Electroluminescent Lamp Driver

- 2.2V-5.0V Battery Operation
- 50nA Typical Standby Current
- High Voltage Output $160 \mathrm{~V}_{\text {Pp }}$ typical

■ Internal Oscillator

APPLICATIONS

- PDAs
- Cellular Phones
- Remote Controls
- Handheld Computers

DESCRIPTION

The SP4422A is a high voltage output DC-AC converter that can operate from a $2.2 \mathrm{~V}-5.0 \mathrm{~V}$ power supply. The SP4422A is capable of supplying up to $220 \mathrm{~V}_{\mathrm{Pp}}$ signals, making it ideal for driving electroluminescent lamps. The device features 50 nA (typical) standby current, for use in low power portable products. One external inductor is required to generate the high voltage, and one external capacitor is used to select the oscillator frequency. The SP4422A is offered in an 8 -pin narrow and 8 -pin micro SOIC packages. For delivery in die form, please consult the factory.

SP4422A Block Diagram

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.
input Voltages/Currents

Lamp Outputs
...............60mA

Power Dissipation Per Package
8 -pin NSOIC (derate $6.14 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad . 500 mW 8 -pin μ SOIC (derate $4.85 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .390 mW

The information furnished herein by Sipex has been carefully reviewed for accuracy and reliability. Its application or use, however, is solely the responsibility of the user. No responsibility for the use of this information is assumed by Sipex, and this information shall not explicitly or implicitly become part of the terms and conditions of any subsequent sales agreement with Sipex. Specifications are subject to change without prior notice. By the sale or transfer of this information, Sipex assumes no responsibility for any infringement of patents or other rights of third parties which may result from its use. No license or other proprietary rights are granted by implication or otherwise under any patent or patent rights of Sipex Corporation.

SPECIFICATIONS

($\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Lamp Capacitance $=17 \mathrm{nF}$ with 100Ω Series resistor; Coil $=5 \mathrm{mH}\left(\mathrm{R}_{\mathrm{S}}=18 \Omega\right) ; \mathrm{C}_{\mathrm{osc}}=100 \mathrm{pF}$ unless otherwise noted)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Supply Voltage, V_{DD}	2.2	3.0	5.0	V	
Supply Current, $\mathrm{I}_{\text {COIL }}+\mathrm{I}_{\text {DD }}$		$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {HON }}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {HON }}=5.0 \mathrm{~V} \end{aligned}$
Coil Voltage, $\mathrm{V}_{\text {coll }}$	$V_{D D}$		5.0	V	
HON Input Voltage, $\mathrm{V}_{\text {HON }}$ LOW: EL off HIGH: EL on	$\begin{gathered} -0.25 \\ V_{D D}-0.25 \end{gathered}$	$\begin{gathered} 0 \\ V_{D D} \end{gathered}$	$\begin{gathered} 0.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}+0.25 \end{gathered}$	V	
HON Current, EL on		25	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{HON}} \leq 3 \mathrm{~V}$
Shutdown Current, $\mathrm{I}_{\text {SD }}=\mathrm{I}_{\text {COIL }}+\mathrm{I}_{\mathrm{DD}}$		$\begin{aligned} & 50 \\ & 0.3 \end{aligned}$	500	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{HOO}}=\mathrm{LOW} \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {HON }}=\mathrm{LOW} \end{aligned}$
INDUCTOR DRIVE					
Coil Frequency, $\mathrm{f}_{\text {COLL }}=\mathrm{f}_{\text {LAMP }} \times 32$		11.2		kHz	
Coil Duty Cycle		94		\%	
Peak Coil Current, $\mathrm{I}_{\text {PK-coll }}$			60	mA	Guaranteed by design.
EL LAMP OUTPUT					
EL Lamp Frequency, $\mathrm{f}_{\text {Lamp }}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	352	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	Hz	$\begin{aligned} & \mathrm{T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$
Peak to Peak Output Voltage	$\begin{gathered} 60 \\ 70 \\ 110 \\ 180 \end{gathered}$	$\begin{gathered} 80 \\ \\ 140 \\ 200 \end{gathered}$		$V_{\text {PP }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=2.2 \mathrm{~V} \\ & \mathrm{~T}_{\text {AMB }}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\text {AMB }}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$

This data sheet specifies environmental parameters, final test conditions and limits as well suggested operating conditions. For applications which require performance beyond the specified conditions and or limits please consult the factory.

