OVERVIEW

The SM5876AM is a 3rd-order $\Sigma \Delta$, 2 -channel D/A converter LSI for CD-ROM digital audio reproduction equipment. It incorporates an 8 -times oversampling digital filter, deemphasis filter, attenuator, and soft mute circuits built-in., using NPC's Molybde-num-gate CMOS technology.

The SM5876AM operates from a 2.7 to 5.5 V supply, and is available in 24-pin SSOPs.

FEATURES

- System clock
- 768fs (33.8688MHz)
- 384fs (16.9344 MHz)
- Crystal oscillator circuit built-in
- Infinity-zero detector circuit built-in
- MSB first, rear-packed serial data input format (≤ 64 fs bit clock)
- 8-times oversampling digital filter
- 32 dB stopband attenuation
- $\pm 0.05 \mathrm{~dB}$ passband ripple
- -0.34 dB passband correction for 70 kHz LPF
- 3-line microcontroller interface for output mode and attenuator control settings
- 16 output modes
- Deemphasis filter operation
- 36 dB stopband attenuation
- -0.09 to +0.23 dB deviation
- -0.34 dB passband correction for 70 kHz LPF
- Attenuator
- 8-bit attenuator (linear 256 steps)
- Independent left/right-channel set function
- Soft mute function (approx. 1024/fs mute time)
- $\Sigma \Delta 2$-channel D/A converter
- 3rd-order noise shaper
- 32fs oversampling
- 44.1 kHz sampling frequency
- 2.7 to 5.5 V operating supply voltage range (4.5 to 5.5 V operating supply voltage range with 768 fs system clock)
- 24-pin SSOP
- Molybdenum-gate CMOS process

PINOUT

PACKAGE DIMENSIONS

Unit: mm

24-pin SSOP

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O	
1	MLEN	Ip	Microcontroller control latch clock input
2	CKSL	Ip	768fs/384fs clock select. 768fs when HIGH, and 384fs when LOW.
3	CKO	O	Oscillator clock buffer output
4	DVSS		Digital ground pin
5	BCKI	Ip	Data bit clock input pin
6	DI	Ip	Serial data input pin
7	DVDD		Digital supply pin
8	LRCI	Ip	Sample data rate (fs) clock input pin. Left channel when HIGH, and right channel when LOW.
9	TSTN	Ip	Test input pin
10	LO	O	Left-channel analog output (+)
11	AVDDL		Left-channel analog supply pin
12	LON	O	Left-channel analog output (-)
13	AVSS		Analog ground pin
14	RON	O	Right-channel analog output (-)

SM5876AM

Number	Name	I/O	Description
15	AVDDR		Right-channel analog supply pin
16	RO	O	Right-channel analog output (+)
17	XVDD		Crystal oscillator supply pin
18	XTI	I	Crystal oscillator or external clock input pin
19	XTO	0	Crystal oscillator output pin
20	XVSS		Crystal oscillator ground pin
21	MUTEO	O	Infinity-zero detector output (analog mute control)
22	RSTN	Ip	Reset pin. Reset when LOW.
23	MDT	Ip	Microcontroller control data input pin
24	MCK	Ip	Microcontroller control clock input pin

I: INPUT O: OUTPUT Ip: Input with pull-up Registor

SPECIFICATIONS

Absolute Maximum Ratings

$\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV} \mathrm{DDR}$

Parameter	Symbol	Rating	Unit
Supply voltage range	$\mathrm{DV}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{DD}}, \mathrm{XV}_{\mathrm{DD}}$	-0.3 to 7.0	V
Input voltage range ${ }^{1}$	$\mathrm{~V}_{\mathrm{IN1} 1}$	$\mathrm{DV}_{\mathrm{SS}}-0.3$ to $\mathrm{DV}_{\mathrm{DD}}+0.3$	V
XTI input voltage range	V_{IN}	$\mathrm{XV}_{\mathrm{SS}}-0.3$ to $\mathrm{XV}_{\mathrm{DD}}+0.3$	V
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Power dissipation	P_{D}	250	mW
Soldering temperature	$\mathrm{T}_{\text {sld }}$	255	${ }^{\circ} \mathrm{C}$
Soldering time	$\mathrm{t}_{\text {sld }}$	10	s

1. Pins MLEN, CKSL, BCKI, DI, LRCI, TSTN, MCK, MDT.

Also applicable during supply switching.

