Universal Decade Counter

The MC10137 is a high speed synchronous counter that can count up, down, preset, or stop count at frequencies exceeding 100 MHz . The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the MC10137 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count. The Carry Out on the MC10137 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after the Clock's positive excursion will depend on the condition of Q1 and/or Q2. The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.

$$
\begin{aligned}
\mathrm{PD}_{\mathrm{D}} & =625 \mathrm{~mW} \text { typ/pkg (No Load) } \\
\mathrm{f}_{\text {count }} & =150 \mathrm{MHz} \text { typ } \\
\mathrm{t}_{\mathrm{pd}} & =3.3 \mathrm{~ns} \mathrm{typ}(\mathrm{C}-\mathrm{Q}) \\
& =7.0 \mathrm{~ns} \text { typ }\left(\mathrm{C}-\mathrm{C}_{\text {out }}\right) \\
& =5.0 \mathrm{~ns} \text { typ }\left(\mathrm{C}_{\text {in }}-\mathrm{C}_{\text {out }}\right)
\end{aligned}
$$

COUNT DOWN

FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	L	Preset (Program)
L	H	Increment (Count Up)
H	L	Decrement (Count Down)
H	H	Hold (Stop Count)

PIN ASSIGNMENT

MOTOROLA

NOTE: Flip-flops will toggle when all $\overline{\mathrm{T}}$ inputs are low.

SEQUENTIAL TRUTH TABLE*

INPUTS								OUTPUTS				
S1	S2	D0	D1	D2	D3	$\begin{aligned} & \text { Carry } \\ & \text { In } \end{aligned}$	Clock	Q0	Q1	Q2	Q3	$\begin{aligned} & \overline{\text { Carry }} \\ & \text { Out } \end{aligned}$
L	L	H	H	H	L	X	H	H	H	H	L	H
L	H	X	X	X	X	L	H	L	L	L	H	H
L	H	X	X	X	X	L	H	H	L	L	H	L
L	H	X	X	X	X	L	H	L	L	L	L	H
L	H	X	X	X	X	L	H	H	L	L	L	H
L	H	X	X	X	X	H	L	H	L	L	L	H
L	H	X	X	X	X	H	H	H	L	L	L	H
H	H	X	X	X	X	X	H	H	L	L	L	H
L	L	H	H	L	L	X	H	H	H	L	L	H
H	L	X	X	X	X	L	H	L	H	L	L	H
H	L	X	X	X	X	L	H	H	L	L	L	H
H	L	X	X	X	X	L	H	L	L	L	L	L

* Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
** A clock H is defined as a clock input transition from a low to a high logic level.

ELECTRICAL CHARACTERISTICS

1. Individually apply $\mathrm{V}_{\text {ILmin }}$ to pin under test.
2. Measure output after clock pulse $V_{I L} \longrightarrow V_{I H}$ appears at clock input (Pin 13).
3. Before test set Q1 and Q2 outputs to a logic low.

ELECTRICAL CHARACTERISTICS (continued)

1. Individually test each input; apply V_{IL} min to pin under test.
2. Measure output after clock pulse
$\mathrm{V}_{\mathrm{IL}} \longrightarrow \mathrm{V}_{\mathrm{IH}}$ appears at clock input (Pin 13).
3. Before test set all Q outputs to a logic high.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 -ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ $25^{\circ} \mathrm{C}$

NOTE:
$\mathrm{t}_{\text {setup }}$ is the minimum time before the positive transition of the clock pulse (C) that information must be present at the input D or S .
thold is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the input D or S.

> Input Pulse
> $\mathrm{t}+=\mathrm{t}-=2.0 \pm 0.2 \mathrm{~ns}$
> $(20$ to $80 \%)$

(a) is the minimum time to wait after the counter has been enabled to clock it.
(b) is the minimum time before the counter has been disabled that it may be clocked.
(c) is the minimum time before the counter is enabled that a clock pulse may be applied with no effect on the state of the counter.
(d) is the minimum time to wait after the counter is disabled that a clock pulse may be applied with no effect in the state of the counter.
(b) and (c) may be negative numbers.

50 -ohm termination to ground located in each scope channel input.
All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be $<1 / 4$ inch from TP in to input pin and TP out to output pin.
Unused outputs are connected to a 50-ohm resistor to ground.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $\mathbb{(4)}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

