FEATURES
Fast: 2.5 ns Propagation Delay Low Power: 118 mW per Comparator
Packages: DIP, TO-100, SOIC, PLCC
Power Supplies: +5 V, -5.2 V
Logic Compatibility: ECL
MIL-STD-883 Versions Available
50 ps Delay Dispersion

APPLICATIONS

High Speed Triggers
High Speed Line Receivers
Threshold Detectors
Window Comparators
Peak Detectors

GENERAL DESCRIPTION

The AD 96685 and AD 96687 are ultrafast voltage comparators. The AD 96685 is a single comparator with 2.5 ns propagation delay; the AD 96687 is an equally fast dual comparator. B oth devices feature 50 ps propagation delay dispersion which is a particularly important characteristic of high speed comparators. It is a measure of the difference in propagation delay under differing overdrive conditions.
A fast, high precision differential input stage permits consistent propagation delay with a wide variety of signals in the commonmode range from -2.5 V to +5 V . O utputs are complementary digital signals fully compatible with ECL 10 K and 10 KH logic

AD96685 FUNCTIONAL BLOCK DIAGRAM

AD96687 FUNCTIONAL BLOCK DIAGRAM

THE OUTPUTS ARE OPEN EMITTERS, REQUIRING EXTERNAL PULL-DOWN RESISTORS. THESE RESISTORS MAY BE IN THE RANGE OF 50! - 200! CONNECTED TO - 2.0 V , OR 200! - 20001
families. The outputs provide sufficient drive current to directly drive transmission lines terminated in 50Ω to -2 V . A level sensitive latch input is included which permits tracking, track-hold, or sample-hold modes of operation.
The AD 96685 and AD 96687 are available in both industrial, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and military temperature ranges. Industrial range devices are available in 16-pin DIP, SOIC, and 20-lead PLCC; additionally, the AD 96685 is available in a 10-pin, T 0-100 metal can.

REV. C

[^0]
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 617/329-4700Fax: 617/326-8703

AD96685/AD96687- SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Positive Supply Voltage ($+\mathrm{V}_{\mathrm{S}}$)
$+6.5 \mathrm{~V}$
N egative Supply Voltage ($-\mathrm{V}_{\mathrm{S}}$) $-6.5 \mathrm{~V}$
Input Voltage Range ${ }^{2}$. $\pm 5 \mathrm{~V}$
D ifferential Input Voltage . 5.5 V
L atch Enable Voltage . $-\mathrm{V}_{\mathrm{S}}$ to 0 V
O utput Current . 30 mA
O perating T emperature Range ${ }^{3}$
AD 96685/87/BH/BQ/BP/BR $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD 96685/87/T Q . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
$+175^{\circ} \mathrm{C}$
Lead Soldering Temperature (10 sec) $+300^{\circ} \mathrm{C}$

EXPLANATION OF TEST LEVELS

T est Level
I - 100\% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C} ; 100 \%$ production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

ELECTRICAL CHARACTERISTICS (Positive Supply Voltage $=+5.0$ V; Negative Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted)

