                                                                                                                                                                                                                                                                                                       |
| DQ <sub>0</sub> -<br>DQ <sub>15</sub>   | INPUT/<br>OUTPUT        | <b>DATA INPUTS/OUTPUTS:</b> Inputs data and commands during CUI write cycles; outputs data during memory array, Status Register, query and identifier code read cycles. Data pins float to high-impedance when the chip is deselected or outputs are disabled. Data is internally latched during a write cycle.                                                                                                                   |
| CE <sub>0</sub> #,<br>CE <sub>1</sub> # | INPUT                   | <b>CHIP ENABLE:</b> Activates the device's control logic, input buffers, decoders, and sense amplifiers. With $CE_0\#$ or $CE_1\#$ high, the device is deselected and power consumption reduces to standby levels. Both $CE_0\#$ and $CE_1\#$ must be low to select the device. Device selection occurs with the latter falling edge of $CE_0\#$ or $CE_1\#$ . The first rising edge of $CE_0\#$ or $CE_1\#$ disables the device. |
| RP#                                     | INPUT                   | RESET/DEEP POWER-DOWN: When driven low, RP# inhibits write operations which provides data protection during system power transitions, puts the device in deep power-down mode, and resets internal automation. RP#-high enables normal operation. Exit from deep power-down sets the device to read array mode.                                                                                                                   |
| OE#                                     | INPUT                   | OUTPUT ENABLE: Gates the device's outputs during a read cycle.                                                                                                                                                                                                                                                                                                                                                                    |
| WE#                                     | INPUT                   | <b>WRITE ENABLE:</b> Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of the WE# pulse.                                                                                                                                                                                                                                                                                             |
| STS                                     | OPEN<br>DRAIN<br>OUTPUT | <b>STATUS:</b> Indicates the status of the internal state machine. When configured in level mode (default), it acts as a RY/BY# pin. For this and alternate configurations of the STATUS pin, see the Configuration command. Tie STS to $V_{CC}$ with a pull-up resistor.                                                                                                                                                         |
| WP#                                     | INPUT                   | <b>WRITE PROTECT:</b> Master control for block locking. When V <sub>IL</sub> , locked blocks cannot be erased or programmed, and block lock-bits cannot be set or cleared.                                                                                                                                                                                                                                                        |
| BYTE#                                   | INPUT                   | BYTE ENABLE: Configures x8 mode (low) or x16 mode (high).                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>PP</sub>                         | SUPPLY                  | BLOCK ERASE, PROGRAM, LOCK-BIT CONFIGURATION POWER SUPPLY: Necessary voltage to perform block erase, program, and lock-bit configuration operations. Do not float any power pins.                                                                                                                                                                                                                                                 |
| Vcc                                     | SUPPLY                  | <b>DEVICE POWER SUPPLY:</b> Do not float any power pins. Do not attempt block erase, program, or block-lock configuration with invalid $V_{CC}$ values.                                                                                                                                                                                                                                                                           |
| GND                                     | SUPPLY                  | GROUND: Do not float any ground pins.                                                                                                                                                                                                                                                                                                                                                                                             |
| NC                                      |                         | NO CONNECT: Lead is not internally connected; it may be driven or floated.                                                                                                                                                                                                                                                                                                                                                        |



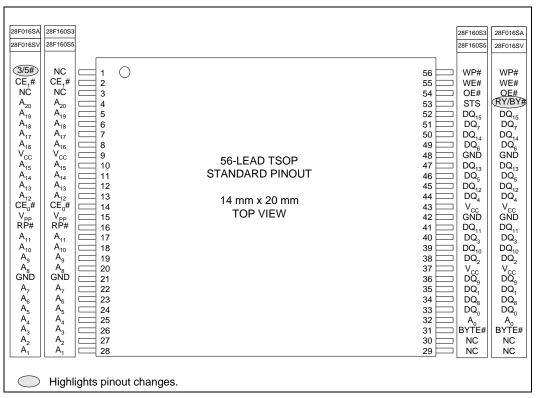



Figure 2. TSOP 56-Lead Pinout



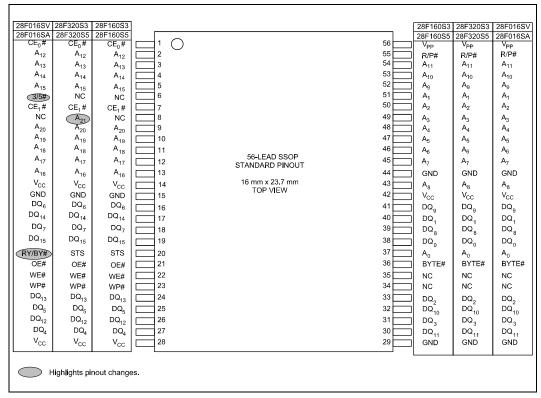
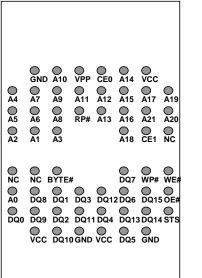
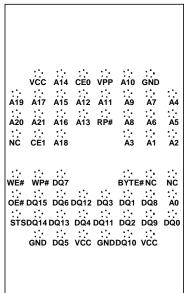





Figure 3. SSOP 56-Lead Pinout







**Bottom View** 

This is the view of the package as surface mounted on the board. Note that the signals are mirror imaged.

#### NOTES:

- 1. Figures are not drawn to scale.
- 2. Address  $A_{21}$  is not included in the 28F160S3.
- 3. More information on  $\mu BGA^*$  packages is available by contacting your Intel/Distribution sales office.

Figure 4. μBGA\* Package Pinout

## 2.0 PRINCIPLES OF OPERATION

The word-wide memories include an on-chip Write State Machine (WSM) to manage block erase, program, and lock-bit configuration functions. It allows for: 100% TTL-level control inputs, fixed power supplies during block erasure, programming, lock-bit configuration, and minimal processor overhead with RAM-like interface timings.

After initial device power-up or return from deep power-down mode (see Bus Operations), the

device defaults to read array mode. Manipulation of external memory control pins allow array read, standby, and output disable operations.

Read Array, Status Register, query, and identifier codes can be accessed through the CUI independent of the V<sub>PP</sub> voltage. Proper programming voltage on V<sub>PP</sub> enables successful block erasure, program, and lock-bit configuration. All functions associated with altering memory contents—block erase, program, lock-bit configuration—are accessed via the CUI and verified through the Status Register.

10



Commands are written using standard microprocessor write timings. The CUI contents serve as input to the WSM that controls the block erase, programming, and lock-bit configuration. The internal algorithms are regulated by the WSM, including pulse repetition, internal verification, and margining of data. Addresses and data are internally latched during write cycles. Writing the appropriate command outputs array data, identifier codes, or Status Register data.

Interface software that initiates and polls progress of block erase, programming, and lock-bit configuration can be stored in any block. This code is copied to and executed from system RAM during flash memory updates. After successful completion, reads are again possible via the Read Array command. Block erase suspend allows system software to suspend a block erase to read or write data from any other block. Program suspend allows system software to suspend a program to read data from any other flash memory array location.

#### 2.1 Data Protection

Depending on the application, the system designer may choose to make the  $V_{PP}$  power supply switchable or hardwired to  $V_{PPH1/2}$ . The device supports either design practice, and encourages optimization of the processormemory interface.

When  $V_{PP} \leq V_{PPLK}$ , memory contents cannot be altered. When high voltage is applied to  $V_{PP}$ , the two-step block erase, program, or lock-bit configuration command sequences provide protection from unwanted operations. All write functions are disabled when  $V_{CC}$  voltage is below the write lockout voltage  $V_{LKO}$  or when RP# is at  $V_{IL}$ . The device's block locking capability provides additional protection from inadvertent code or data alteration.

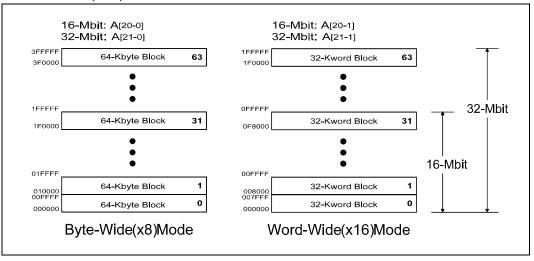



Figure 5. Memory Map



#### 3.0 BUS OPERATION

The local CPU reads and writes flash memory insystem. All bus cycles to or from the flash memory conform to standard microprocessor bus cycles.

#### 3.1 Read

Block information, query information, identifier codes and Status Registers can be read independent of the  $\rm V_{PP}$  voltage.

The first task is to place the device into the desired read mode by writing the appropriate read-mode command (Read Array, Query, Read Identifier Codes, or Read Status Register) to the CUI. Upon initial device power-up or after exit from deep power-down mode, the device automatically resets to read array mode. Control pins dictate the data flow in and out of the component. CE<sub>0</sub>#, CE<sub>1</sub># and OE# must be driven active to obtain data at the outputs. CE<sub>0</sub># and CE<sub>1</sub># are the device selection controls, and, when both are active, enable the selected memory device. OE# is the data output (DQ0-DQ<sub>15</sub>) control: When active it drives the selected memory data onto the I/O bus. WE# must be at V<sub>IH</sub> and RP# must be at V<sub>IH</sub>. Figure 17 illustrates a read cycle.

## 3.2 Output Disable

With OE# at a logic-high level ( $V_{IH}$ ), the device outputs are disabled. Output pins DQ<sub>0</sub>–DQ<sub>15</sub> are placed in a high-impedance state.

## 3.3 Standby

CE $_0$ # or CE $_1$ # at a logic-high level (V $_{IH}$ ) places the device in standby mode, substantially reducing device power consumption. DQ $_0$ -DQ $_1$ 5 (or DQ $_0$ -DQ $_7$  in x8 mode) outputs are placed in a high-impedance state independent of OE#. If deselected during block erase, programming, or lock-bit configuration, the device continues functioning and consuming active power until the operation completes.

## 3.4 Deep Power-Down

RP# at V<sub>IL</sub> initiates the deep power-down mode.

In read mode, RP#-low deselects the memory, places output drivers in a high-impedance state, and turns off all internal circuits. RP# must be held low for time  $t_{\text{PLPH}}.$  Time  $t_{\text{PHQV}}$  is required after return from power-down until initial memory access outputs are valid. After this wake-up interval, normal operation is restored. The CUI resets to read array mode, and the Status Register is set to 80H.

During block erase, programming, or lock-bit configuration modes, RP#-low will abort the operation. STS in RY/BY# mode remains low until the reset operation is complete. Memory contents being altered are no longer valid; the data may be partially corrupted after programming or partially altered after an erase or lock-bit configuration. Time  $t_{\text{PHWL}}$  is required after RP# goes to logic-high ( $V_{\text{IH}}$ ) before another command can be written.

It is important in any automated system to assert RP# during system reset. When the system comes out of reset, it expects to read from the flash memory. Automated flash memories provide status information when accessed during block erase, programming, or lock-bit configuration modes. If a CPU reset occurs with no flash memory reset, proper CPU initialization may not occur because the flash memory may be providing status information instead of array data. Intel's Flash memories allow proper CPU initialization following a system reset through the use of the RP# input. In this application, RP# is controlled by the same RESET# signal that resets the system CPU.

## 3.5 Read Query Operation

The read query operation outputs block status, Common Flash Interface (CFI) ID string, system interface, device geometry, and Intel-specific extended query information.



## 3.6 Read Identifier Codes Operation

The read-identifier codes operation outputs the manufacturer code, device code, and block lock configuration codes for each block configuration (see Figure 6). Using the manufacturer and device codes, the system software can automatically match the device with its proper algorithms. The block-lock configuration codes identify each block's lock-bit setting.

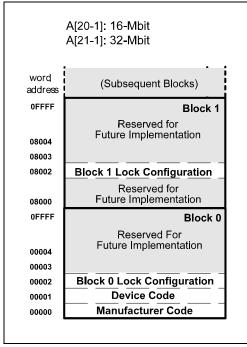



Figure 6. Device Identifier Code Memory Map

#### 3.7 Write

Writing commands to the CUI enables reading of device data, query, identifier codes, inspection and clearing of the Status Register. Additionally, when  $V_{PP} = V_{PPH1/2}$ , block erasure, programming, and lock-bit configuration can also be performed.

The Block Erase command requires appropriate command data and an address within the block to be erased. The Byte/Word Write command requires the command and address of the location to be written. Set Block Lock-Bit commands require the command and address within the block to be locked. The Clear Block Lock-Bits command requires the command and an address within the device.

The CUI does not occupy an addressable memory location. It is written when WE#, CE\_0#, and CE\_1# are active and OE# =  $V_{IH}$ . The address and data needed to execute a command are latched on the rising edge of WE# or CE\_x# (CE\_0#, CE\_1#), whichever goes high first. Standard microprocessor write timings are used. Figure 18 illustrates a write operation.

#### 4.0 COMMAND DEFINITIONS

 $V_{PP}$  voltage  $\leq V_{PPLK}$  enables read operations from the Status Register, identifier codes, or memory blocks. Placing  $V_{PPH1/2}$  on  $V_{PP}$  enables successful block erase, programming, and lock-bit configuration operations.

Device operations are selected by writing specific commands into the CUI. and Table 3 define these commands.