Recommended Operating Conditions

5 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}$

Parameter	Symbol	Rating	Unit
Supply voltage range	DV $\mathrm{D}_{\text {D }}, \mathrm{AV}_{\text {DD }}, \mathrm{XV}_{\mathrm{DD}}$	4.5 to 5.5	V
Supply voltage variation	$D V_{D D}-X V_{D D}$, $D V_{D D}-A V_{D D}$, $X V_{D D}-A V_{D D}$, $D V_{S S}-X V_{S S}$, $\mathrm{DV}_{S S}-\mathrm{AV}_{S S}$, $\mathrm{XV}_{\mathrm{SS}}-\mathrm{AV}_{\mathrm{SS}}$	± 0.1	V
Operating temperature range	$\mathrm{T}_{\text {opr }}$	-40 to 85	${ }^{\circ} \mathrm{C}$

3 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}, \mathrm{CKSL}=\mathrm{LOW}(384 \mathrm{fs})$

Parameter	Symbol	Rating	Unit
Supply voltage range	DV ${ }_{\text {DD }}, ~ A V_{D D}, \mathrm{XV}_{\mathrm{DD}}$	2.7 to 4.5	V
Supply voltage variation	$D V_{D D}-X V_{D D}$, $D V_{D D}-A V_{D D}$, $X V_{D D}-A V_{D D}$, $D V_{S S}-X V_{S S}$, $D V_{S S}-A V_{S S}$, $\mathrm{XV}_{S S}-\mathrm{AV}_{S S}$	± 0.1	V
Operating temperature range	$\mathrm{T}_{\text {opr }}$	-20 to 70	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

5 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}$, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DVDD digital supply current ${ }^{1}$	IDDD		-	15	25	mA
XVDD system clock supply current ${ }^{1}$	IDDX		-	6	10	mA
AVDD analog supply current ${ }^{1}$	$I_{\text {DDA }}$	Total current	-	1	2	mA
XTI HIGH-level input voltage	$\mathrm{V}_{\mathrm{IH} 1}$	Clock input	$0.7 \mathrm{XV}_{\text {DD }}$	-	-	V
XTI LOW-level input voltage	$\mathrm{V}_{\text {IL1 }}$	Clock input	-	-	$0.3 \mathrm{XV}_{\text {DD }}$	V
XTI AC-coupled input voltage	$\mathrm{V}_{\text {INAC }}$		$0.3 \mathrm{XV}_{\mathrm{DD}}$	-	-	V_{p-p}
HIGH-level input voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{IH} 2}$		2.4	-	-	V
LOW-level input voltage ${ }^{2}$	$\mathrm{V}_{\text {IL2 }}$		-	-	0.5	V
HIGH-level output voltage ${ }^{3}$	$\mathrm{V}_{\text {OHA }}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{AV}_{\mathrm{DD}}-0.4$	-	-	V
LOW-level output voltage ${ }^{3}$	$\mathrm{V}_{\text {OLA }}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	-	-	0.4	V
CKO HIGH-level output voltage	$\mathrm{V}_{\mathrm{OHC}}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{DV}_{\mathrm{DD}}-0.4$	-	-	V
CKO LOW-level output voltage	$\mathrm{V}_{\text {OLC }}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	-	-	0.4	V
XTI HIGH-level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\text {IN }}=X \mathrm{~V}_{\text {DD }}$	-	12	25	$\mu \mathrm{A}$
XTI LOW-level input current	$\mathrm{I}_{\text {L1 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	12	25	$\mu \mathrm{A}$
LOW-level input current ${ }^{2}$	ILL2	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	12	25	$\mu \mathrm{A}$
Input leakage current ${ }^{2}$	$\mathrm{I}_{\text {LH }}$	$\mathrm{V}_{\text {IN }}=\mathrm{DV} \mathrm{DD}$	-	-	1.0	$\mu \mathrm{A}$

1. $D V_{D D}=A V_{D D}=X V_{D D}=5 \mathrm{~V}, C K S L=H I G H$ (768fs), $X T I$ clock input frequency $f_{X T I}=33.8688 \mathrm{MHz}$, no output load, NPC-standard input data pattern. 2. Pins MLEN, CKSL, BCKI, DI, LRCI, TSTN, MCK, MDT.
2. Pins LO, LON, RO, RON,MUTEO.