Bonding Diagram:

PAD	X	Y
EL1	556.5	179.0
EL2	556.2	-151.0
COIL	-19.5	-517.0
$\mathrm{~V}_{\text {SS }}$	-568.0	-517.0
HON	-549.0	-256.5
CAP2	-549.0	93.5
CAP1	-568.0	-516.5
$\mathrm{~V}_{\mathrm{DD}}$	-349.0	517.0

NOTES:

1. Dimensions are in Microns unless otherwise noted.
2. Bonding pads are 125×125 typical
3. Outside dimensions are maximum, including scribe area.
4. Die thickness is $10 \mathrm{mils}+/-1$.
5. Pad center coordinates are relative to die center.
6. Die size 1447×1346 (57×53 mils).

PIN DESCRIPTION

Pin 1 - HON- Enable for driver operation, high = active; low = inactive.
Pin $2-\mathrm{V}_{\mathrm{SS}}$ - Power supply common, connect to ground.

Pin 3 - Coil- Coil input, connect coil from $V_{D D}$ to pin 3.

Pin 4 - Lamp- Lamp driver output2, connect to EL lamp.

Pin 5 - Lamp- Lamp driver output1, connect to EL lamp.

Pin $6-V_{D D}$ - Power supply for driver, connect to system V_{DD}.
Pin 7 - Cap1- Capacitor input 1 , connect to $\mathrm{C}_{\text {OSC }}$.
Pin 8 - Cap2- Capacitor input 2, connect to $\mathrm{C}_{\text {OSC }}$.

THEORY OF OPERATION

The SP4422A is made up of three basic circuit elements, an oscillator, coil, and switched H -bridge network. The oscillator provides the device with an on-chip clock source used to control the charge and discharge phases for the coil and lamp. An external capacitor connected between pins 7 and 8 allows the user to vary the oscillator frequency from 32 kHz to 400 kHz . The graphs on page 6 show the relationship between $\mathrm{C}_{\text {OSC }}$ and lamp output voltage. In general, increasing the $\mathrm{C}_{\text {osc }}$ capacitor will increase the lamp output.

The suggested oscillator frequency is 90 kHz ($\mathrm{C}_{\mathrm{osc}}=100 \mathrm{pF}$). The oscillator output is internally divided to create two internal control signals, $\mathrm{f}_{\text {coil }}$ and $f_{\text {LAMP }}$. The oscillator output is internally divided down by 8 flip flops, a 90 kHz signal will be divided into 8 frequencies; $45 \mathrm{kHz}, 22.5 \mathrm{kHz}$, $11.2 \mathrm{kHz}, 5.6 \mathrm{kHz}, 2.8 \mathrm{kHz}, 1.4 \mathrm{kHz}, 703 \mathrm{~Hz}$, and 352 Hz . The third flip flop output (8 kHz) is used to drive the coil (see figure 2 on page 9) and the eighth flip flop output $(250 \mathrm{~Hz})$ is used to drive the lamp. Although the oscillator frequency can be varied to optimize the lamp output, the ratio of $\mathrm{f}_{\text {CoIL }} / \mathrm{f}_{\text {LAMP }}$ will always equal 32 .

The on-chip oscillator of the SP4422A can be overdriven with an external clock source by removing the $\mathrm{C}_{\text {osc }}$ capacitor and connecting a

SP4422A Schematic
clock source to pin 8 . The clock should have a 50% duty cycle and range fromV $\mathrm{DD}^{-1 \mathrm{~V}}$ to ground. An external clock signal may be desirable in order to synchronize any parasitic switching noise with the system clock. The maximum external clock frequency that can be supplied is 400 kHz .

The coil is an external component connected from $\mathrm{V}_{\text {battery }}$ to pin 3 of the SP4422A. Energy is stored in the coil according to the equation $\mathrm{E}_{\mathrm{L}}=1 / 2 \mathrm{LI}^{2}$, where I is the peak current flowing in the inductor. The current in the inductor is time dependent and is set by the "ON" time of the coil switch: $\mathrm{I}=\left(\mathrm{V}_{\mathrm{L}} /\right.$ $\mathrm{L}) \mathrm{t}_{\mathrm{ON}}$, where V_{L} is the voltage across the inductor. At the moment the switch closes, the current in the inductor is zero and the entire supply voltage (minus the $\mathrm{V}_{\text {SAT }}$ of the switch) is across the inductor. The current in the inductor will then ramp up at a linear rate. As the current in the inductor builds up, the voltage across the inductor will decrease due to the resistance of the coil and the "ON" resistance of the switch: $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\text {battery }}-\mathrm{IR}_{\mathrm{L}}-\mathrm{V}_{\mathrm{SAT}}$. Since the voltage across the inductor is decreasing, the current ramp-rate also decreases which reduces the current in the coil at the end of t_{ON} the energy stored in the inductor per coil cycle and therefore the light output. The other important issue is that maximum current (saturation current) in the coil is set by the design and manufacturer of the coil. If the parameters of the application such as $\mathrm{V}_{\text {BATTERY }}, \mathrm{L}$, RL or ton cause the current in the coil to increase beyond its rated $\mathrm{I}_{\mathrm{SAT}}$, excessive heat will be generated and the power efficiency will decrease with no additional light output. The Sipex SP4422A is final tested using a $5 \mathrm{mH} / 18 \Omega$ coil from Hitachi Metals. For suggested coil sources see page 10.