#### **Table 2. Bus Operations**

| Mode                      | Notes | RP#             | CE <sub>0</sub> # | CE <sub>1</sub> # | <b>OE#</b> (11) | <b>WE</b> #(11) | Address         | V <sub>PP</sub>     | <b>DQ</b> (8)    | <b>STS</b> (3)        |
|---------------------------|-------|-----------------|-------------------|-------------------|-----------------|-----------------|-----------------|---------------------|------------------|-----------------------|
| Read                      | 1,2   | VIH             | $V_{IL}$          | $V_{IL}$          | $V_{IL}$        | $V_{IH}$        | Х               | X                   | D <sub>OUT</sub> | X                     |
| Output Disable            |       | $V_{IH}$        | $V_{IL}$          | $V_{IL}$          | V <sub>IH</sub> | $V_{IH}$        | Х               | X                   | High Z           | Х                     |
| Standby                   |       | $V_{IH}$        | $V_{IL}$          | $V_{IH}$          | Х               | Х               | Х               | X                   | High Z           | Х                     |
|                           |       |                 | $V_{IH}$          | $V_{IL}$          |                 |                 |                 |                     |                  |                       |
|                           |       |                 | $V_{IH}$          | $V_{IH}$          |                 |                 |                 |                     |                  |                       |
| Reset/Power-<br>Down Mode | 10    | $V_{IL}$        | Х                 | Х                 | Х               | Х               | Х               | X                   | High Z           | High Z <sup>(9)</sup> |
| Read Identifier<br>Codes  | 4     | V <sub>IH</sub> | V <sub>IL</sub>   | V <sub>IL</sub>   | V <sub>IL</sub> | V <sub>IH</sub> | See<br>Figure 6 | Х                   | D <sub>OUT</sub> | High Z <sup>(9)</sup> |
| Read Query                | 5     | $V_{IH}$        | $V_{IL}$          | $V_{IL}$          | $V_{IL}$        | V <sub>IH</sub> | See Table 6     | Х                   | D <sub>OUT</sub> | High Z <sup>(9)</sup> |
| Write                     | 3,6,7 | V <sub>IH</sub> | V <sub>IL</sub>   | V <sub>IL</sub>   | V <sub>IH</sub> | V <sub>IL</sub> | Х               | V <sub>PPH1/2</sub> | D <sub>IN</sub>  | Х                     |

#### NOTES:

- 1. Refer to Table 19. When  $V_{PP} \le V_{PPLK}$ , memory contents can be read, but not altered.
- 2. X can be V<sub>IL</sub> or V<sub>IH</sub> for control and address input pins and V<sub>PPLK</sub> or V<sub>PPH1/2</sub> for V<sub>PP</sub>. See Table 19, for V<sub>PPLK</sub> and V<sub>PPH1/2</sub> voltages.
- STS in level RY/BY# mode (default) is V<sub>OL</sub> when the WSM is executing internal block erase, programming, or lock-bit
  configuration algorithms. It is V<sub>OH</sub> when the WSM is not busy, in block erase suspend mode (with programming inactive),
  program suspend mode, or deep power-down mode.
- 4. See Section 4.3 for read identifier code data.
- 5. See Section 4.2 for read guery data.
- 6. Command writes involving block erase, write, or lock-bit configuration are reliably executed when  $V_{PP} = V_{PPH1/2}$  and  $V_{CC} = V_{CC1/2}$  (see Section 6.2).
- 7. Refer to Table 3 for valid D<sub>IN</sub> during a write operation.
- 8. DQ refers to  $DQ_{0-7}$  if BYTE# is low and  $DQ_{0-15}$  if BYTE# is high.
- 9. High Z will be V<sub>OH</sub> with an external pull-up resistor.
- 10. RP# at GND  $\pm$  0.2V ensures the lowest deep power-down current.
- 11.  $OE\# = V_{IL}$  and  $WE\# = V_{IL}$  concurrently is an undefined state and should not be attempted.



Table 3. Word-Wide FlashFile™ Memory Command Set Definitions(13)

| Command                                   | Scaleable<br>or Basic<br>Command<br>Set <sup>(14)</sup> | Bus<br>Cycles<br>Req'd | Notes    | First Bus Cycle |         | Seco             | Second Bus Cycl |         |           |
|-------------------------------------------|---------------------------------------------------------|------------------------|----------|-----------------|---------|------------------|-----------------|---------|-----------|
|                                           |                                                         |                        |          | Oper(1)         | Addr(2) | Data(3,4)        | Oper(1)         | Addr(2) | Data(3,4) |
| Read Array                                | SCS/BCS                                                 | 1                      |          | Write           | Х       | FFH              |                 |         |           |
| Read Identifier Codes                     | SCS/BCS                                                 | ≥2                     | 5        | Write           | Х       | 90H              | Read            | IA      | ID        |
| Read Query                                | SCS                                                     | ≥ 2                    |          | Write           | Х       | 98H              | Read            | QA      | QD        |
| Read Status Register                      | SCS/BCS                                                 | 2                      |          | Write           | Х       | 70H              | Read            | Х       | SRD       |
| Clear Status Register                     | SCS/BCS                                                 | 1                      |          | Write           | Х       | 50H              |                 |         |           |
| Write to Buffer                           | SCS                                                     | > 2                    | 8, 9, 10 | Write           | ВА      | E8H              | Write           | ВА      | N         |
| Word/Byte Program                         | SCS/BCS                                                 | 2                      | 6,7      | Write           | Х       | 40H<br>or<br>10H | Write           | PA      | PD        |
| Block Erase                               | SCS/BCS                                                 | 2                      | 6,10     | Write           | Х       | 20H              | Write           | ВА      | D0H       |
| Block Erase, Word/Byte<br>Program Suspend | SCS/BCS                                                 | 1                      | 6        | Write           | Х       | ВОН              |                 |         |           |
| Block Erase, Word/Byte<br>Program Resume  | SCS/BCS                                                 | 1                      | 6        | Write           | Х       | D0H              |                 |         |           |
| STS pin Configuration                     | scs                                                     | 2                      |          | Write           | Х       | В8Н              | Write           | Х       | CC        |
| Set Block Lock-Bit                        | SCS                                                     | 2                      | 11       | Write           | Х       | 60H              | Write           | ВА      | 01H       |
| Clear Block Lock-Bits                     | SCS                                                     | 2                      | 12       | Write           | Х       | 60H              | Write           | Х       | D0H       |
| Full Chip Erase                           | SCS                                                     | 2                      | 10       | Write           | Х       | 30H              | Write           | Х       | D0H       |

15

#### 28F160S3, 28F320S3



#### NOTES:

- 1. Bus operations are defined in Table 2.
- 2. X = Any valid address within the device.
  - BA = Address within the block being erased or locked.
  - IA = Identifier Code Address: see Table 12.
  - QA = Query database Address.
  - PA = Address of memory location to be programmed.
- 3. ID = Data read from Query database.
  - SRD = Data read from Status Register. See Table 15 for a description of the Status Register bits.
  - PD = Data to be programmed at location PA. Data is latched on the rising edge of WE#.
  - CC = Configuration Code. (See Table 14.)
- 4. The upper byte of the data bus ( $DQ_{8-15}$ ) during command writes is a "Don't Care" in x16 operation.
- Following the Read Identifier Codes command, read operations access manufacturer, device, and block-lock codes. See Section 4.3 for read identifier code data.
- If a block is locked (i.e., the block's lock-bit is set to 0), WP# must be at V<sub>IH</sub> in order to perform block erase, program and suspend operations. Attempts to issue a block erase, program and suspend operation to a locked block while WP# is V<sub>L</sub> will fail.
- 7. Either 40H or 10H are recognized by the WSM as the byte/word program setup.
- 8. After the Write to Buffer command is issued, check the XSR to make sure a Write Buffer is available.
- 9. N = byte/word count argument such that the number of bytes/words to be written to the input buffer = N + 1. N = 0 is 1 byte/word length, and so on. Write to Buffer is a multi-cycle operation, where a byte/word count of N + 1 is written to the correct memory address (WA) with the proper data (WD). The Confirm command (D0h) is expected after exactly N + 1 write cycles; any other command at that point in the sequence aborts the buffered write. Writing a byte/word count outside the buffer boundary causes unexpected results and should be avoided.
- 10. The write to buffer, block erase, or full chip erase operation does not begin until a Confirm command (D0h) is issued. Confirm also reactivates suspended operations.
- 11. A block lock-bit can be set only while WP# is V<sub>IH</sub>.
- 12. WP# must be at V<sub>IH</sub> to clear block lock-bits. The clear block lock-bits operation simultaneously clears all block lock-bits.
- 13. Commands other than those shown above are reserved for future use and should not be used.
- 14. The Basic Command Set (BCS) is the same as the 28F008SA Command Set or Intel Standard Command Set. The Scaleable Command Set (SCS) is also referred to as the Intel Extended Command Set.



## 4.1 Read Array Command

Upon initial device power-up and after exit from deep power-down mode, the device defaults to read array mode. This operation is also initiated by writing the Read Array command. The device remains enabled for reads until another command is written. Once the internal WSM has started block erase, program, or lock-bit configuration, the device will not recognize the Read Array command until the WSM completes its operation—unless the WSM is suspended via an Erase-Suspend or Program-Suspend command. The Read Array command functions independently of the VPP voltage.

## 4.2 Read Query Mode Command

This section defines the data structure or "database" returned by the Common Flash Interface (CFI) Query command. System software should parse this structure to gain critical information such as block size, density, x8/x16, and electrical specifications. Once this information has been obtained, the software will know which command sets to use to enable flash writes, block erases, and otherwise control the flash component. The Query is part of an overall specification for multiple command set and control interface descriptions called Common Flash Interface, or CFI.

#### 4.2.1 QUERY STRUCTURE OUTPUT

The Query "database" allows system software to gain critical information for controlling the flash component. This section describes the device's CFI-compliant interface that allows the host system to access Query data.

Query data are always presented on the lowestorder data outputs  $(DQ_{0-7})$  only. The numerical offset value is the address relative to the maximum bus width supported by the device. On this device, the Query table device starting address is a 10h word address, since the maximum bus width is x16.

For this word-wide (x16) device, the first two bytes of the Query structure, "Q" and "R" in ASCII, appear on the low byte at word addresses 10h and 11h. This CFI-compliant device outputs 00H data on upper bytes. Thus, the device outputs ASCII "Q" in the low byte ( $DQ_{0-7}$ ) and 00h in the high byte ( $DQ_{8-15}$ ).

Since the device is x8/x16 capable, the x8 data is still presented in word-relative (16-bit) addresses. However, the "fill data" (00h) is not the same as driven by the upper bytes in the x16 mode. As in x16 mode, the byte address (A<sub>0</sub>) is ignored for Query output so that the "odd byte address" (A<sub>0</sub> high) repeats the "even byte address" data (A<sub>0</sub> low). Therefore, in x8 mode using byte addressing, the device will output the sequence "Q", "Q", "R", "R", "Y", "Y", and so on, beginning at byte-relative address 20h (which is equivalent to word offset 10h in x16 mode).

At Query addresses containing two or more bytes of information, the least significant data byte is presented at the lower address, and the most significant data byte is presented at the higher address.



Table 4. Summary of Query Structure Output as a Function of Device and Mode

| Device Type/Mode        | Word Ad           | ddressing                           | Byte Addressing   |                                |  |
|-------------------------|-------------------|-------------------------------------|-------------------|--------------------------------|--|
|                         | Location          | Query Data<br>Hex, ASCII            | Location          | Query Data<br>Hex, ASCII       |  |
| x16 device/<br>x16 mode | 10h<br>11h<br>12h | 0051h "Q"<br>0052h "R"<br>0059h "Y" | 20h<br>21h<br>22h | 51h "Q"<br>00h null<br>52h "R" |  |
| x16 device/<br>x8 mode  | N/A(1)            | N/A                                 | 20h<br>21h<br>22h | 51h "Q"<br>51h "Q"<br>52h "R"  |  |

#### NOTE:

Table 5. Example of Query Structure Output of a x16- and x8-Capable Device

| Device                          | Word Addressing:                                                                                               | Byte                           | Byte Addressing:               |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| Address                         | Query Data                                                                                                     | Address                        | Query Data                     |
| A <sub>16</sub> -A <sub>1</sub> | D <sub>15</sub> –D <sub>0</sub>                                                                                | A <sub>7</sub> -A <sub>0</sub> | D <sub>7</sub> –D <sub>0</sub> |
| 0010h                           | 0051h "Q" 0052h "R" 0059h "Y" P_IDLO PrVendor P_IDHI ID # PLO PrVendor PHI TbIAdr A_IDLO AltVendor A_IDHI ID # | 20h                            | 51h "Q"                        |
| 0011h                           |                                                                                                                | 21h                            | 51h "Q"                        |
| 0012h                           |                                                                                                                | 22h                            | 52h "R"                        |
| 0013h                           |                                                                                                                | 23h                            | 52h "R"                        |
| 0014h                           |                                                                                                                | 24h                            | 59h "Y"                        |
| 0015h                           |                                                                                                                | 25h                            | 59h "Y"                        |
| 0016h                           |                                                                                                                | 26h                            | P_IDLO PrVendor                |
| 0017h                           |                                                                                                                | 27h                            | P_IDLO ID #                    |
| 0018h                           |                                                                                                                | 28h                            | P_IDHI "                       |

The system must drive the lowest order addresses to access all the device's array data when the device is configured in x8 mode. Therefore, word addressing where lower addresses are not toggled by the system is "Not Applicable" for x8-configured devices.



## 4.2.2 QUERY STRUCTURE OVERVIEW

The Query command causes the flash component to display the Common Flash Interface (CFI) Query structure or "database." The structure sub-sections and address locations are summarized in Table 8.