3 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=2.7$ to $4.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV} \mathrm{D}_{\mathrm{DDR}}$, $\mathrm{T}_{\mathrm{a}}=-20$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
DVDD digital supply current ${ }^{1}$	IDDD		-	6	9	mA
XVDD system clock supply current ${ }^{1}$	$I_{\text {DDX }}$		-	1.5	3	mA
AVDD analog supply current ${ }^{1}$	IDDA	Total current	-	0.5	1	mA
XTI HIGH-level input voltage	$\mathrm{V}_{\mathrm{HH} 1}$	Clock input	$0.7 \mathrm{XV} \mathrm{V}_{\text {D }}$	-	-	V

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
XTI LOW-level input voltage	$\mathrm{V}_{\text {IL } 1}$	Clock input	-	-	0.3 XV VD	V
XTI AC-coupled input voltage	$\mathrm{V}_{\text {INAC }}$		$0.3 \mathrm{XV}_{\mathrm{DD}}$	-	-	V_{p-p}
HIGH-level input voltage ${ }^{2}$	$\mathrm{V}_{\text {IH2 }}$		2.4	-	-	V
LOW-level input voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{IL} 2}$		-	-	0.5	V
HIGH-level output voltage ${ }^{3}$	$\mathrm{V}_{\text {OHA }}$	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	$\mathrm{AV}_{\mathrm{DD}}-0.4$	-	-	V
LOW-level output voltage ${ }^{3}$	$\mathrm{V}_{\text {OLA }}$	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$	-	-	0.4	V
CKO HIGH-level output voltage	$\mathrm{V}_{\mathrm{OHC}}$	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	DV $\mathrm{DD}^{-0.4}$	-	-	V
CKO LOW-level output voltage	$\mathrm{V}_{\text {OLC }}$	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$	-	-	0.4	V
XTI HIGH-level input current	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{1 \mathrm{~N}}=X \mathrm{~V}_{\mathrm{DD}}$	-	4	15	$\mu \mathrm{A}$
XTI LOW-level input current	ILL1	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	4	15	$\mu \mathrm{A}$
LOW-level input current ${ }^{2}$	ILL2	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	4	15	$\mu \mathrm{A}$
Input leakage current ${ }^{2}$	${ }_{\text {LH }}$	$\mathrm{V}_{\text {IN }}=\mathrm{DV}_{\text {DD }}$	-	-	1.0	$\mu \mathrm{A}$

1. $\mathrm{DV}_{D D}=A \mathrm{~V}_{\mathrm{DD}}=\mathrm{XV} \mathrm{DD}=3 \mathrm{~V}$, CKSL $=\mathrm{LOW}$ (384fs), XTI clock input frequency $f_{\mathrm{XTI}}=16.9344 \mathrm{MHz}$, no output load, NPC-standard input data pattern. 2. Pins MLEN, CKSL, BCKI, DI, LRCI, TSTN, MCK, MDT.
2. Pins LO, LON, RO, RON,MUTEO.

AC Electrical Characteristics

5 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}$, $\mathrm{T}_{\mathrm{a}}=-40$ to $85^{\circ} \mathrm{C}$
3 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=2.7$ to $4.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV} \mathrm{V}_{\mathrm{DDR}}$, $\mathrm{T}_{\mathrm{a}}=-20$ to $70^{\circ} \mathrm{C}, \mathrm{CKSL}=\mathrm{LOW}$ (384fs system clock)

System clock (XTI)

Crystal Oscillator

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Oscillator frequency	$\mathrm{f}_{\text {OSc }}$	768fs	8.0	33.8688	35.6	MHz
		384fs	4.0	16.9344	17.8	MHz

External clock input

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
HIGH-level clock pulsewidth	$\mathrm{t}_{\text {CWH }}$	768fs	13.0	14.75	62.5	ns
		384fs	26.0	29.5	125	ns
LOW-level clock pulsewidth	${ }_{\text {t }}^{\text {cWL }}$	768fs	13.0	14.75	62.5	ns
		384fs	26.0	29.5	125	ns
Clock pulse cycle	$t_{\text {XI }}$	768fs	28.0	29.5	125	ns
		384fs	56.0	59.0	250	ns

