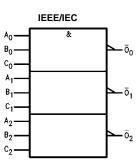
SEMICONDUCTOR™ 74F10

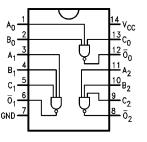
Triple 3-Input NAND Gate

General Description

FAIRCHILD


This device contains three independent gates, each of which performs the logic NAND function.

Ordering Code:


Order Number	Package Number	Package Description
74F10SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
74F10SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F10PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
		HIGH/LOW Output I _{OH} /I	Output I _{OH} /I _{OL}	
A _n , B _n , C _n	Inputs	1.0/1.0	20 µA/-0.6 mA	
\overline{O}_n	Outputs	50/33.3	-1 mA/20 mA	

© 2000 Fairchild Semiconductor Corporation DS009458

www.fairchildsemi.com

74F10

Absolute Maximum Ratings(Note 1)

	•
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
$V_{\mbox{\scriptsize CC}}$ Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $I_{OL}\left(mA\right)$

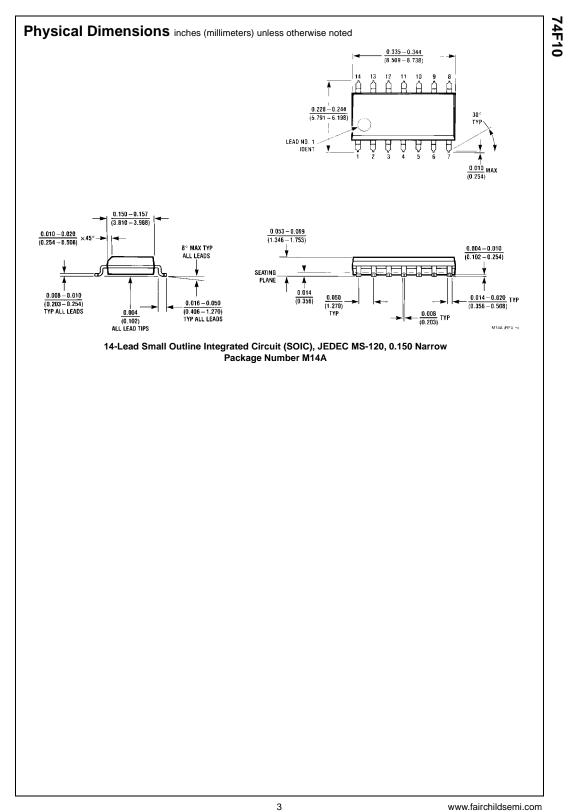
Recommended Operating Conditions

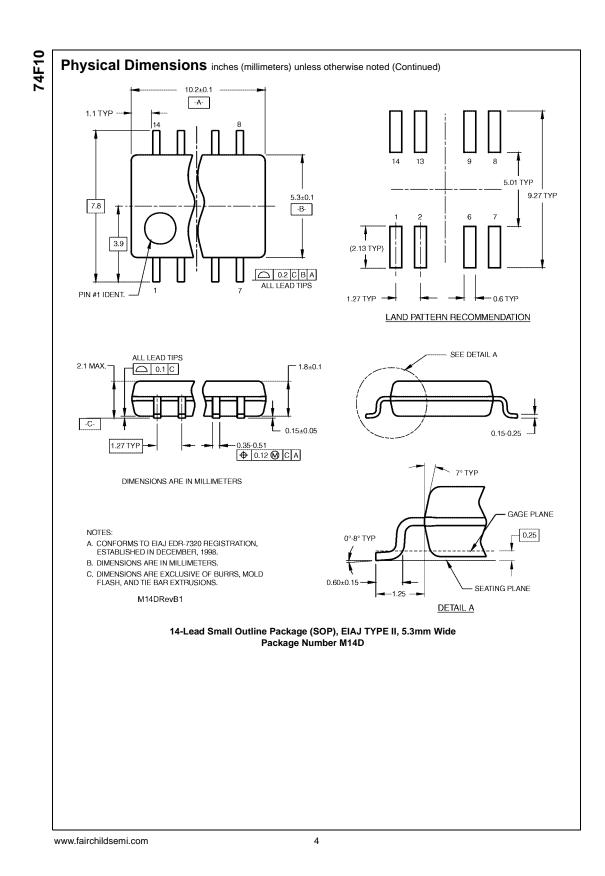
Free Air Ambient Temperature Supply Voltage

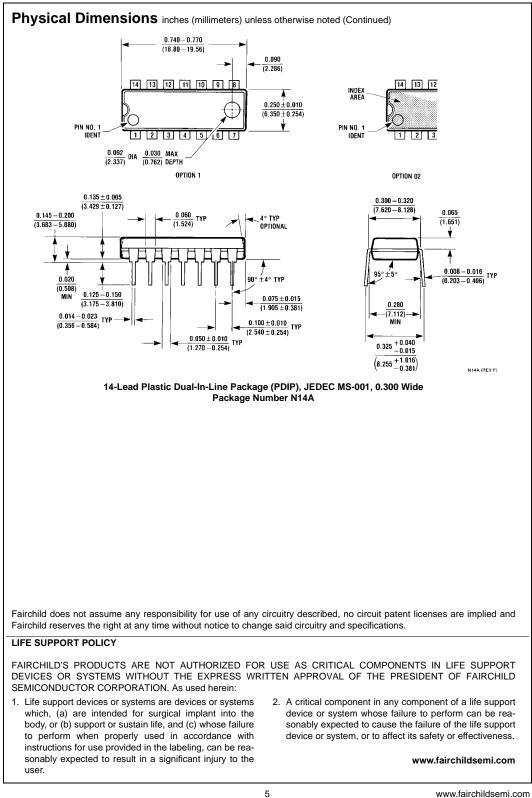
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device -0.5V to V_{CC} may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Symbol Parameter		Min	Тур	Max	Units	Vcc	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}				V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	v	Min	I _{OL} = 20 mA	
	Voltage								
IIH	Input HIGH				5.0		Max	V _{IN} = 2.7V	
	Current				5.0	μA	IVIAX		
I _{BVI}	Input HIGH Current			7.0	7.0		Max	V _{IN} = 7.0V	
	Breakdown Test				7.0	μA	IVIAX	v _{IN} = 7.0 v	
I _{CEX}	Output HIGH				50	A	Max	V – V	
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4.75				V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All other pins grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$	
	Circuit Current				3.75	μΛ	0.0	All other pins grounded	
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
I _{OS}	Output Short-Circuit Current	t	-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current			1.4	2.1	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			5.1	7.7	mA	Max	$V_0 = LOW$	


AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	20	
t _{PHL}	$A_n, B_n, C_n \text{ to } \overline{O}_n$	1.5	3.2	4.3	1.5	6.5	1.5	5.3	ns	

www.fairchildsemi.com

74F10 Triple 3-Input NAND Gate