The following sections describe the Query structure sub-sections in detail.

Table 6. Query Structure(1)

| Offset     | Sub-Section Name                            | Description                                                                    |
|------------|---------------------------------------------|--------------------------------------------------------------------------------|
| 00h        |                                             | Manufacturer Code                                                              |
| 01h        |                                             | Device Code                                                                    |
| (BA+2)h(2) | Block Status Register                       | Block-specific information                                                     |
| 04-0Fh     | Reserved                                    | Reserved for vendor-specific information                                       |
| 10h        | CFI Query Identification String             | Command set ID and vendor data offset                                          |
| 1Bh        | System Interface Information                | Device timing & voltage information                                            |
| 27h        | Device Geometry Definition                  | Flash device layout                                                            |
| P(3)       | Primary Intel-Specific Extended Query Table | Vendor-defined additional information specific to the Primary Vendor Algorithm |

#### NOTES:

- 1. Refer to Section 4.2.1 and Table 4 for the detailed definition of offset address as a function of device word width and mode.
- 2. BA = The beginning location of a Block Address (i.e., 08000h is the beginning location of block 1 when the block size is 32 Kword).
- 3. Offset 15 defines "P" which points to the Primary Intel-specific Extended Query Table.

19



## 4.2.3 BLOCK STATUS REGISTER

The Block Status Register indicates whether an erase operation completed successfully or whether a given block is locked or can be accessed for flash program/erase operations.

Block Erase Status (BSR.1) allows system software to determine the success of the last block erase operation. BSR.1 can be used just after power-up to verify that the  $V_{CC}$  supply was not accidentally removed during an erase operation. This bit is only reset by issuing another erase operation to the block. The Block Status Register is accessed from word address 02h within each block.

Table 7. Block Status Register

| Offset                 | Length<br>(bytes) | Description                                                                                                                         | 28F320S3/<br>28F160S3<br>x16 Device/Mode |
|------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| (BA+2)h <sup>(1)</sup> | 01h               | Block Status Register                                                                                                               | BA+2: 0000h or 0001h                     |
|                        |                   | BSR.0 = Block Lock Status<br>1 = Locked<br>0 = Unlocked                                                                             | BA+2 (bit 0): 0 or 1                     |
|                        |                   | BSR.1 = Block Erase Status  1 = Last erase operation did not complete successfully  0 = Last erase operation completed successfully | BA+2 (bit 1): 0 or 1                     |
|                        |                   | BSR 2-7 Reserved for future use                                                                                                     | BA+2 (bits 2-7): 0                       |

#### NOTE

1. BA = The beginning location of a Block Address (i.e., 008000h is the beginning location of block 1 in word mode.)



## 4.2.4 CFI QUERY IDENTIFICATION STRING

The Identification String provides verification that the component supports the Common Flash Interface specification. Additionally, it indicates which version of the specification and which vendor-specified command set(s) is (are) supported.

**Table 8. CFI Identification** 

| Offset | Length (Bytes) | Description                                                                                                                                |                   | 320S3/<br>160S3         |
|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|
| 10h    | 03h            | Query-Unique ASCII string "QRY"                                                                                                            | 10:<br>11:<br>12: | 0051h<br>0052h<br>0059h |
| 13h    | 02h            | Primary Vendor Command Set and Control Interface ID Code 16-bit ID Code for Vendor-Specified Algorithms                                    | 13:<br>14:        | 0001h<br>0000h          |
| 15h    | 02h            | Address for Primary Algorithm Extended Query Table Offset value = <b>P</b> = 31h                                                           | 15:<br>16:        | 0031h<br>0000h          |
| 17h    | 02h            | Alternate Vendor Command Set and Control Interface ID Code<br>Second Vendor-Specified Algorithm Supported<br>Note: 0000h means none exists | 17:<br>18:        | 0000h<br>0000h          |
| 19h    | 02h            | Address for Secondary Algorithm Extended Query Table Note: 0000h means none exists                                                         | 19:<br>1A:        | 0000h<br>0000h          |



## 4.2.5 SYSTEM INTERFACE INFORMATION

The following device information can be useful in optimizing system interface software.

**Table 9. System Interface Information** 

| Offset | Length (bytes) | Description                                                                                                     |     | 320S3/<br>160S3 |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------|-----|-----------------|
| 1Bh    | 01h            | V <sub>CC</sub> Logic Supply Minimum Program/Erase Voltage<br>bits 7–4 BCD volts<br>bits 3–0 BCD 100 mv         | 1B: | 0030h           |
| 1Ch    | 01h            | V <sub>CC</sub> Logic Supply Maximum Program/Erase Voltage<br>bits 7–4 BCD volts<br>bits 3–0 BCD 100 mv         | 1C: | 0055h           |
| 1Dh    | 01h            | V <sub>PP</sub> [Programming] Supply Minimum Program/Erase Voltage<br>bits 7–4 HEX volts<br>bits 3–0 BCD 100 mv | 1D: | 0030h           |
| 1Eh    | 01h            | V <sub>PP</sub> [Programming] Supply Maximum Program/Erase Voltage<br>bits 7–4 HEX volts<br>bits 3–0 BCD 100 mv | 1E: | 0055h           |
| 1Fh    | 01h            | Typical Time-Out per Single Byte/Word Program, 2N μ-sec                                                         | 1F: | 0003h           |
| 20h    | 01h            | Typical Time-Out for Max. Buffer Write, 2N μ-sec                                                                | 20: | 0006h           |
| 21h    | 01h            | Typical Time-Out per Individual Block Erase, 2N m-sec                                                           | 21: | 000Ah           |
| 22h    | 01h            | Typical Time-Out for Full Chip Erase, 2N m-sec                                                                  | 22: | 000Fh           |
| 23h    | 01h            | Maximum Time-Out for Byte/Word Program, 2N Times Typical                                                        | 23: | TBD             |
| 24h    | 01h            | Maximum Time-Out for Buffer Write, 2N Times Typical                                                             | 24: | TBD             |
| 25h    | 01h            | Maximum Time-Out per Individual Block Erase, 2N Times Typical                                                   | 25: | TBD             |
| 26h    | 01h            | Maximum Time-Out for Chip Erase, 2NTimes Typical                                                                | 26: | TBD             |



## 4.2.6 DEVICE GEOMETRY DEFINITION

This field provides critical details of the flash device geometry.

**Table 10. Device Geometry Definition** 

| Offset | Length (bytes) | Description                                                                               |                  | 320S3/<br>160S3          |
|--------|----------------|-------------------------------------------------------------------------------------------|------------------|--------------------------|
| 27h    | 01h            | Device Size = 2N in Number of Bytes                                                       | 27:              | 0015h<br>(16Mb)          |
|        |                |                                                                                           | 27:              | 0016h<br>(32Mb)          |
| 28h    | 02h            | Flash Device Interface Description                                                        | 28:<br>29:       | 0002h<br>0000h           |
|        |                | <u>value</u> <u>meaning</u>                                                               | 25.              | 000011                   |
|        |                | 0002h x8/x16 asynchronous                                                                 |                  |                          |
| 2Ah    | 02h            | Maximum Number of Bytes in Write Buffer = 2 <sup>N</sup>                                  | 2A:<br>2B:       | 0005h<br>0000h           |
| 2Ch    | 01h            | Number of Erase Block Regions within Device:                                              | 2C:              | 0001h                    |
|        |                | bits 7-0 = x = # of Erase Block Regions                                                   |                  |                          |
| 2Dh    | 04h            | Erase Block Region Information                                                            | y:               | 32 Blk                   |
|        |                | <b>bits 15–0 = y</b> , Where y+1 = Number of Erase Blocks of Identical Size within Region | 2D:<br>2E:       | (16Mb)<br>001Fh<br>0000h |
|        |                | bits 31–16 = z, Where the Erase Block(s) within This Region are (z) × 256 Bytes           | y:               | 64 Blk<br>(32Mb)         |
|        |                |                                                                                           | 2D:<br>2E:       | 003Fh<br>0000h           |
|        |                |                                                                                           | z:<br>2F:<br>30: | 64-KB<br>0000h<br>0001h  |



# 4.2.7 INTEL-SPECIFIC EXTENDED QUERY TABLE

Certain flash features and commands are optional. The Intel-Specific Extended Query table specifies this and other similar types of information.

Table 11. Primary-Vendor Specific Extended Query

| Offset(1) | Length (bytes) | Description                                                                                                                                                                                                                                                                                                           |                          | Data                             |  |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|--|
| (P)h      | 03h            | Primary Extended Query Table<br>Unique ASCII String "PRI"                                                                                                                                                                                                                                                             | 31:<br>32:<br>33:        | 0050h<br>0052h<br>0049h          |  |
| (P+3)h    | 01h            | Major Version Number, ASCII                                                                                                                                                                                                                                                                                           | 34:                      | 0031h                            |  |
| (P+4)h    | 01h            | Minor Version Number, ASCII                                                                                                                                                                                                                                                                                           | 35:                      | 0030h                            |  |
| (P+5)h    | 04h            | Optional Feature & Command Support  bit 0 Chip Erase Supported (1=yes, 0=no) bit 1 Suspend Erase Supported (1=yes, 0=no) bit 2 Suspend Program Supported (1=yes, 0=no) bit 3 Lock/Unlock Supported (1=yes, 0=no) bit 4 Queued Erase Supported (1=yes, 0=no) bits 5–31 Reserved for future use; undefined bits are "0" | 36:<br>37:<br>38:<br>39: | 000Fh<br>0000h<br>0000h<br>0000h |  |
| (P+9)h    | 01h            | Supported Functions after Suspend  Read Array, Status, and Query are always supported during suspended Erase or Program operation. This field defines other operations supported.  bit 0 Program Supported after Erase Suspend (1=yes, 0=no)  bits 1-7 Reserved for future use; undefined bits are "0"                | 3A:                      | 0001h                            |  |
| (P+A)h    | 02h            | Block Status Register Mask  Defines which bits in the Block Status Register section of Query are implemented.  bit 0 Block Status Register Lock-Bit [BSR.0] active (1=yes, 0=no) bit 1 Block Erase Status Bit [BSR.1] active (1=yes, 0=no)  bits 2-15 Reserved for future use; undefined bits are "0"                 | 3B:<br>3C:               | 0003h<br>0000h                   |  |

## NOTES:

<sup>1.</sup> The variable P is a pointer which is defined at offset 15h in Table 8.



| Offset | Length (bytes) | Description                                                                      | Data      |  |
|--------|----------------|----------------------------------------------------------------------------------|-----------|--|
| (P+C)h | 01h            | $V_{\text{CC}}$ Logic Supply Optimum Program/Erase voltage (highest performance) | 3D: 0050h |  |
|        |                | bits 7–4 BCD value in volts<br>bits 3–0 BCD value in 100 mv                      |           |  |
| (P+D)h | 01h            | VPP [Programming] Supply Optimum Program/Erase voltage                           | 3E: 0050h |  |
|        |                | bits 7–4 HEX value in volts<br>bits 3–0 BCD value in 100 mv                      |           |  |
| (P+E)h | reserved       | Reserved for future use                                                          |           |  |

Table 12. Identifier Codes

| Code                                                  | Address(2) | Data                |    |
|-------------------------------------------------------|------------|---------------------|----|
| Manufacturer Code                                     | 000000     | В0                  |    |
| Device Code                                           | 16 Mbit    | 000001              | D0 |
|                                                       | 32 Mbit    | 000001              | D4 |
| Block Lock Configu                                    | ration     | X0002(1)            |    |
| Block is Unlocked                                     |            | $DQ_0 = 0$          |    |
| Block is Locked                                       |            | $DQ_0 = 1$          |    |
| Reserved for Fut                                      |            | DQ <sub>2-7</sub>   |    |
| Block Erase Status                                    | x0002(1)   |                     |    |
| <ul> <li>Last erase compl<br/>successfully</li> </ul> |            | $DQ_1 = 0$          |    |
| Last erase did no complete succe                      |            | DQ <sub>1</sub> = 1 |    |
| Reserved for Fut                                      |            | DQ <sub>2-7</sub>   |    |

#### NOTES:

- X selects the specific block lock configuration code. See Figure 6 for the device identifier code memory map.
- 2.  $A_0$  should be ignored in this address. The lowest order address line is  $A_1$  in both word and byte mode.

## 4.3 Read Identifier Codes Command

The identifier code operation is initiated by writing the Read Identifier Codes command. Following the command write, read cycles from addresses shown in Figure 6 retrieve the manufacturer, device, block lock configuration, and block erase status codes (see Table 12 for identifier code values). To terminate the operation, write another valid command. Like the Read Array command, the Read Identifier Codes command functions independently of the  $V_{\rm PP}$  voltage. Following the Read Identifier Codes command, the information in Table 12 can be read.

## 4.4 Read Status Register Command

The Status Register may be read to determine when programming, block erasure, or lock-bit configuration is complete and whether the operation completed successfully. It may be read at any time by writing the Read Status Register command. After writing this command, all subsequent read operations output data from the Status Register until another valid command is written. The Status Register contents are latched on the falling edge of OE#, CE $_0$ #, or CE $_1$ # whichever occurs last. OE# or CE $_X$ # must toggle to V $_{\rm IH}$  to update the Status Register latch. The Read Status Register command functions independently of the V $_{\rm PP}$  voltage.