The supply V_{DD} can range from 2.2 to 5.0 V . It is not necessary that $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {BATTERY. }} . \mathrm{V}_{\text {BATTERY }}$ should not exceed max coil current specification. The majority of the current goes through the coil and is typically much greater than $I_{D D}$.

The $\mathrm{f}_{\text {coil }}$ signal controls a switch that connects the end of the coil at pin 3 to ground or to open circuit. The $f_{\text {coll }}$ signal is a 94% duty cycle signal switching at $1 / 8$ the oscillator frequency. For a 64 kHz oscillator $\mathrm{f}_{\text {coll }}$ is 8 kHz . During the time when the $\mathrm{f}_{\text {coll }}$ signal is high, the coil is connected from $\mathrm{V}_{\text {BATTERY }}$ to ground and a charged magnetic field is created in the coil. During the low part of $\mathrm{f}_{\text {coil }}$, the ground connection is switched open, the field collapses and the energy in the inductor is forced to flow toward the high voltage H -bridge switches. $\mathrm{f}_{\text {coll }}$ will send 16 of these charge pulses (see figure 2 on page 9) to the lamp, each pulse increases the voltage drop across the lamp in discrete steps. As the voltage potential approaches its maximum, the steps become smaller (seefigure 1 on page 9).

The H-bridge consists of two SCR structures that act as high voltage switches. These two switches control the polarity of how the lamp is charged. The SCR switches are controlled by the $\mathrm{f}_{\text {LAMP }}$ signal which is the oscillator frequency divided by 256 . For a 64 kHz oscillator, $\mathrm{f}_{\text {LAMP }}=256 \mathrm{~Hz}$.

Typical SP4422A Application Circuit
$\overline{\text { SP4422ADS/15 SP4422A Electroluminescent Lamp Driver }}$ © Copyright 2000 Sipex Corporation

When the energy from the coil is released, a high voltage spike is created triggering the SCR switches. The direction of current flow is determined by which SCR is enabled. One full cycle of the H-bridge will create 16 voltage steps from ground to 80 V (typical) on pins 4 and 5 which are 180 degrees out of phase from each other (see figure 3 on page 9 . A differential representation of the outputs is shown in figure 4 on page 9 .

Layout Considerations

The SP4422A circuit board layout must observe careful analog precautions. For applications with noisy voltage power supplies a $0.1 \mu \mathrm{~F}$ low ESR decoupling capacitor must be connected from $V_{D D}$ to ground. Any high voltage traces should be isolated from any digital clock traces or enable lines. A solid ground plane connection is strongly recommended. All traces to the coil or to the high voltage outputs should be kept as short as possible to minimize capacitive coupling to digital clock lines and to reduce EMI emissions.

Electroluminescent Technology

What is electroluminescence?

An EL lamp is basically a strip of plastic that is coated with a phosphorous material which emits light (fluoresces) when a high voltage ($>40 \mathrm{~V}$) which was first applied across it, is removed or reversed. Long periods of DC voltages applied to the material tend to breakdown the material and reduce its lifetime. With these considerations in mind, the ideal signal to drive an EL lamp is a high voltage sine wave. Traditional approaches to
achieving this type of waveform included discrete circuits incorporating a transformer, transistors, and several resistors and capacitors. This approach is large and bulky, and cannot be implemented in most hand held equipment. Sipex now offers low power single chip driver circuits specifically designed to drive small to medium sized electroluminescent panels. All that is required is one external inductor and capacitor.

Electroluminescent backlighting is ideal when used with LCD displays, keypads, or other backlit readouts. Its main use is to illuminate displays in dim to dark conditions for momentary periods of time. EL lamps typically consume less than LEDs or bulbs making them ideal for battery powered products. Also, EL lamps are able to evenly light an area without creating "hot spots" in the display.