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values, may be applied individually, and beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Under no circumstances should the input voltages exceed the supply voltages
${ }^{3}$ T ypical thermal impedances
AD 96685 M etal C an $\quad \theta_{\mathrm{IA}}=172^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\|} \mathrm{C}=52^{\circ} \mathrm{C} / \mathrm{W}$
AD 96685 Ceramic $\quad \theta_{\mathrm{J}}=115^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{\theta}} \mathrm{C}=57^{\circ} \mathrm{C} / \mathrm{W}$
AD $96685 \mathrm{SOIC} \quad \theta_{\mathrm{JA}}=170^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{A}} \mathrm{C}=60^{\circ} \mathrm{C} / \mathrm{W}$
AD $96685 \mathrm{PLCC} \quad \theta_{\mathrm{JA}}=88^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{j}} \mathrm{C}=45^{\circ} \mathrm{C} / \mathrm{W}$
AD 96687 C eramic $\quad \theta_{\mathrm{JA}}=115^{\circ} \mathrm{C} / \mathrm{W} ; \theta_{\mathrm{JC}}=57^{\circ} \mathrm{C} / \mathrm{W}$
AD 96687 SOIC
AD 96687 PLCC
${ }^{4} \mathrm{R}_{\mathrm{s}}=100 \Omega$.
${ }^{5}$ Input Voltage Range can be extended to -3.3 V if $-\mathrm{V}_{\mathrm{S}}=-6.0 \mathrm{~V}$.
${ }^{6}$ O utputs terminated through 50Ω to -2.0 V .
${ }^{7}$ Propagation delays measured with 100 mV pulse (10 mV overdrive), to 50% transition point of the output.
${ }^{8} \mathrm{C}$ hange in propagation D elay from 100 mV to 1 V input overdrive.
${ }^{9}$ Supply voltages should remain stable within $\pm 5 \%$ for normal operation.
${ }^{10} \mathrm{M}$ easured at $\pm 5 \%$ of $+\mathrm{V}_{\mathrm{S}}$ and $-\mathrm{V}_{\mathrm{s}}$.
Specifications subject to change without notice.

FUNCTIONAL DESCRIPTION

Pin Name	Description
$+\mathrm{V}_{\mathrm{s}}$ NONINVERTING INPUT	Positive supply terminal, nominally +5.0 V . N oninverting analog input of the differential input stage. The NONINVERTING INPUT must be driven in conjunction with the INVERTING INPUT.
INVERTING INPUT	Inverting analog input of the differential input stage. The INVERTING INPUT must be driven in conjunction with the NONINVERTING INPUT.
LATCH ENABLE	In the "compare" mode (logic HIGH), the output will track changes at the input of the comparator. In the "latch" mode (logic LOW), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. LATCH ENABLE must be driven in conjunction with LATCH ENABLE for the AD 96687.
$\overline{\text { LATCH ENABLE }}$	In the "compare" mode (logic LOW), the output will track changes at the input of the comparator. In the "latch" mode (logic HIGH), the output will reflect the input state just prior to the comparator being placed in the "latch" mode. LATCH EN ABLE must be driven in conjunction with LATCH ENABLE for the AD 96687.
- $\mathrm{V}_{\text {S }}$	N egative supply terminal, nominally -5.2 V.
Q	One of two complementary outputs. Q will be at logic HIGH if the analog voltage at the NONINVERTING INPUT is greater than the analog voltage at the INVERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD 96687 only) for additional information.
$\overline{\mathrm{Q}}$	One of two complementary outputs. $\overline{\mathrm{Q}}$ will be at logic LOW if the analog voltage at the NON IN VERTING INPUT is greater than the analog voltage at the IN VERTING INPUT (provided the comparator is in the "compare" mode). See LATCH ENABLE and LATCH ENABLE (AD 96687 only) for additional information.
GROUND 1	One of two grounds, but primarily associated with the digital ground. Both grounds should be connected together near the comparator.
GROUND 2	One of two grounds, but primarily associated with the analog ground. Both grounds should be connected together near the comparator.

PIN DESIGNATIONS

REV. C

$t_{s} \quad-M$ inimum Setup Time
$t_{H} \quad$ - M inimum H old Time
$t_{P D}$ - Input to Output D elay
$t_{P D}(E)-L A T C H E N A B L E$ to Output Delay
$t_{p w}(E)$ - Minimum LATCH ENABLE Pulse Width
$V_{0 S}$ - Input Offset Voltage
$\mathrm{V}_{O D}$ - O verdrive Voltage

DIE LAYOUT AND MECHANICAL INFORMATION

D ie Dimensions (AD 96685)	. $44 \times 50 \times 15(\pm 2) \mathrm{mils}$
Pad Dimensions	4×4 mils
M etalization	Aluminum
Backing	N one
Substrate Potential	- V_{S}
Passivation	Oxynitride
Die Attach	Gold Eutectic
Bond Wire 1.25	m; Ultrasonic Bonding
	G old, G old Ball Bonding