Following a program, block erase, set block lock-bit, or clear block lock-bits command sequence, only SR.7 is valid until the Write State Machine completes or suspends the operation. Device I/O pins DQ $_{0-6}$  and DQ $_{8-15}$  are invalid. When the operation completes or suspends (SR.7 = 1), all contents of the Status Register are valid when read.

The eXtended Status Register (XSR) may be read to determine Write Buffer availability (see Table 16). The XSR may be read at any time by writing the Write to Buffer command. After writing this command, all subsequent read operations output data from the XSR, until another valid command is written. The contents of the XSR are latched on the falling edge of OE# or CEX# whichever occurs last in the read cycle. Write to buffer command must be re-issued to update the XSR latch.

## 4.5 Clear Status Register Command

Status Register bits SR.5, SR.4, SR.3, and SR.1 are set to "1"s by the WSM and can only be reset by the Clear Status Register command. These bits indicate various failure conditions (see Table 15). By allowing system software to reset these bits, several operations (such as cumulatively erasing or locking multiple blocks or programming several bytes/words in sequence) may be performed. The Status Register may be polled to determine if an error occurred during the sequence.

To clear the Status Register, the Clear Status Register command is written. It functions independently of the applied  $V_{PP}$  voltage. This command is not functional during block erase or program suspend modes.

## 4.6 Block Erase Command

Block Erase is executed one block at a time and initiated by a two-cycle command. A Block Erase Setup command is written first, followed by a Confirm command. This command sequence requires appropriate sequencing and an address within the block to be erased (erase changes all block data to FFH). Block preconditioning, erase, and verify are handled internally by the WSM (invisible to the system). After the two-cycle block erase sequence is written, the device automatically outputs Status Register data when read (see Figure 10). The CPU can detect block erase completion by

analyzing STS in level RY/BY# mode or Status Register bit SR.7. Toggle OE#,  $CE_0$ #, or  $CE_1$ # to update the Status Register.

When the block erase is complete, Status Register bit SR.5 should be checked. If a block erase error is detected, the Status Register should be cleared before system software attempts corrective actions. The CUI remains in read Status Register mode until a new command is issued.

This two-step command sequence of set-up followed by execution ensures that block contents are not accidentally erased. An invalid Block Erase command sequence will result in both Status Register bits SR.4 and SR.5 being set to "1." Also, reliable block erasure can only occur when  $V_{CC} = V_{CC1/2}$  and  $V_{PP} = V_{PPH1/2}$ . In the absence of these voltages, block contents are protected against erasure. If block erase is attempted while V<sub>PP</sub> ≤ V<sub>PPLK</sub>, SR.3 and SR.5 will be set to "1." Successful block erase requires that the corresponding block lock-bit be cleared, or WP# = VIH. If block erase is attempted when the corresponding block lock-bit is set and WP# = VIL, the block erase will fail and SR.1 and SR.5 will be set to "1."

## 4.7 Full Chip Erase Command

The Full Chip Erase command followed by a Confirm command erases all unlocked blocks. After the Confirm command is written, the device erases all unlocked blocks from block 0 to block 31 (or 63) sequentially. Block preconditioning, erase, and verify are handled internally by the WSM. After the Full Chip Erase command sequence is written to the CUI, the device automatically outputs the Status Register data when read. The CPU can detect full chip erase completion by polling the STS pin in level RY/BY# mode or Status Register bit SR.7.

When the full chip erase is complete, Status Register bit SR.5 should be checked to see if the operation completed successfully. If an erase error occurred, the Status Register should be cleared before issuing the next command. The CUI remains in read Status Register mode until a new command is issued. If an error is detected while erasing a block during a full chip erase operation, the WSM skips the remaining cells in that block and proceeds to erase the next block. Reading the block valid status code by issuing the Read Identifier Codes command or Query command informs the user of which block(s) failed to erase.

**ADVANCE INFORMATION** 

26



This two-step command sequence of setup followed by execution ensures that block contents are not accidentally erased. An invalid Full Chip Erase command sequence will result in both Status Register bits SR.4 and SR.5 being set to 1. Also, reliable full chip erasure can only occur when  $V_{CC} = V_{CC1/2}$  and  $V_{PP} = V_{PPH1/2}$ . In the absence of these voltages, block contents are protected against erasure. If full chip erase is attempted while  $V_{PP} \leq V_{PPLK}$ , SR.3 and SR.5 will be set to 1. When WP# =  $V_{IL}$ , only unlocked blocks are erased. Full chip erase cannot be suspended.

#### 4.8 Write to Buffer Command

To program the flash device via the write buffers, a Write to Buffer command sequence is initiated. A variable number of bytes or words, up to the buffer size, can be written into the buffer and programmed to the flash device. First, the Write to Buffer setup command is issued along with the Block Address. At this point, the eXtended Status Register information is loaded and XSR.7 reverts to the "buffer available" status. If XSR.7 = 0, no write buffer is available. To retry, continue monitoring XSR.7 by issuing the Write to Buffer setup command with the Block Address until XSR.7 = 1. When XSR.7 transitions to a "1," the buffer is ready for loading.

Now a Word/Byte count is issued at an address within the block. On the next write, a device start address is given along with the write buffer data. For maximum programming performance and lower power, align the start address at the beginning of a Write Buffer boundary. Subsequent writes must supply additional device addresses and data, depending on the count. All subsequent addresses must lie within the start address plus the count.

After the final buffer data is given, a Write Confirm command is issued. This initiates the WSM to begin copying the buffer data to the flash memory. If a command other than Write Confirm is written to the device, an "Invalid Command/Sequence" error will be generated and Status Register bits SR.5 and SR.4 will be set to "1." For additional buffer writes, issue another Write to Buffer setup command and check XSR.7. The write buffers can be loaded while the WSM is busy as long as XSR.7 indicates that a buffer is available. Refer to Figure 7 for the Write to Buffer flowchart.

If an error occurs while writing, the device will stop programming, and Status Register bit SR.4 will be set to a "1" to indicate a program failure. Any time a media failure occurs during a program or an erase (SR.4 or SR.5 is set), the device will not accept any more Write to Buffer commands. Additionally, if the user attempts to write past an erase block boundary with a Write to Buffer command, the device will abort programming. This will generate an "Invalid Command/Sequence" error and Status Register bits SR.5 and SR.4 will be set to "1." To clear SR.4 and/or SR.5, issue a Clear Status Register command.

Reliable buffered programming can only occur when  $V_{CC} = V_{CC1/2}$  and  $V_{PP} = V_{PPH1/2}$ . If programming is attempted while  $V_{PP} \leq V_{PPLK}$ , Status Register bits SR.4 and SR.5 will be set to "1." Programming attempts with invalid  $V_{CC}$  and  $V_{PP}$  voltages produce spurious results and should not be attempted. Finally, successful programming requires that the corresponding Block Lock-Bit be cleared, or WP# =  $V_{IH}$ . If a buffered write is attempted when the corresponding Block Lock-Bit is set and WP# =  $V_{IL}$ , SR.1 and SR.4 will be set to "1."

## 4.9 Byte/Word Program Commands

Byte/Word programming is executed by a two-cycle command sequence. Byte/Word Program setup (standard 40H or alternate 10H) is written, followed by a second write that specifies the address and data (latched on the rising edge of WE#). The WSM then takes over, controlling the program and verify algorithms internally. After the write sequence is written, the device automatically outputs Status Register data when read. The CPU can detect the completion of the program event by analyzing STS in level RY/BY# mode or Status Register bit SR.7.

When programming is complete, Status Register bit SR.4 should be checked. If a programming error is detected, the Status Register should be cleared. The internal WSM verify only detects errors for "1"s that do not successfully program to "0"s. The CUI remains in read Status Register mode until it receives another command. Refer to Figure 8 for the Word/Byte Program flowchart.

Also, Reliable byte/word programming can only occur when  $V_{CC} = V_{CC1/2}$  and  $V_{PP} = V_{PPH1/2}$ . In the absence of this high voltage, contents are protected against programming. If a byte/word program is



attempted while  $V_{PP} \leq V_{PPLK}$ , Status Register bits SR.4 and SR.3 will be set to "1." Successful byte/word programming requires that the corresponding block lock-bit be cleared. If a byte/word program is attempted when the corresponding block lock-bit is set and WP# =  $V_{IL}$ , SR.1 and SR.4 will be set to "1."

## 4.10 STS Configuration Command

The Status (STS) pin can be configured to different states using the STS pin Configuration command. Once the STS pin has been configured, it remains in that configuration until another configuration command is issued or RP# is low. Initially, the STS pin defaults to level RY/BY# operation where STS low indicates that the state machine is busy. STS high indicates that the state machine is ready for a new operation or suspended.

To reconfigure the Status (STS) pin to other modes, the STS pin Configuration command is issued followed by the desired configuration code. The three alternate configurations are all pulse mode for use as a system interrupt as described in Table 14. For these configurations, bit 0 controls Erase Complete interrupt pulse, and bit 1 controls Write Complete interrupt pulse. When the device is configured in one of the pulse modes, the STS pin pulses low with a typical pulse width of 250 ns. Supplying the 00h configuration code with the Configuration command resets the STS pin to the default RY/BY# level mode. Refer to Table 14 for configuration coding definitions. The Configuration command may only be given when the device is not busy or suspended. Check SR.7 for device status. An invalid configuration code will result in both Status Register bits SR.4 and SR.5 being set to "1."

## 4.11 Block Erase Suspend Command

The Block Erase Suspend command allows block-erase interruption to read or program data in another block of memory. Once the block erase process starts, writing the Block Erase Suspend command requests that the WSM suspend the block erase sequence at a predetermined point in the algorithm. The device outputs Status Register data when read after the Block Erase Suspend command is written. Polling Status Register bit

SR.7 can determine when the block erase operation has been suspended. When SR.7 = 1, SR.6 should also be set to "1," indicating that the device is in the erase suspend mode. STS in level RY/BY# mode will also transition to  $V_{OH}$ . Specification  $t_{WHRH2}$  defines the block erase suspend latency.

At this point, a Read Array command can be written to read data from blocks other than that which is suspended. A Program command sequence can also be issued during erase suspend to program data in other blocks. Using the Program Suspend command (see Section 4.12), a program operation can also be suspended. During a program operation with block erase suspended, Status Register bit SR.7 will return to "0" and STS in RY/BY# mode will transition to Vol. However, SR.6 will remain "1" to indicate block erase suspend status.

The only other valid commands while block erase is suspended are Read Status Register and Block Erase Resume. After a Block Erase Resume command is written to the flash memory, the WSM will continue the block erase process. Status register bits SR.6 and SR.7 will automatically clear and STS in RY/BY# mode will return to Vol. After the Erase Resume command is written, the device automatically outputs Status Register data when read (see Figure 11). VPP must remain at VPPH1/2 and V<sub>CC</sub> must remain at V<sub>CC1/2</sub> (the same V<sub>PP</sub> and V<sub>CC</sub> levels used for block erase) while block erase is suspended. RP# must also remain at VIH (the same RP# level used for block erase). Block erase cannot resume until program operations initiated during block erase suspend have completed.

## 4.12 Program Suspend Command

The Program Suspend command allows program interruption to read data in other flash memory locations. Once the programming process starts, writing the Program Suspend command requests that the WSM suspend the program sequence at a predetermined point in the algorithm. The device continues to output Status Register data when read after the Program Suspend command is written. Polling Status Register bits SR.7 can determine when the programming operation has been suspended. When SR.7 = 1, SR.2 should also be set to "1", indicating that the device is in the program suspend mode. STS in level RY/BY# mode will also transition to V<sub>OH</sub>. Specification t<sub>WHRH1</sub> defines the program suspend latency.

28



At this point, a Read Array command can be written to read data from locations other than that which is suspended. The only other valid commands while programming is suspended are Read Status Register and Program Resume. After a Program Resume command is written, the WSM will continue the programming process. Status Register bits SR.2 and SR.7 will automatically clear and STS in RY/BY# mode will return to Vol. After the Program Resume command is written, the device automatically outputs Status Register data when read. V<sub>PP</sub> must remain at V<sub>PPH1/2</sub> and V<sub>CC</sub> must remain at  $V_{CC1/2}$  (the same  $V_{PP}$  and  $V_{CC}$  levels used for programming) while in program suspend mode. RP# must also remain at VIH (the same RP# level used for programming). Refer to Figure 9 for the Program Suspend/Resume flowchart.

## 4.13 Set Block Lock-Bit Command

A flexible block locking and unlocking scheme is enabled via a combination of block lock-bits. The block lock-bits gate program and erase operations. With WP# =  $V_{IH}$ , individual block lock-bits can be set using the Set Block Lock-Bit command.

Set block lock-bit is initiated using a two-cycle command sequence. The Set Block Lock-Bit setup along with appropriate block or device address is written followed by the Set Block Lock-Bit Confirm and an address within the block to be locked. The WSM then controls the set lock-bit algorithm. After the sequence is written, the device automatically outputs Status Register data when read. The CPU can detect the completion of the set lock-bit event by analyzing STS in level RY/BY# mode or Status Register bit SR.7.

When the set lock-bit operation is complete, Status Register bit SR.4 should be checked. If an error is detected, the Status Register should be cleared. The CUI will remain in read Status Register mode until a new command is issued.

This two-step sequence of setup followed by execution ensures that lock-bits are not accidentally set. An invalid Set Block Lock-Bit command will result in Status Register bits SR.4 and SR.5 being set to "1." Also, reliable operations occur only when  $V_{\rm CC} = V_{\rm CC1/2}$  and  $V_{\rm PP} = V_{\rm PPH1/2}$ . In the absence of these voltages, lock-bit contents are protected against alteration.