The amount of light emitted is a function of the voltage applied to the lamp, the frequency at which it is applied, the lamp material used and its size, and lastly, the inductor used. There are many variables which can be optimized for specific applications. Sipex supplies characterization charts to aid the designer in selecting the optimum circuit configuration (see page 6).

SP4422A Test Circuit

The following performance curves are intended to give the designer a relative scale from which to optimize specific applications. Absolute measurements may vary depending upon the brand of components chosen.

Lamp Frequency vs $\mathrm{C}_{\text {osc }}$
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil= $9 \mathrm{mH}, 35 \Omega$; Lamp=1 sq. in.

$\mathrm{I}_{\text {total }}$ vs $\mathrm{C}_{\text {osc }}$
$V_{D D}=3.0 \mathrm{~V}$; Coil= $9 \mathrm{mH}, 35 \Omega$; Lamp $=1 \mathrm{sq} . \mathrm{in}$.

Output Voltage vs $\mathrm{C}_{\text {osc }}$
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil= $9 \mathrm{mH}, 35 \Omega$; Lamp=1 sq. in.

Luminance vs $\mathrm{C}_{\text {osc }}$
$V_{D D}=3.0 \mathrm{~V}$; Coil $=9 \mathrm{mH}, 35 \Omega$; Lamp $=1 \mathrm{sq}$. in.

Oscillator Frequency vs $\mathrm{C}_{\text {osc }}$
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil= $9 \mathrm{mH}, 35 \Omega$; Lamp $=1 \mathrm{sq}$. in.

$\mathrm{I}_{\text {total }}$ vs Lamp Size
$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}$; Coil $=9 \mathrm{mH}, 35 \Omega ; \mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}$

Output Voltage vs Lamp Size.
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil $=9 \mathrm{mH}, 35 \Omega ; \mathrm{C}_{\mathrm{osc}}=180 \mathrm{pF}$

Luminance vs Lamp Size.
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil $=9 \mathrm{mH}, 35 \Omega ; \mathrm{C}_{\text {OSC }}=180 \mathrm{pF}$

The following performance curves are intended to give the designer a relative scale from which to optimize specific applications. Absolute measurements may vary depending upon the brand of components chosen.

Lamp Frequency vs. $\mathrm{C}_{\text {osc }}$ $V_{D D}=3.0 \mathrm{~V}$; Coil= $5 \mathrm{mH}, 18 \Omega$; Load=10nF

$\mathrm{I}_{\text {TTTAL }}$ vs. $\mathrm{C}_{\text {osc }}$
$\mathrm{V}_{\text {DD }}^{\text {TOLAL }}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH}, 18 \Omega$; Load= $=10 \mathrm{nF}$

Output Voltage vs. $\mathrm{C}_{\text {osc }}$
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil= $5 \mathrm{mH}, 18 \Omega$; Load $=10 \mathrm{nF}$

Luminance vs. $\mathrm{C}_{\text {osc }}$
$V_{D D}=3.0 \mathrm{~V}$; Coil= $=5 \mathrm{mH}, 18 \Omega$; Load $=10 \mathrm{nF}$

Luminance vs. $\mathrm{V}_{\mathrm{DD}}=$ Vcoil $V_{\text {DD }}=3.0 \mathrm{~V}$; Coil= $5 \mathrm{mH}, 18 \Omega$; Load=10nF

$\mathrm{I}_{\text {TOTAL }}$ vs. Lamp Size
$V_{D D}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH}, 18 \Omega ; \mathrm{C}_{\text {osc }}=100 \mathrm{pF}$

Output Voltage vs. Lamp Size.
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil= $5 \mathrm{mH}, 18 \Omega ; \mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF}$

Luminance vs. Lamp Size.
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH}, 18 \Omega ; \mathrm{C}_{\text {osc }}=100 \mathrm{pF}$

The following performance curves are intended to give the designer a relative scale from which to optimize specific applications. Absolute measurements may vary depending upon the brand of components chosen.

Peak to Peak Voltage vs. Temperature $\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega$; $\mathrm{C}_{\text {osc }}=100 \mathrm{pF}$; Load=10nF

Peak to Peak Voltage vs. Temperature $\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega ; \mathrm{C}_{\text {osc }}=100 \mathrm{pF} ;$ Load $=10 \mathrm{nF}$

Total Supply Current vs. Temperature $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega$; $\mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF}$; Load $=10 \mathrm{nF}$

Lamp Frequency vs. Temperature
$V_{D D}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega ; \mathrm{C}_{\text {osc }}=100 \mathrm{pF} ;$ Load $=10 \mathrm{nF}$

Lamp Frequency vs. Temperature
$\mathrm{V}_{\text {DD }}=2.2 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega ; \mathrm{C}_{\text {osc }}=100 \mathrm{pF}$; Load $=10 \mathrm{nF}$

Light Output vs. Temperature
$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}$; Coil $=5 \mathrm{mH} / 18 \Omega ; \mathrm{C}_{\text {OSc }}=100 \mathrm{pF}$; Lamp $=6$ sq.in.