D ie D imensions (AD 96687)	$77 \times 60 \times 15(\pm 2)$ mils
Pad Dimensions	$\ldots4 \times 4 \mathrm{mils}$
M etalization	Aluminum
Backing	None
Substrate Potential	. $-\mathrm{V}_{\mathrm{S}}$
Passivation	Oxynitride
D ie Attach	Gold Eutectic
Bond Wire 1.25	um; Ultrasonic Bonding
	Gold, Gold Ball Bonding

ORDERING GUIDE

Model	Type	Temperature Range	Description	Package Options
AD 96685BH	Single	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10-Pin Can, Industrial	H-10A
AD 96685BP	Single	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Pin PLCC, Industrial	P-20A
AD 96685BQ	Single	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin DIP, Industrial	Q-16
AD 96685BR	Single	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-P in SOIC, Industrial	R-16A
AD 96685BP-REEL	Single	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Pin PLCC, Industrial	P-20A
AD 96685T Q	Single	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Pin DIP, Extended T emperature	Q-16
AD 96687BP	Dual	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Pin PLCC, Industrial	P-20A
AD 96687BQ	Dual	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin DIP, Industrial	Q-16
AD 96687BR	Dual	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Pin SOIC, Industrial	R-16A
AD 96687BR-REEL	Dual	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-P in SOIC, Industrial	R-16A
AD 96687T Q	Dual	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Pin DIP, Extended T emperature	Q-16

APPLICATIONS INFORMATION

The AD 96685/87 comparators are very high speed devices. C onsequently, high speed design techniques must be employed to achieve the best performance. The most critical aspect of any AD 96685/87 design is the use of a low impedance ground plane.
Another area of particular importance is power supply decoupling. N ormally, both power supply connections should be separately decoupled to ground through $0.1 \mu \mathrm{~F}$ ceramic and $0.001 \mu \mathrm{~F}$ mica capacitors. The basic design of comparator circuits makes the negative supply somewhat more sensitive to variations. As a result more attention should be placed on insuring a "clean" negative supply.
The LATCH ENABLE input is active LOW (latched). If the latching function is not used, the LATCH ENABLE input should be grounded (ground is an ECL logic HIGH). The LATCH ENABLE input of the AD 96687 should be tied to -2.0 V or left "floating," to disable the latching function. An alternate use of the LATCH ENABLE input is as a hysteresis control input. By varying the voltage at the LATCH ENABLE input for the AD 96685 and the differential voltage between both latch inputs for the AD 96687, small variations in the hysteresis can be achieved.
Occasionally, one of the two comparator stages within the AD 96687 will not be used. The inputs of the unused comparator should not be allowed to "float." The high internal gain may cause the output to oscillate (possibly affecting the other comparator which is being used) unless the output is forced into a fixed state. T his is easily accomplished by insuring that the two inputs are at least one diode drop apart, while also grounding the LATCH ENABLE input.
The best performance will be achieved with the use of proper ECL terminations. The open-emitter outputs of the AD 96685/87 are designed to be terminated through 50Ω resistors to -2.0 V , or any other equivalent ECL termination. If high speed ECL signals must be routed more than a few centimeters, M icroStrip or StripL ine techniques may be required to insure proper transition times and prevent output ringing.

The AD 96685/87 have been specifically designed to reduce propagation delay dispersion over an input overdrive range of 100 mV to 1 V . Propagation delay dispersion is the change in propagation delay which results from a change in the degree of overdrive (how far the switching point is exceeded by the input). The overall result is a higher degree of timing accuracy since the AD 96685/87 is far less sensitive to input variations than most comparator designs.

Typical Applications

HIGH SPEED SAMPLING CIRCUIT

HIGH SPEED WINDOW COMPARATOR

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Pin TO-100 Metal Can

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