A successful set block lock-bit operation requires that WP# =  $V_{IH}$ . If it is attempted with WP# =  $V_{IL}$ , the operation will fail and SR.1 and SR.4 will be set to "1." See Table 13 for write protection alternatives. Refer to Figure 12 for the Set Block Lock-Bit flowchart.

## 4.14 Clear Block Lock-Bits Command

All set block lock-bits are cleared in parallel via the Clear Block Lock-Bits command. This command is valid only when WP# =  $V_{IH}$ .

The clear block lock-bits operation is initiated using a two-cycle command sequence. A Clear Block Lock-Bits setup command is written followed by a Confirm command. Then, the device automatically outputs Status Register data when read (see Figure 13). The CPU can detect completion of the clear block lock-bits event by analyzing STS in level RY/BY# mode or Status Register bit SR.7.

This two-step sequence of set-up followed by execution ensures that block lock-bits are not accidentally cleared. An invalid Clear Block Lock-Bits command sequence will result in Status Register bits SR.4 and SR.5 being set to "1." Also, a reliable clear block lock-bits operation can only occur when  $V_{\rm CC} = V_{\rm CC1/2}$  and  $V_{\rm PP} = V_{\rm PPH1/2}$ . If a clear block lock-bits operation is attempted while  $V_{\rm PP} \leq V_{\rm PPLK}$ , SR.3 and SR.5 will be set to "1." In the absence of these voltages, the block lock-bits contents are protected against alteration. A successful clear block lock-bits operation requires that WP# =  $V_{\rm IH}$ .

If a clear block lock-bits operation is aborted due to  $V_{PP}$  or  $V_{CC}$  transitioning out of valid range or RP# or WP# active transition, block lock-bit values are left in an undetermined state. A repeat of clear block lock-bits is required to initialize block lock-bit contents to known values.

When the operation is complete, Status Register bit SR.5 should be checked. If a clear block lock-bit error is detected, the Status Register should be cleared. The CUI will remain in read Status Register mode until another command is issued.

29



**Table 13. Write Protection Alternatives** 

| Operation       | Block<br>Lock-<br>Bit | WP#                                | Effect                                                       |  |  |  |
|-----------------|-----------------------|------------------------------------|--------------------------------------------------------------|--|--|--|
| Program and     | 0                     | $V_{\text{IL}}$ or $V_{\text{IH}}$ | Block erase and programming enabled                          |  |  |  |
| Block Erase     | 1                     | $V_{IL}$                           | Block is locked. Block erase and programming disabled        |  |  |  |
|                 |                       | V <sub>IH</sub>                    | Block Lock-Bit override. Block erase and programming enabled |  |  |  |
| Full Chip Erase | 0,1                   | V <sub>IL</sub>                    | All unlocked blocks are erased                               |  |  |  |
|                 | Х                     | V <sub>IH</sub>                    | Block Lock-Bit override. All blocks are erased               |  |  |  |
| Set or Clear    | Х                     | V <sub>IL</sub>                    | Set or clear block lock-bit disabled                         |  |  |  |
| Block Lock-Bit  |                       | V <sub>IH</sub>                    | Set or clear block lock-bit enabled                          |  |  |  |

#### **Table 14. Configuration Coding Definitions**

| Reserved | Pulse on<br>Write<br>Complete | Pulse on<br>Erase<br>Complete |
|----------|-------------------------------|-------------------------------|
| bits 7–2 | bit 1                         | bit 0                         |

DQ7-DQ2 = Reserved

DQ1/DQ0 = STS Pin Configuration Codes

00 = default, level mode RY/BY# (device ready) indication

01 = pulse on Erase complete

10 = pulse on Flash Program complete

11 = pulse on Erase or Program Complete

Configuration Codes 01b, 10b, and 11b are all pulse mode such that the STS pin pulses low then high when the operation indicated by the given configuration is completed.

Configuration Command Sequences for STS pin configuration (masking bits D7–D2 to 00h) are as follows:

Default RY/BY# level mode B8h, 00h
ER INT (Erase Interrupt): B8h, 01h
Pulse-on-Erase Complete

PR INT (Program Interrupt): B8h, 02h

Pulse-on-Flash-Program Complete

ER/PR INT (Erase or Program Interrupt): B8h, 03h Pulse-on-Erase or Program Complete DQ7-DQ2 are reserved for future use.

default (DQ1/DQ0 = 00) RY/BY#, level mode
—used to control HOLD to a memory controller to
prevent accessing a flash memory subsystem while
any flash device's WSM is busy.

configuration 01 ER INT, pulse mode(1)
—used to generate a system interrupt pulse when
any flash device in an array has completed a block
erase or sequence of queued block erases. Helpful
for reformatting blocks after file system free space
reclamation or 'cleanup'

configuration 10 PR INT, pulse mode(1)
—used to generate a system interrupt pulse when any flash device in an array has complete a program operation. Provides highest performance for servicing continuous buffer write operations.

configuration ER/PR INT, pulse mode(1)
—used to generate system interrupts to trigger
servicing of flash arrays when either erase or flash
program operations are completed when a common
interrupt service routine is desired.

## NOTE:

1. When the device is configured in one of the pulse modes, the STS pin pulses low with a typical pulse width of 250 ns.



#### Table 15. Status Register Definition

| WSMS | ESS | ECLBS | BWSLBS | VPPS | BWSS | DPS | R |
|------|-----|-------|--------|------|------|-----|---|
| 7    | 6   | 5     | 4      | 3    | 2    | 1   | 0 |

NOTES: SR.7 = WRITE STATE MACHINE STATUS Check STS in RY/BY# mode or SR.7 to determine 1 = Readyblock erase, programming, or lock-bit configuration 0 = Busycompletion. SR.6-0 are invalid while SR.7 = "0." SR.6 = ERASE SUSPEND STATUS 1 = Block erase suspended 0 = Block erase in progress/completed SR.5 = ERASE AND CLEAR LOCK-BITS STATUS If both SR.5 and SR.4 are "1"s after a block erase 1 = Error in block erasure or clear lock-bits or lock-bit configuration attempt, an improper 0 = Successful block erase or clear lock-bits command sequence was entered. SR.4 = PROGRAM AND SET LOCK-BIT **STATUS** 1 = Error in program or block lock-bit 0 = Successful program or set block lock-bit SR.3 does not provide a continuous indication of  $SR.3 = V_{PP} STATUS$  $1 = V_{PP}$  low detect, operation abort V<sub>PP</sub> level. The WSM interrogates and indicates the  $0 = V_{PP} OK$ V<sub>PP</sub> level only after a block erase, program, or lockbit configuration operation. SR.3 reports accurate feedback only when  $V_{PP} = V_{PPH1/2}$ . SR.2 = PROGRAM SUSPEND STATUS 1 = Program suspended 0 = Program in progress/completed SR.1 = DEVICE PROTECT STATUS SR.1 does not provide a continuous indication of 1 = Block Lock-Bit and/or block lock-bit values. The WSM interrogates the RP# lock detected, operation abort block lock-bit, and WP# only after a block erase, 0 = Unlockprogram, or lock-bit configuration operation. It informs the system, depending on the attempted operation, if the block lock-bit is set. SR.0 = RESERVED FOR FUTURE SR.0 is reserved for future use and should be **ENHANCEMENTS** masked when polling the Status Register.

#### Table 16. Extended Status Register Definition

|   | WBS | R | R | R | R | R | R | R |
|---|-----|---|---|---|---|---|---|---|
| _ | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

XSR.7 = WRITE BUFFER STATUS
1 = Write to buffer available
0 = Write to buffer not available
XSR.6 = RESERVED FOR FUTURE
ENHANCEMENTS

NOTES:

After a Write to buffer command, XSR.7 indicates that another Write to buffer command is possible.

SR.6–0 are reserved for future use and should be masked when polling the status register



