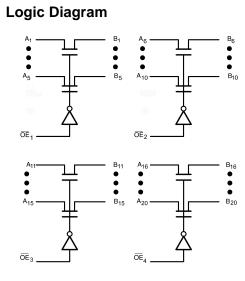
FAIRCHILD

FSTU16862 20-Bit Bus Switch with -2V Undershoot Protection

General Description

Features

- Undershoot hardened to -2V (A and B Ports)
- \blacksquare 4 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- See Application Note AN-5008 for details on FSTU - Undershoot Protected Fairchild Switch Family


Ordering Code:

FAIRCI SEMICONC FSTU16 20-Bit B	90CTOR™	ch with _2\/ I	May 2002 Revised May 2002	FSTU16862 20-Bit			
General D The Fairchild Sw speed CMOS TT Resistance of the outputs without additional ground The device is org is LOW, the switc When \overline{OE}_X is between the A at tected against ur 2.0V below groc Hardened Circui	escription itch FSTU1686 'L-compatible b e switch allows adding propaga I bounce noise. yanized as a 20- h is ON and Po HIGH, a high ind B Ports. Th dershoot to sup pund. Fairchild' t (UHC™) sens by preventing	2 provides 20-bits of high- us switching. The low On inputs to be connected to ation delay or generating bit bus switch. When \overline{OE}_X it A is connected to Port B. impedance state exists e A and B Ports are pro- port an extended range to s integrated Undershoot es undershoot at the I/O voltage differentials from	 Features Undershoot hardened to -2V (A and B Ports) 4Ω switch connection between two ports Minimal propagation delay through the switch Low I_{CC} Zero bounce in flow-through mode Control inputs compatible with TTL level See Application Note AN-5008 for details on FSTU - Undershoot Protected Fairchild Switch Family 	Bit Bus Switch with –2V Undershoot Protection			
Ordering (Code:			ot Pr			
Order Number	Package Number	Package Description					
FSTU16862QSP	MQA48A	48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150" Wide					
	FSTU16862MTD MTD48 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Q						

UHC[™] is a trademark of Fairchild Semiconductor Corporation.

© 2002 Fairchild Semiconductor Corporation DS500703 www.fairchildsemi.com

FSTU16862

Pin Descriptions

Γ	Pin Name	Description
Γ	OEx	Bus Switch Enables
	A	Bus A
	В	Bus B

Truth Table

Inputs	Inputs/Outputs
OEx	А, В
L	A = B
Н	Z

H = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance

www.fairchildsemi.com

Connection Diagram

ΘĒ2

A₁ -

Α2.

A3

 A_4

A5

A₆

A7

Α8 9

A9 10

A₁₀

GND 12

 $\overline{\text{OE}}_4$ 13

A₁₁

A₁₃ 16

A₁₄

A₁₅

A16 19

A₁₇ 20

A₁₈ 21

A₁₉. 22

A₂₀. GND

11

14 A₁₂ 15

17

18

23

24

2

48 Vcc

47

46

45 B₂

43 Ba

4 1 B₆

40 B7

39 • Ba

38 Bg

37 B₁₀

36 Vcc

34 B₁₁

33 B₁₂ •B₁₃

32

31

30 B₁₅

29 B₁₆

28 B₁₇

27 -B₁₈

26 B₁₉

25

в1

B₃ 44

B⊿ 43

OE3 35

B₁₄

B₂₀

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 2)	-2.0V to +7.0V
DC Input Voltage (V _{IN}) (Note 3)	-0.5V to +7.0V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 $^\circ\text{C}$

Recommended Operating Conditions (Note 4)

Power Supply Operating ($V_{CC)}$	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	-40 °C to +85 °C

FSTU16862

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: V_S is the voltage observed/applied at either the A or B Ports across the switch.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

		V _{cc}	TA	= −40 °C to +8	5 °C			
Symbol	Parameter	(V)	Min	Typ (Note 5)	Max	Units	Conditions	
VIK	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18 mA	
V _{IH}	HIGH Level Input Voltage	4.0-5.5	2.0			V		
VIL	LOW Level Input Voltage	4.0-5.5			0.8	V		
I _I	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$	
		0			10	μΑ	$V_{IN} = 5.5V$	
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 64 \text{ mA}$	
	(Note 6)	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$	
		4.5		8	14	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$	
		4.0		11	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$	
I _{CC}	Quiescent Supply Current	5.5			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One Input at 3.4V	
	(Note 7)						Other Inputs at V_{CC} or GND	
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$\frac{0.0 \text{ mA} \ge I_{\text{IN}} \ge -50 \text{ mA}}{\text{OE} = 5.5 \text{V}}$	

Note 5: Typical values are at V_{CC} = 5.0V and T_{A} = +25 $^{\circ}C$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 7: Per TTL driven input, control pins only.

www.fairchildsemi.com

FSTU16862

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40$ °C to +85 °C, C _L = 50pF, RU = RD = 500 Ω				Units	Conditions	Figure	
Gymbol	i alameter	V _{CC} = 4.	5 – 5.5V	V _{CC}	= 4.0V	Conditions		Number	
		Min	Max	Min	Max	ł			
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 8)		0.25		0.25	ns	V _I = OPEN	Figures 2, 3	
t _{PZH} , t _{PZL}	Output Enable Time	1.0	5.9		6.4	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 2, 3	
t _{PHZ} , t _{PLZ}	Output Disable Time	1.0	6.9		7.4	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 2, 3	

Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

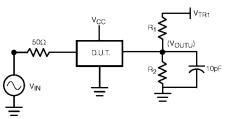
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	3		pF	$V_{CC} = 5.0V, \ V_{IN} = 0V$
C _{I/O}	Input/Output Capacitance "OFF State"	6		pF	V_{CC} , $\overline{OE} = 5.0$ V, $V_{IN} = 0$ V

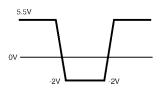
Note 9: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

Undershoot Characteristic (Note 10)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} - 0.3		V	Figure 1
Note 10: This test is intended to observatorize the device's protective consplition by maintaining output signal integrity during an input transient voltage						

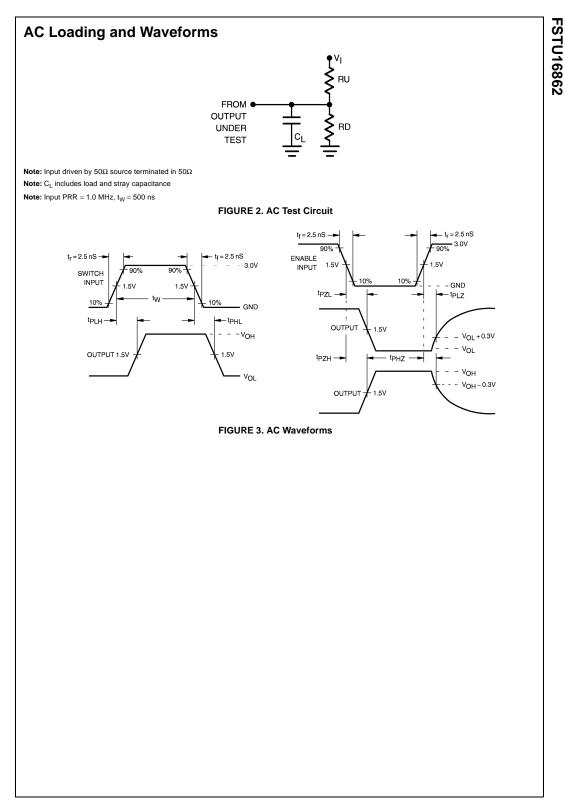
undershoot event.

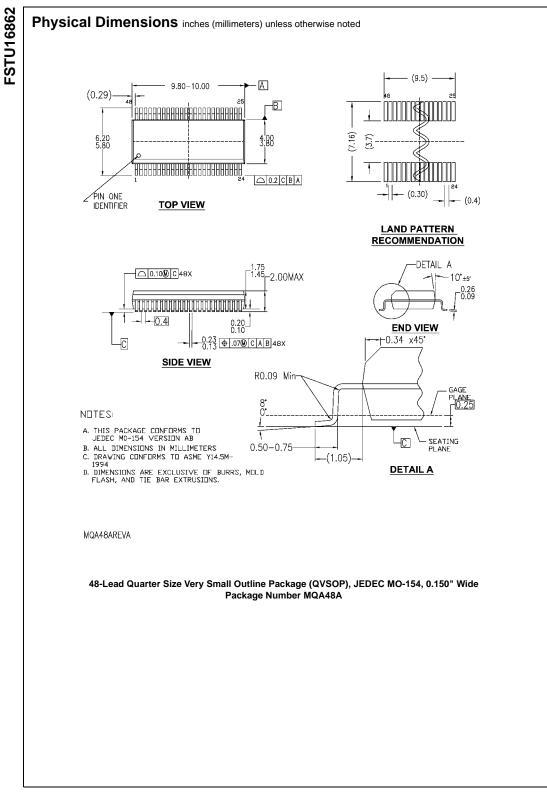



FIGURE 1.

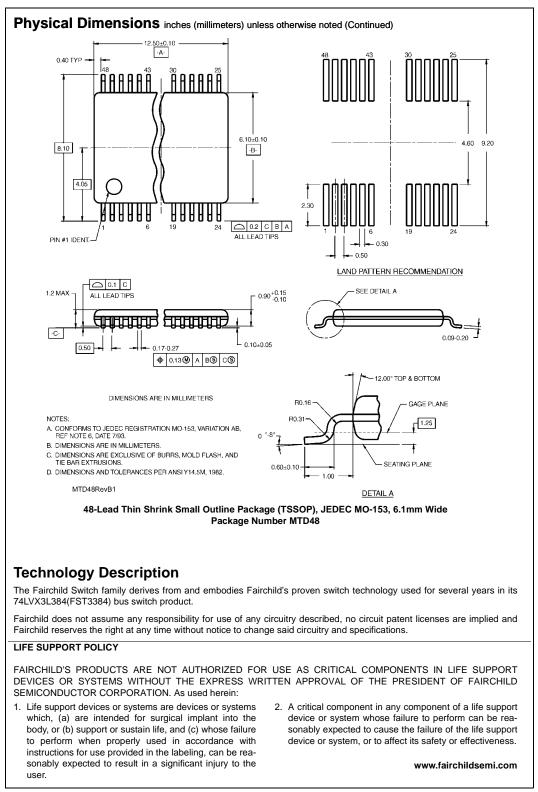
Device Test Conditions

Parameter	Value	Units
V _{IN}	see Waveform	V
$R_1 = R_2$	100K	Ω
V _{TRI}	11.0	V
V _{CC}	5.5	V


Transient Input Voltage (V_{IN}) Waveform


www.fairchildsemi.com

4


Downloaded from Elcodis.com electronic components distributor

5

www.fairchildsemi.com

6

7

www.fairchildsemi.com