Figure 1. EL output voltage in discrete steps at EL1 output

Figure 2. Voltage pulses released from the coil to the EL driver circuitry

Figure 3. EL voltage waveforms from the EL1 and EL2 outputs

Figure 4. EL differential output waveform of the EL1 and EL2 outputs

The coil part numbers presented in this data sheet have been qualified as being suitable for the SP4422A product. Contact Sipex for applications assistance in choosing coil values not listed in this data sheet.

CTC Coils LTD Hong Kong
Ph: 85-2695-4889
Fax: 85-2695-1842
Mark Technologies:
North American Stocking
distributor for Sankyo and CTC
Ph: 905-891-0165
Fax: 905-891-8534

Model Numbers: CH5070AS-203K-006 (20mH, 65 $)$
Sipex Number: S51208-M-1021-Sipex

HITACHI METALS Ltd. Japan	HITACHI METALS Hong Kong	
Ph: 3-3284-4936	Ph: 852-2724-4183	
Fax: 3-3287-1945	Fax: 852-2311-2093	
HITACHI METALS Singapore	HITACHI METALS Chicago, IL	
Ph: 65-222-3077	Ph: 847-364-7200	
Fax: 65-222-5232	Fax: 847-364-7279	
Part Numbers:		
MD735L902B $(9 \mathrm{mH} \pm 20 \% 41 \Omega)$		
MD735L502A $(5 \mathrm{mH} \pm 20 \% 19.8 \Omega)$		
(All Dimensions in mm)		

$\left.\begin{array}{lll}\hline \text { Toko Inc. Japan } & \begin{array}{l}\text { Toko Inc. Singapore } \\ \text { Ph: } 03-3727-161\end{array} & \begin{array}{l}\text { Toko Korea } \\ \text { Fax: } 03-3727-1176\end{array} \\ \text { Ph: } 255-4000 \\ \text { Fax: } 250-8134\end{array}\right)$

EL polarizers/transflector manufacturers

Nitto Denko
San Jose, CA
Phone: (510) 445-5400

Astra Products
Baldwin, NJ
Phone: (516) 223-7500
Fax: (516) 868-2371

EL Lamp manufacturers

Metro Mark/Leading Edge
Minnetonka, MN
Phone: (800) 680-5556
Phone: (612) 912-1700
Midori Mark Ltd.
1-5 Komagata 2-Chome
Taita-Ku 111-0043 Japan
Phone: 81-03-3848-2011
Luminescent Systems Inc. (LSI)
Lebanon, NH
Phone: (603) 643-7766
Fax: (603) 643-5947

NEC Corporation
Tokyo, Japan
Phone: (03) 3798-9572
Fax: (03) 3798-6134
Seiko Precision
Tokyo, Japan
Phone: (03) 5610-7089
Fax: .) 5610-7177
Gunze Electronics
2113 Wells Branch Parkway
Austin, TX 78728
Phone: (512) 752-1299
Fax: (512) 252-1181

All package dimensions in inches

95 SP4422ACN per tube, no minimum quantity 50 SP4422ACU per tube

	NSOIC-8 13" reels: $\mathbf{P}=\mathbf{8 m m}, \mathrm{W}=\mathbf{1 2 m m}$ μ SOIC-8 13" reels: $\mathbf{P}=\mathbf{8 m m}, \mathrm{W}=\mathbf{1 2 m m}$		
Pkg.	Minimum qty per reel	Standard qty per reel	Maximum qty per reel
ACN	500	2500	3000
ACU	500	2500	3000

ORDERING INFORMATION		
Model	Operating Temperature Range	Package Type
SP4422ACN $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$... 8-Pin NSOIC
SP4422ACU $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$... 8-Pin μ SOIC
SP4422ACX	... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Die
SP4422ANEB N/A	Evaluation Board
SP4422AUEB N/A	Evaluation Board

Please consult the factory for pricing and availability on a Tape-On-Reel option.

Sipex

SIGNALPROCESSINGEXCEUENCE

Sipex Corporation
Headquarters and
Sales Office
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-9001
e-mail: sales@sipex.com
Sales Office
233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600