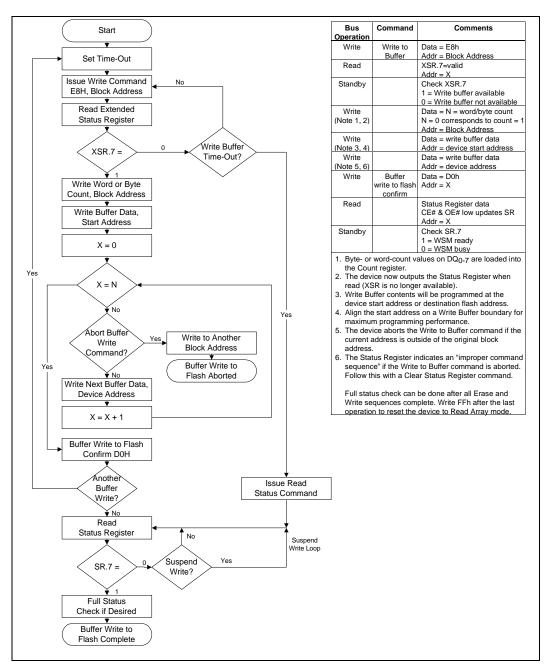



Figure 7. Write to Buffer Flowchart

32



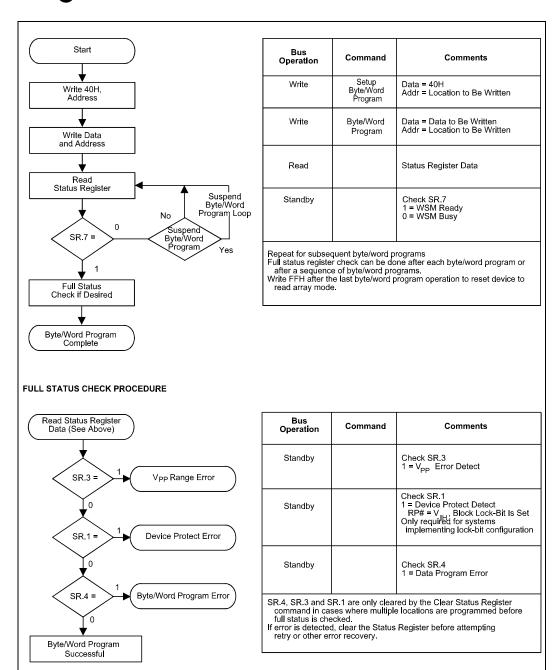



Figure 8. Single Byte/Word Program Flowchart



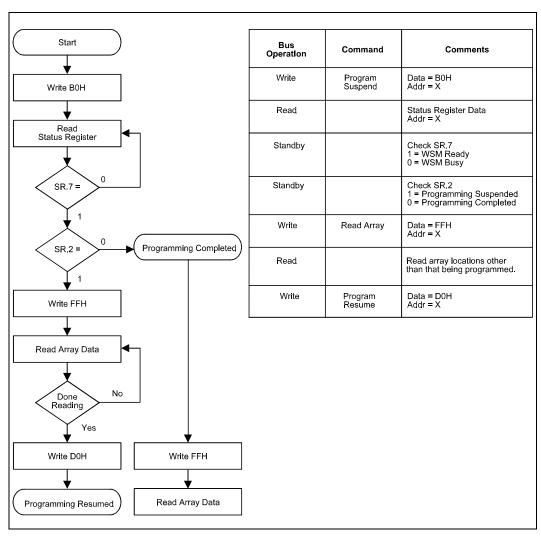



Figure 9. Program Suspend/Resume Flowchart



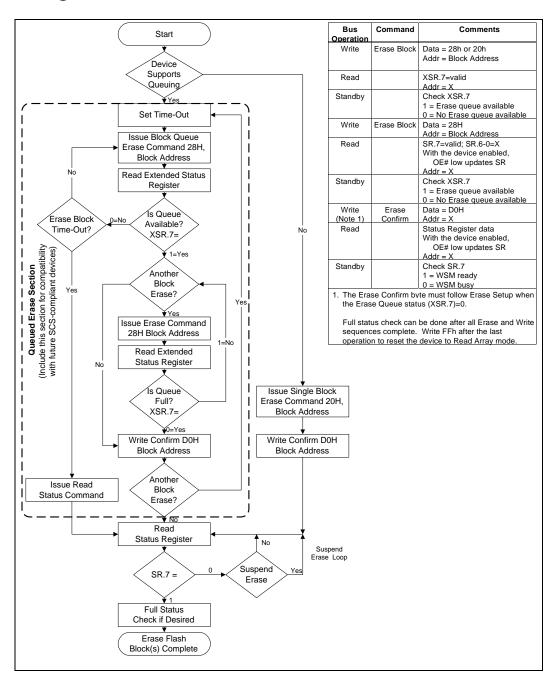



Figure 10. Block Erase Flowchart



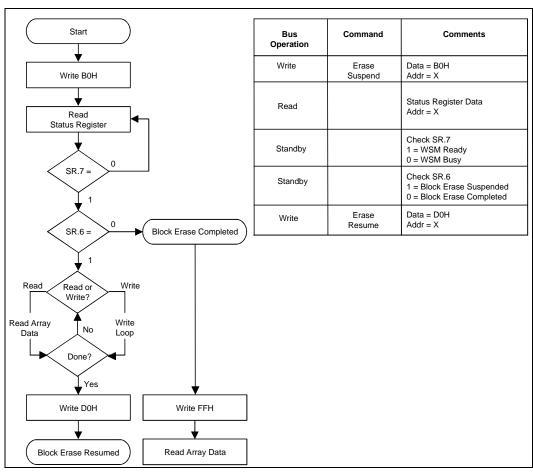



Figure 11. Block Erase Suspend/Resume Flowchart

37



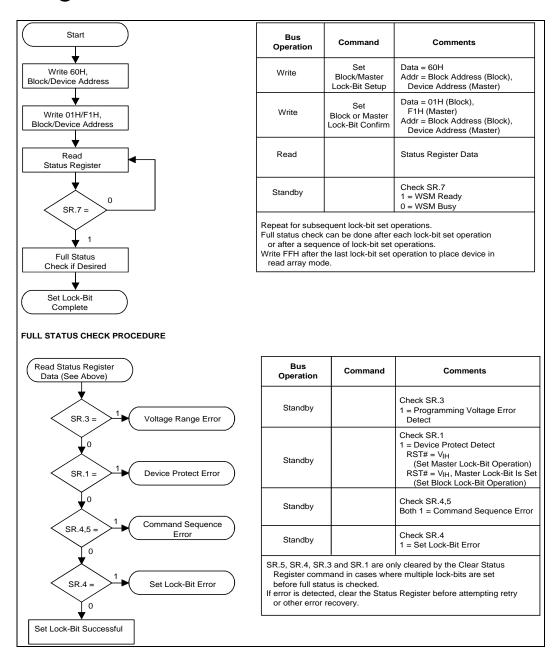



Figure 12. Set Block Lock-Bit Flowchart



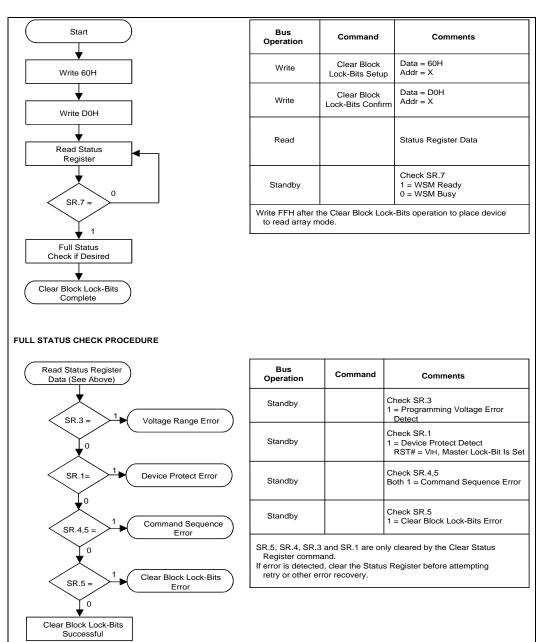



Figure 13. Clear Block Lock-Bits Flowchart

38



#### 5.0 DESIGN CONSIDERATIONS

#### 5.1 Three-Line Output Control

Intel provides three control inputs to accommodate multiple memory connections:  $CE_X\#$  ( $CE_0\#$ ,  $CE_1\#$ ), OE#, and RP#. Three-line control provides for:

- a. Lowest possible memory power dissipation;
- b. Data bus contention avoidance.

To use these control inputs efficiently, an address decoder should enable CEx# while OE# should be connected to all memory devices and the system's READ# control line. This assures that only selected memory devices have active outputs, while deselected memory devices are in standby mode. RP# should be connected to the system POWERGOOD signal to prevent unintended writes during system power transitions. POWERGOOD should also toggle during system reset.

#### 5.2 STS and WSM Polling

STS is an open drain output that should be connected to  $V_{CC}$  by a pull-up resistor to provide a hardware form of detecting block erase, program, and lock-bit configuration completion. In default mode, it transitions low during execution of these commands and returns to  $V_{OH}$  when the WSM has finished executing the internal algorithm. For alternate STS pin configurations, see Section 4.10. STS can be connected to an interrupt input of the system CPU or controller. It is active at all times. STS, in default mode, is also  $V_{OH}$  when the device is in block erase suspend (with programming inactive) or in reset/power-down mode.

#### 5.3 Power Supply Decoupling

Flash memory power switching characteristics require careful device decoupling. Standby current levels, active current levels and transient peaks produced by falling and rising edges of  $CE_X\#$  and CE# are areas of interest. Two-line control and proper decoupling capacitor selection will suppress transient voltage peaks. Each device should have a 0.1  $\mu$ F ceramic capacitor connected between its  $V_{CC}$  and GND and  $V_{PP}$  and GND. These high-frequency, low-inductance capacitors should be placed as close as possible to package leads.

Additionally, for every eight devices, a 4.7  $\mu$ F electrolytic capacitor should be placed at the array's power supply connection between V<sub>CC</sub> and GND. The bulk capacitor will overcome voltage slumps caused by PC board trace inductance.

## 5.4 V<sub>PP</sub> Trace on Printed Circuit Boards

Updating target-system resident flash memories requires that the printed circuit board designer pay attention to  $V_{PP}$  power supply traces. The  $V_{PP}$  pin supplies the memory cell current for programming and block erasing. Use similar trace widths and layout considerations given to the  $V_{CC}$  power bus. Adequate  $V_{PP}$  supply traces and decoupling will decrease  $V_{PP}$  voltage spikes and overshoots.

#### 5.5 V<sub>CC</sub>, V<sub>PP</sub>, RP# Transitions

Block erase, program, and lock-bit configuration are not guaranteed if RP#  $\pm$  V $_{IH}$ , or if V $_{PP}$  or V $_{CC}$  fall outside of a valid voltage range (V $_{CC1/2}$  and V $_{PPH1/2}$ ). If V $_{PP}$  error is detected, Status Register bit SR.3 and SR.4 or SR.5 are set to "1." If RP# transitions to V $_{IL}$  during block erase, program, or lock-bit configuration, STS in level RY/BY# mode will remain low until the reset operation is complete. Then, the operation will abort and the device will enter deep power-down. Because the aborted operation may leave data partially altered, the command sequence must be repeated after normal operation is restored.

## 5.6 Power-Up/Down Protection

The device offers protection against accidental block erase, programming, or lock-bit configuration during power transitions.

A system designer must guard against spurious writes for  $V_{CC}$  voltages above  $V_{LKO}$  when  $V_{PP}$  is active. Since both WE# and CE $_X$ # must be low for a command write, driving either input signal to  $V_{IH}$  will inhibit writes. The CUI's two-step command sequence architecture provides an added level of protection against data alteration.

In-system block lock and unlock renders additional protection during power-up by prohibiting block erase and program operations. RP# =  $V_{\rm IL}$  disables the device regardless of its control inputs states.



#### 6.0 ELECTRICAL SPECIFICATIONS

#### 6.1 Absolute Maximum Ratings

 NOTICE: This datasheet contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local Intel Sales office that you have the latest datasheet before finalizing a design

\*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

#### NOTES:

- 1. All specified voltages are with respect to GND. Minimum DC voltage is -0.5 V on input/output pins and -0.2 V on  $V_{CC}$  and  $V_{PP}$  pins. During transitions, this level may undershoot to -2.0 V for periods <20 ns. Maximum DC voltage on input/output pins and  $V_{CC}$  is  $V_{CC}$  +0.5 V which, during transitions, may overshoot to  $V_{CC}$  +2.0 V for periods <20 ns.
- Maximum DC voltage on V<sub>PP</sub> may overshoot to +7.0V for periods <20 ns.</li>
- Output shorted for no more than one second. No more than one output shorted at a time.
- Operating temperature is for extended product defined by this specification.

#### 6.2 Operating Conditions

Table 17. Temperature and V<sub>CC</sub> Operating Conditions(1)

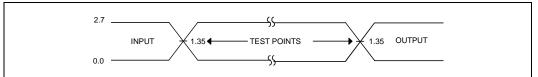
| Symbol                               | Parameter                                     | Notes | Min | Max | Unit       | Test Condition      |
|--------------------------------------|-----------------------------------------------|-------|-----|-----|------------|---------------------|
| T <sub>A</sub> Operating Temperature |                                               |       | -40 | +85 | $^{\circ}$ | Ambient Temperature |
| V <sub>CC1</sub>                     | V <sub>CC</sub> Supply Voltage (2.7V to 3.6V) |       | 2.7 | 3.6 | V          |                     |
| V <sub>CC2</sub>                     | V <sub>CC</sub> Supply Voltage (3.3V ± 0.3V)  |       | 3.0 | 3.6 | V          |                     |

#### NOTES:

 Device operations in the V<sub>CC</sub> voltage ranges not covered in the table produce spurious results and should not be attempted.



#### 6.2.1 CAPACITANCE


Table 18. Capacitance(1),  $T_A = +25$ °C, f = 1 MHz

| Symbol Parameter |                    | Тур | Max | Unit | Condition              |
|------------------|--------------------|-----|-----|------|------------------------|
| C <sub>IN</sub>  | Input Capacitance  | 6   | 8   | pF   | V <sub>IN</sub> = 0.0V |
| Cout             | Output Capacitance | 8   | 12  | pF   | $V_{OUT} = 0.0V$       |

#### NOTE:


1. Sampled, not 100% tested.

#### 6.2.2 AC INPUT/OUTPUT TEST CONDITIONS



AC test inputs are driven at 2.7V for a Logic "1" and 0.0V for a Logic "0." Input timing begins, and output timing ends, at 1.35V. Input rise and fall times (10% to 90%) <10 ns.

Figure 14. Transient Input/Output Reference Waveform for V<sub>CC</sub> = 2.7V-3.6V



AC test inputs are driven at 3.0V for a Logic "1" and 0.0V for a Logic "0." Input timing begins, and output timing ends, at 1.5V. Input rise and fall times (10% to 90%) <10 ns.

Figure 15. Transient Input/Output Reference Waveform for  $V_{CC}$  = 3.3V  $\pm$  0.3V (High Speed Testing Configuration)

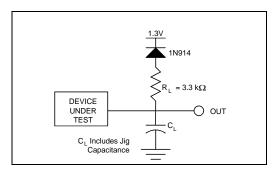



Figure 16. Transient Equivalent Testing Load Circuit

| Test Configuration Capacitance | Loading Value       |
|--------------------------------|---------------------|
| Test Configuration             | C <sub>L</sub> (nF) |

| Test Configuration                       | C <sub>L</sub> (pF) |
|------------------------------------------|---------------------|
| $V_{CC}$ = 3.3V $\pm$ 0.3V, 2.7V to 3.6V | 50                  |



#### 6.2.3 DC CHARACTERISTICS

**Table 19. DC Characteristics**,  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ 

| Sym               | Parameter                                                            | Notes | Тур | Max  | Unit | Conditions                                                                                                                                                                                                               |
|-------------------|----------------------------------------------------------------------|-------|-----|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ILI               | Input Load Current                                                   | 1     |     | ±0.5 | μА   | $V_{CC} = V_{CC1/2} Max$<br>$V_{IN} = V_{CC1/2} or GND$                                                                                                                                                                  |
| I <sub>LO</sub>   | Output Leakage Current                                               | 1     |     | ±0.5 | μА   | $V_{CC} = V_{CC1/2} Max$<br>$V_{out} = V_{CC1/2} or GND$                                                                                                                                                                 |
| I <sub>ccs</sub>  | V <sub>CC</sub> Standby Current                                      | 1,3,6 | 20  | 100  | μА   | CMOS Inputs<br>$V_{CC} = V_{CC1/2}$ Max<br>$CE_X\# = RP\# = V_{CC} \pm 0.2V$                                                                                                                                             |
|                   |                                                                      |       | 0.2 | 2    | mA   | $\begin{aligned} & \text{TTL Inputs} \\ & \text{V}_{\text{CC}} = \text{V}_{\text{CC1/2}} \text{ Max} \\ & \text{CE}_{\text{X}} \# = \text{RP} \# = \text{V}_{\text{IH}} \end{aligned}$                                   |
| I <sub>CCD</sub>  | V <sub>CC</sub> Deep Power-Down<br>Current                           | 1     |     | 20   | μА   | $RP\# = GND \pm 0.2V$ $I_{OUT} (RY/BY\#) = 0 \text{ mA}$                                                                                                                                                                 |
| I <sub>CCR</sub>  | V <sub>CC</sub> Read Current                                         | 1,5,6 |     | 25   | mA   | CMOS Inputs $V_{CC} = V_{CC1/2} \text{ Max}$ $CE_X\# = \text{GND}$ $f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}$                                                                                                           |
|                   |                                                                      |       |     | 30   | mA   | $\begin{aligned} & \text{TTL Inputs} \\ & \text{V}_{\text{CC}} = \text{V}_{\text{CC1/2}} \text{ Max} \\ & \text{CEx#} = \text{V}_{\text{IL}} \\ & \text{f} = 5 \text{ MHz, I}_{\text{OUT}} = 0 \text{ mA} \end{aligned}$ |
| I <sub>CCW</sub>  | V <sub>CC</sub> Programming and Set<br>Lock-Bit Current              | 1,7   |     | 17   | mA   | VPP = VPPH1/2                                                                                                                                                                                                            |
| I <sub>CCE</sub>  | V <sub>CC</sub> Block Erase or Clear<br>Block Lock-Bits Current      | 1,7   |     | 17   | mA   | VPP = VPPH1/2                                                                                                                                                                                                            |
| I <sub>CCWS</sub> | V <sub>CC</sub> Program Suspend or<br>Block Erase Suspend<br>Current | 1,2   | 1   | 6    | mA   | CEx# = V <sub>IH</sub>                                                                                                                                                                                                   |
| I <sub>PPS</sub>  | V <sub>PP</sub> Standby or V <sub>PP</sub> Read                      | 1     | ± 2 | ± 15 | μΑ   | V <sub>PP</sub> ≤ V <sub>CC</sub>                                                                                                                                                                                        |
| I <sub>PPR</sub>  | Current                                                              |       | 10  | 200  | μΑ   | V <sub>PP</sub> ≥ V <sub>CC</sub>                                                                                                                                                                                        |
| I <sub>PPD</sub>  | V <sub>PP</sub> Deep Power-Down<br>Current                           | 1     | 0.1 | 5    | μΑ   | RP# = GND ± 0.2V                                                                                                                                                                                                         |
| I <sub>PPW</sub>  | V <sub>PP</sub> Program or Set Lock-Bit<br>Current                   | 1,7   |     | 80   | mA   | VPP = VPPH1/2                                                                                                                                                                                                            |
| I <sub>PPE</sub>  | V <sub>PP</sub> Block Erase or Clear<br>Block Lock-Bits Current      | 1,7   |     | 40   | mA   | VPP = VPPH1/2                                                                                                                                                                                                            |
| I <sub>PPWS</sub> | V <sub>PP</sub> Program Suspend or<br>Block Erase Suspend<br>Current | 1     | 10  | 200  | μA   | $V_{PP} = V_{PPH1/2}$                                                                                                                                                                                                    |

42



Table 19. DC Characteristics (Continued)

| Sym               | Parameter                       | Notes | Min                       | Max                     | Unit | Conditions                                                     |
|-------------------|---------------------------------|-------|---------------------------|-------------------------|------|----------------------------------------------------------------|
| $V_{IL}$          | Input Low Voltage               | 7     | -0.5                      | 0.8                     | V    |                                                                |
| V <sub>IH</sub>   | Input High Voltage              | 7     | 2.0                       | V <sub>CC</sub><br>+0.5 | V    |                                                                |
| V <sub>OL</sub>   | Output Low Voltage              | 3,7   |                           | 0.4                     | V    | $V_{CC} = V_{CC1/2} \text{ Min}$<br>$I_{OL} = 5.8 \text{ mA}$  |
| V <sub>OH1</sub>  | Output High Voltage (TTL)       | 3,7   | 2.4                       |                         | V    | $V_{CC} = V_{CC1/2} \text{ Min}$<br>$I_{OH} = -2.5 \text{ mA}$ |
| V <sub>OH2</sub>  | Output High Voltage (CMOS)      | 3,7   | 0.85 ×<br>V <sub>CC</sub> |                         | V    | $V_{CC} = V_{CC1/2} \text{ Min}$<br>$I_{OH} = -2.5 \text{ mA}$ |
|                   |                                 |       | V <sub>CC</sub> – 0.4     |                         | V    | $V_{CC} = V_{CC1/2} \text{ Min}$ $I_{OH} = -100  \mu\text{A}$  |
| $V_{PPLK}$        | V <sub>PP</sub> Lockout Voltage | 4,7   |                           | 1.5                     | V    |                                                                |
| V <sub>PPH1</sub> | V <sub>PP</sub> Voltage         | 4     | 2.7                       | 3.6                     | V    |                                                                |
| V <sub>PPH2</sub> | V <sub>PP</sub> Voltage         | 4     | 4.5                       | 5.5                     | V    |                                                                |
| $V_{LKO}$         | V <sub>CC</sub> Lockout Voltage | 8     | 2.0                       |                         | V    |                                                                |

#### NOTES:

- All currents are in RMS unless otherwise noted. Typical values at nominal V<sub>CC</sub> voltage and T<sub>A</sub> = +25°C. These currents are valid for all product versions (packages and speeds).
- 2. I<sub>CCWS</sub> and I<sub>CCES</sub> are specified with the device de-selected. If read or programmed while in erase suspend mode, the device's current is the sum of I<sub>CCWS</sub> or I<sub>CCES</sub> and I<sub>CCR</sub> or I<sub>CCW</sub>.
- 3. Includes STS in level RY/BY# mode.
- 4. Block erase, program, and lock-bit configurations are inhibited when  $V_{PP} \le V_{PPLK}$ , and not guaranteed in the ranges between  $V_{PPLK}$  (max) and  $V_{PPH1}$  (min), between  $V_{PPH1}$  (max) and  $V_{PPH2}$  (min), and above  $V_{PPH2}$  (max).
- 5. Automatic Power Savings (APS) reduces typical  $I_{CCR}$  to 3 mA at 2.7V and 3.3V  $V_{CC}$  static operation.
- 6. CMOS inputs are either  $V_{CC} \pm 0.2 V$  or GND  $\pm 0.2 V$ . TTL inputs are either  $V_{IL}$  or  $V_{IH}$ .
- 7. Sampled, not 100% tested.
- 8. With  $V_{CC} \le V_{LKO}$  flash memory writes are inhibited.

43



#### 6.2.4 AC CHARACTERISTICS - READ-ONLY OPERATIONS

Table 20. AC Read Characteristics (1,5),  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ 

|        |                                                                   | Versions <sup>(4)</sup>                            | 3.3V ± 0.3V | / Vcc                  | -100 | /-110     |     |     | -130 | /-140     |     |     |
|--------|-------------------------------------------------------------------|----------------------------------------------------|-------------|------------------------|------|-----------|-----|-----|------|-----------|-----|-----|
| (All u | (All units in ns unless otherwise noted)                          |                                                    |             | - 3.6V V <sub>CC</sub> |      | -120/-130 |     |     |      | -150/-160 |     |     |
| #      | Sym Parameter                                                     |                                                    | Notes       | Min                    | Max  | Min       | Max | Min | Max  | Min       | Max |     |
| R1     | t <sub>AVAV</sub>                                                 | Read/Write Cycle Time                              | 16 Mbit     | 1                      | 100  |           | 120 |     | 130  |           | 150 |     |
|        |                                                                   |                                                    | 32 Mbit     | 1                      | 110  |           | 130 |     | 140  |           | 160 |     |
| R2     | t <sub>AVQV</sub>                                                 | Address to Output Delay                            | 16 Mbit     | 1                      |      | 100       |     | 120 |      | 130       |     | 150 |
|        |                                                                   |                                                    | 32 Mbit     | 1                      |      | 110       |     | 130 |      | 140       |     | 160 |
| R3     | t <sub>ELQV</sub>                                                 | CEx# to Output Delay                               | 16 Mbit     | 2                      |      | 100       |     | 120 |      | 130       |     | 150 |
|        |                                                                   |                                                    | 32 Mbit     | 2                      |      | 110       |     | 130 |      | 140       |     | 160 |
| R4     | t <sub>GLQV</sub> OE# to Output Delay                             |                                                    |             | 2                      |      | 45        |     | 50  |      | 50        |     | 55  |
| R5     | t <sub>PHQV</sub>                                                 | HQV RP# High to Output Delay                       |             |                        |      | 600       |     | 600 |      | 600       |     | 600 |
| R6     | $t_{ELQX}$                                                        | CEx# to Output in Low Z                            |             | 3                      | 0    |           | 0   |     | 0    |           | 0   |     |
| R7     | $t_{GLQX}$                                                        | OE# to Output in Low Z                             |             | 3                      | 0    |           | 0   |     | 0    |           | 0   |     |
| R8     | t <sub>EHQZ</sub>                                                 | CEx# High to Output in High                        | Z           | 3                      |      | 50        |     | 50  |      | 55        |     | 55  |
| R9     | t <sub>GHQZ</sub>                                                 | OE# High to Output in High                         | Z           | 3                      |      | 20        |     | 20  |      | 25        |     | 25  |
| R10    | t <sub>OH</sub>                                                   | Output Hold from Address, OE# Change, Whichever Oc |             | 3                      | 0    |           | 0   |     | 0    |           | 0   |     |
| R11    | t <sub>ELFL</sub><br>t <sub>ELFH</sub>                            |                                                    |             | 3                      |      | 5         |     | 5   |      | 5         |     | 5   |
| R12    | $t_{\text{FLQV}}$ BYTE# to Output Delay 16 Mbit $t_{\text{FHQV}}$ |                                                    | 3           |                        | 100  |           | 120 |     | 130  |           | 150 |     |
|        |                                                                   |                                                    | 32 Mbit     | 3                      |      | 110       |     | 130 |      | 140       |     | 160 |
| R13    | t <sub>FLQZ</sub>                                                 | BYTE# to Output in High Z                          |             | 3                      |      | 30        |     | 30  |      | 40        |     | 40  |

- 1. See AC Input/Output Reference Waveform for maximum allowable input slew rate.
- 2. OE# may be delayed up to  $t_{ELQV}$ - $t_{GLQV}$  after the falling edge of CEx# without impact on  $t_{ELQV}$ .
- 3. Sampled, not 100% tested.
- ${\bf 4.}\quad \hbox{See Ordering Information for device speeds (valid operational combinations)}.$
- 5. See Figures 14 through 16 for testing characteristics.



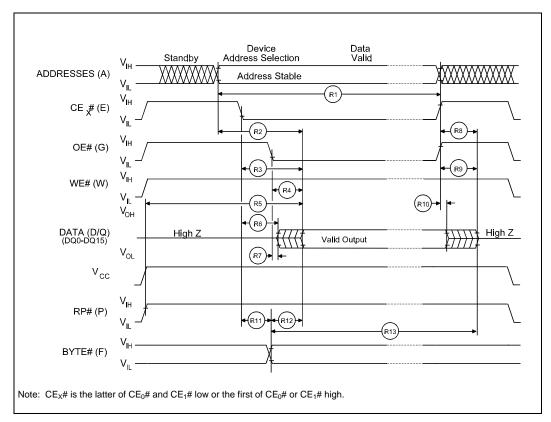



Figure 17. AC Waveform for Read Operations



#### 6.2.5 AC CHARACTERISTICS - WRITE OPERATIONS

Table 21. Write Operations(1,5,6),  $T_A = -40$ °C to +85°C

|     |                                        | Versions <sup>(5)</sup>                                       | 3.3V ±<br>2.7V-3. |       | Valid for All<br>Speeds |     |      |
|-----|----------------------------------------|---------------------------------------------------------------|-------------------|-------|-------------------------|-----|------|
| #   | Sym                                    | Parameter                                                     |                   | Notes | Min                     | Max | Unit |
| W1  | t <sub>PHWL</sub> (t <sub>PHEL</sub> ) | RP# High Recovery to WE# (CE <sub>X</sub> #) Goin             | ng Low            | 2     | 1                       |     | μs   |
| W2  | t <sub>ELWL</sub>                      | CE <sub>X</sub> # Setup to WE# Going Low                      |                   |       | 10                      |     | ns   |
|     | (twlel)                                | (WE# Setup to CE <sub>X</sub> # Going Low)                    |                   |       | 0                       |     | ns   |
| W3  | twLwH                                  | WE# Pulse Width                                               |                   |       | 50                      |     | ns   |
|     | (teleh)                                |                                                               |                   | 70    |                         | ns  |      |
| W4  | t <sub>DVWH</sub> (t <sub>DVEH</sub> ) | Data Setup to WE# (CEx#) Going High                           |                   | 3     | 50                      |     | ns   |
| W5  | t <sub>AVWH</sub> (t <sub>AVEH</sub> ) | Address Setup to WE# (CE <sub>X</sub> # ) Going H             | igh               | 3     | 50                      |     | ns   |
| W6  | t <sub>WHEH</sub>                      | CE <sub>X</sub> # Hold from WE# High                          |                   |       | 10                      |     | ns   |
|     | (t <sub>EHWH</sub> )                   | (WE# Hold from CE <sub>X</sub> # High)                        |                   |       | 0                       |     | ns   |
| W7  | t <sub>WHDX</sub> (t <sub>EHDX</sub> ) | Data Hold from WE# (CE <sub>X</sub> # ) High                  |                   |       | 5                       |     | ns   |
| W8  | t <sub>WHAX</sub> (t <sub>EHAX</sub> ) | Address Hold from WE# (CE <sub>X</sub> # ) High               |                   |       | 5                       |     | ns   |
| W9  | t <sub>WHWL</sub>                      | WE# Pulse Width High                                          |                   |       | 30                      |     | ns   |
|     | (t <sub>EHEL</sub> )                   | (CE <sub>X</sub> # Pulse Width High)                          |                   |       | 25                      |     | ns   |
| W10 | tshwh (tsheh)                          | WP# V <sub>IH</sub> Setup to WE# (CE <sub>X</sub> # ) Going H | ligh              |       | 100                     |     | ns   |
| W11 | tvpwh (tvpeh)                          | V <sub>PP</sub> Setup to WE# (CE <sub>X</sub> # ) Going High  |                   | 2     | 100                     |     | ns   |
| W12 | twhgl (tehgl)                          | Write Recovery before Read                                    |                   |       | 0                       |     | ns   |
| W13 | t <sub>WHRL</sub> (t <sub>EHRL</sub> ) | WE# High to STS in RY/BY# Low                                 |                   |       |                         | 100 | ns   |
| W14 | t <sub>QVSL</sub>                      | WP# V <sub>IH</sub> Hold from Valid SRD                       |                   | 2,4   | 0                       |     | ns   |
| W15 | t <sub>QVVL</sub>                      | V <sub>PP</sub> Hold from Valid SRD, STS in RY/BY             | /# High           | 2,4   | 0                       |     | ns   |

- Read timing characteristics during block erase, program, and lock-bit configuration operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. Sampled, not 100% tested.
- 3. Refer to Table 3 for valid  $A_{\text{IN}}$  and  $D_{\text{IN}}$  for block erase, program, or lock-bit configuration.
- 4.  $V_{PP}$  should be at  $V_{PPH1/2}$  until determination of block erase, program, or lock-bit configuration success (SR.1/3/4/5 = 0).
- 5. See Ordering Information for device speeds (valid operational combinations).
- 6. See Figures 14 through 16 for testing characteristics.



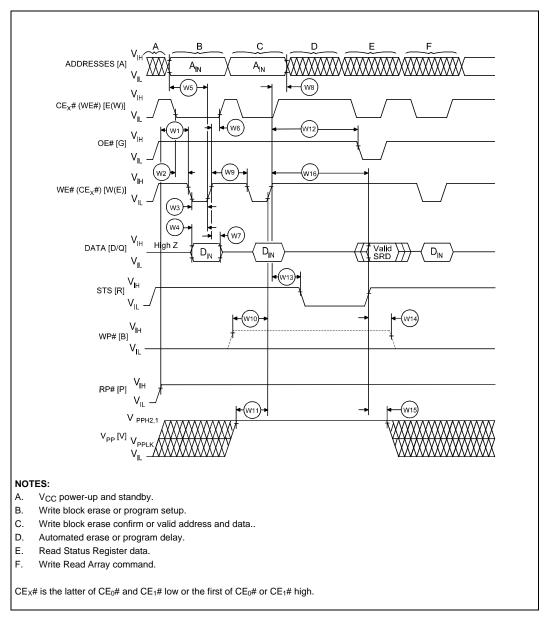



Figure 18. AC Waveform for Write Operations

47



#### 6.2.6 RESET OPERATIONS

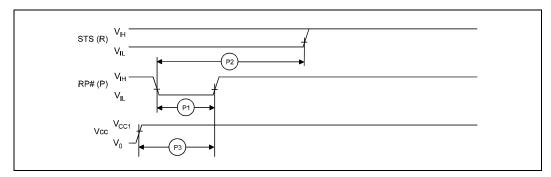



Figure 19. AC Waveform for Reset Operation

Table 22. Reset AC Specifications(1)

|    |                   |                                                                                        |       | V <sub>CC</sub> = 2.7V |     | V <sub>CC</sub> = 3.3V |     |      |
|----|-------------------|----------------------------------------------------------------------------------------|-------|------------------------|-----|------------------------|-----|------|
| #  | Sym               | Parameter                                                                              | Notes | Min                    | Max | Min                    | Max | Unit |
| P1 | t <sub>PLPH</sub> | RP# Pulse Low Time (If RP# is tied to $V_{CC}$ , this specification is not applicable) |       | 100                    |     | 100                    |     | ns   |
| P2 | t <sub>PLRH</sub> | RP# Low to Reset during Block Erase,<br>Program, or Lock-Bit Configuration             |       |                        | 20  |                        | 20  | μs   |
| P3 | t <sub>3VPH</sub> | V <sub>CC</sub> at 2.7V to RP# High<br>V <sub>CC</sub> at 3.0V to RP# High             |       |                        | 50  |                        | 50  | μs   |

- 1. These specifications are valid for all product versions (packages and speeds).
- 2. If RP# is asserted while a block erase, program, or lock-bit configuration operation is not executing, the reset will complete within tpLpH.
- 3. A reset time, t<sub>PHQV</sub>, is required from the latter of STS in RY/BY# mode or RP# going high until outputs are valid.



#### 6.2.7 ERASE, PROGRAM, AND LOCK-BIT CONFIGURATION PERFORMANCE

Table 23. Erase/Write/Lock Performance(3,4)

|     |                                          |                                                |          |       | 2.7V-3.6V Vcc |             |        |                       |        |                 |       |
|-----|------------------------------------------|------------------------------------------------|----------|-------|---------------|-------------|--------|-----------------------|--------|-----------------|-------|
|     |                                          | Version                                        |          |       | 2.7V          | <b>V</b> PP | 3.3V   | SV V <sub>PP</sub> 5V |        | V <sub>PP</sub> |       |
| #   | Sym                                      | Parameter                                      | ·        | Notes | Typ(1)        | Max         | Typ(1) | Max                   | Typ(1) | Max             | Units |
| W16 |                                          | Byte/word program time (using write buffer)    |          | 5     | 5.76          | TBD         | 5.76   | TBD                   | 2.76   | TBD             | μs    |
| W16 | t <sub>WHQV1</sub>                       | Per byte program tir<br>(without write buffer) |          | 2     | 19.89         | TBD         | 19.89  | TBD                   | 13.2   | TBD             | μs    |
| W16 | t <sub>WHQV1</sub>                       | Per word program ti<br>(without write buffer)  |          | 2     | 22.17         | TBD         | 22.17  | TBD                   | 13.2   | TBD             | μs    |
| W16 |                                          | Block program time (byte mode)                 |          | 2     | 1.63          | TBD         | 1.63   | TBD                   | 0.87   | TBD             | sec   |
| W16 |                                          | Block program time (word mode)                 |          | 2     | 0.91          | TBD         | 0.91   | TBD                   | 0.44   | TBD             | sec   |
| W16 |                                          | Block program time (using write buffer)        |          | 2     | 0.37          | TBD         | 0.37   | TBD                   | 0.16   | TBD             | sec   |
| W16 | t <sub>WHQV2</sub>                       | Block erase time                               |          | 2     | 0.56          | TBD         | 0.56   | TBD                   | 0.42   | TBD             | sec   |
| W16 |                                          | Full chip erase time                           | 16 Mbit  |       | 17.9          |             | 17.9   |                       | 13.3   |                 | sec   |
|     |                                          |                                                | 32 Mbit  |       | 35.8          |             | 35.8   |                       | 26.6   |                 | sec   |
| W16 | t <sub>WHQV3</sub>                       | Set Lock-Bit time                              |          | 2     | 22.17         | TBD         | 22.17  | TBD                   | 13.3   | TBD             | μs    |
| W16 | t <sub>WHQV4</sub><br>t <sub>EHQV4</sub> | Clear block lock-bits time                     |          | 2     | 0.56          | TBD         | 0.56   | TBD                   | 0.42   | TBD             | sec   |
| W16 | twhrh1<br>tehrh1                         | Program suspend latency time to read           |          |       | 7.24          | 10.2        | 7.24   | 10.2                  | 6.73   | 9.48            | μs    |
| W16 | twhrh2<br>tehrh2                         | Erase suspend later to read                    | ncy time |       | 15.5          | 21.5        | 15.5   | 21.5                  | 12.54  | 17.54           | μs    |

#### NOTES:

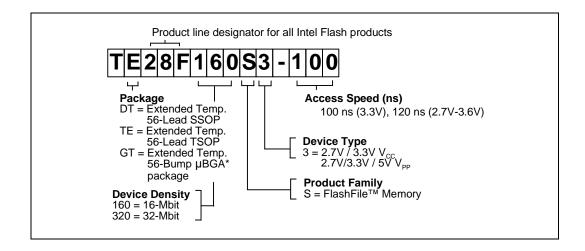
- Typical values measured at T<sub>A</sub> = +25°C and nominal voltages. Assumes corresponding lock-bits are not set. Subject to change based on device characterization.
- 2. Excludes system-level overhead.
- 3. These performance numbers are valid for all speed versions.
- 4. Sampled but not 100% tested.
- 5. Uses whole buffer.

49



Table 24. Erase/Write/Lock Performance(3,4)

|     |                                          |                                                 |         |       |        | 3.3V ± 0        | .3V V <sub>CC</sub> |                 |       |
|-----|------------------------------------------|-------------------------------------------------|---------|-------|--------|-----------------|---------------------|-----------------|-------|
|     |                                          | Version                                         |         |       | 3.3V   | V <sub>PP</sub> | 5V                  | V <sub>PP</sub> |       |
| #   | Sym                                      | Parameter                                       |         | Notes | Typ(1) | Max             | Typ(1)              | Max             | Units |
| W16 |                                          | Byte/word program time (using write buffer)     |         | 5     | 5.66   | TBD             | 2.7                 | TBD             | μs    |
| W16 | twhqv1<br>tehqv1                         | Per byte program time (without write buffer)    |         | 2     | 19.51  | TBD             | 12.95               | TBD             | μs    |
| W16 | twhqv1<br>tehqv1                         | Per word program time<br>(without write buffer) |         | 2     | 21.75  | TBD             | 12.95               | TBD             | μs    |
| W16 |                                          | Block program time (byte mode)                  |         | 2     | 1.6    | TBD             | 0.85                | TBD             | sec   |
| W16 |                                          | Block program time (word mode)                  |         | 2     | 0.89   | TBD             | 0.43                | TBD             | sec   |
| W16 |                                          | Block program time (using write buffer)         |         | 2     | 0.36   | TBD             | 0.18                | TBD             | sec   |
| W16 | t <sub>WHQV2</sub><br>t <sub>EHQV2</sub> | Block erase time                                |         | 2     | 0.55   | TBD             | 0.41                | TBD             | sec   |
| W16 |                                          | Full chip erase time                            | 16 Mbit |       | 17.6   | TBD             | 13.1                | TBD             | sec   |
|     |                                          |                                                 | 32 Mbit |       | 35.2   | TBD             | 26.2                | TBD             | sec   |
| W16 | t <sub>WHQV3</sub>                       | Set Lock-Bit time                               | l       | 2     | 22.75  | TBD             | 12.95               | TBD             | μs    |
| W16 | t <sub>WHQV4</sub><br>t <sub>EHQV4</sub> | Clear block lock-bits time                      |         | 2     | 0.55   | TBD             | 0.41                | TBD             | sec   |
| W16 | t <sub>WHRH1</sub>                       | Program suspend latency time to read            |         |       | 7.1    | 10              | 6.6                 | 9.3             | μs    |
| W16 | t <sub>WHRH2</sub><br>t <sub>EHRH2</sub> | Erase suspend laten to read                     | cy time |       | 15.2   | 21.1            | 12.3                | 17.2            | μs    |


#### NOTES

- Typical values measured at T<sub>A</sub> = +25°C and nominal voltages. Assumes corresponding lock-bits are not set. Subject to change based on device characterization.
- 2. Excludes system-level overhead.
- 3. These performance numbers are valid for all speed versions.
- 4. Sampled but not 100% tested.
- 5. Uses whole buffer.

50



# APPENDIX A DEVICE NOMENCLATURE AND ORDERING INFORMATION



| Order Code          | e by Density        | Valid Operation                                            | al Combinations                                              |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------|
| 16 Mb               | 32 Mb               | 2.7V-3.6V V <sub>CC</sub><br>50 pF load<br>(16 Mb / 32 Mb) | 3.3V ± 0.3V V <sub>CC</sub><br>50 pF load<br>(16 Mb / 32 Mb) |
| 56-lead TSOP S3-100 | 56-lead TSOP S3-110 | -120 / -130                                                | -100 / -110                                                  |
| 56-lead TSOP S3-130 | 56-lead TSOP S3-140 | -150 / -160                                                | -130 / -140                                                  |
| 56-lead SSOP S3-100 | 56-lead SSOP S3-110 | -120 / -130                                                | -100 / -110                                                  |
| 56-lead SSOP S3-130 | 56-lead SSOP S3-140 | -150 / -160                                                | -130 / -140                                                  |
| 56-bump μBGA S3-100 | 56-bump μBGA S3-110 | -120 / -130                                                | -100 / -110                                                  |
| 56-bump μBGA S3-130 | 56-bump μBGA S3-140 | -150 / -160                                                | -130 / -140                                                  |

51



## APPENDIX B ADDITIONAL INFORMATION(1,2)

| Order Number                               | Document/Tool                                                                                  |
|--------------------------------------------|------------------------------------------------------------------------------------------------|
| 290609                                     | Word-Wide FlashFile Memory™ Family 28F160S5, 28F320S5 Datasheet                                |
| 292203                                     | AP-645 28F160S3/S5 Compatibility with 28F016SA/SV                                              |
| 292204                                     | AP-646 Common Flash Interface (CFI) and Command Sets                                           |
| www.mcif.com                               | Common Flash Interface Specification                                                           |
| 290528                                     | 28F016SV 16-Mb (1Mbit x 16, 2 Mbit x 8) FlashFile™ Memory Datasheet                            |
| 290489                                     | 28F016SA 16-Mb (1Mbit x 16, 2 Mbit x 8) FlashFile™ Memory Datasheet                            |
| 297372                                     | 16-Mbit Flash Product Family User's Manual                                                     |
| 292123                                     | AP-374 Flash Memory Write Protection Techniques                                                |
| 292144                                     | AP-393 28F016SV Compatibility with 28F016SA                                                    |
| 292159                                     | AP-607 Multi-Site Layout Planning with Intel's FlashFile™ Components, Including ROM Capability |
| 292163                                     | AP-610 Flash Memory In-System Code and Data Update Techniques                                  |
| Contact Intel/Distribution<br>Sales Office | Mechanical Specification μBGA* Package Preliminary Guide                                       |
| Contact Intel/Distribution<br>Sales Office | Surface Mount and PCB Guidelines for μBGA* Packaging                                           |
| Contact Intel/Distribution<br>Sales Office | Multi-Site Layouts: 56-lead TSOP to 56-bump μBGA* package 56-lead SSOP to 56-bump μBGA package |
| Contact Intel/Distribution<br>Sales Office | CFI - Common Flash Interface Reference Code                                                    |

- Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers should contact their local Intel or distribution sales office.
- 2. Visit Intel's World Wide Web home page at http://www.intel.com for technical documentation and tools.