XTI input clock

Serial input (BCKI, DI, LRCI)

Parameter	Symbol	Rating			Unit
		min	typ	max	
BCKI HIGH-level pulsewidth	$t_{\text {BCWH }}$	50	-	-	ns
BCKI LOW-level pulsewidth	$t_{\text {BCWL }}$	50	-	-	ns
BCKI pulse cycle	$t_{B C Y}$	1/(64fs)	-	-	ns
DI setup time	$t_{\text {DS }}$	50	-	-	ns
DI hold time	$t_{\text {DH }}$	50	-	-	ns
Last BCKI rising edge to LRCI edge	$t_{\text {BL }}$	50	-	-	ns
LRCI edge to first BCKI rising edge	${ }_{\text {LB }}$	50	-	-	ns

Serial input timing

Control input (MCK, MDT, MLEN)

Parameter	Symbol	Rating			Unit
		min	typ	max	
MCK HIGH-level pulsewidth	$t_{\text {MCWH }}$	140	-	-	ns
MCK LOW-level pulsewidth	$\mathrm{t}_{\text {MCWL }}$	140	-	-	ns
MCK pulse cycle	$\mathrm{t}_{\mathrm{MCY}}$	280	-	-	ns
MDT setup time	$\mathrm{t}_{\text {MDS }}$	100	-	-	ns
MDT hold time	$\mathrm{t}_{\text {MDH }}$	100	-	-	ns
MLEN setup time	$\mathrm{t}_{\text {MLS }}$	1/(192fs) +20	-	-	ns
MLEN hold time	$\mathrm{t}_{\text {MLH }}$	1/(192fs) +20	-	-	ns
MLEN level pulsewidth	$\mathrm{T}_{\text {MLH }}$	1/(192fs) +20	-	-	ns
Rise time	t_{r}	-	-	50	ns
Fall time	t_{f}	-	-	50	ns

Control input timing

Reset Input (RSTN)

Parameter	Symbol	Rating			Unit
		min	typ	max	
RSTN LOW-level pulsewidth after supply rising edge	$t_{\text {RSTN }}$	50	-	-	ns

Theoretical Filter Characteristics

Deemphasis OFF overall characteristics

Parameter	Frequency band		Attenuation (dB)		
	\mathbf{f}	$@ \mathrm{fs}=44.1 \mathrm{kHz}$	$\mathbf{m i n}$	typ	\max
Passband ripple	0 to $0.4535 f \mathrm{~s}$	0 to 20.0 kHz	-0.05	-	+0.05
Stopband attenuation	$0.5465 f \mathrm{f}$ to 7.4535 fs	24.1 to 328.7 kHz	32	-	-
Built-in analog LPF compensation	$0.4535 f \mathrm{~s}$	20.0 kHz	-	-0.34	-

Overall frequency characteristic (deemphasis OFF)

Passband characteristic (deemphasis OFF)

Deemphasis ON overall characteristics

Parameter	Frequency band		Attenuation (dB)		
	f	@ fs = 44.1 kHz	min	typ	max
Deviation from ideal deemphasis filter characteristics	0 to 0.4535fs	0 to 20.0 kHz	-0.09	-	+0.23
Stopband attenuation	$0.5465 f s$ to $7.4535 f s$	24.1 to 328.7 kHz	36	-	-
Built-in analog LPF compensation	0.4535 fs	20.0 kHz	-	-0.34	-

Overall frequency characteristic (deemphasis ON)

Passband characteristic (deemphasis ON)

AC Analog Characteristics

5 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}$,
$\mathrm{CKSL}=0 \mathrm{~V}$, deemphasis OFF, crystal oscillator frequency $\mathrm{f}_{\mathrm{OSC}}=16.9344 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Total harmonic distortion	THD + N	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	0.005	0.01	\%
LSI output level ${ }^{1}$	$\mathrm{V}_{\text {out1 }}$	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	1.53	-	$\mathrm{V}_{\text {rms }}$
Evaluation board output level	$\mathrm{V}_{\text {out2 }}$	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	1.8	2.0	2.2	$\mathrm{V}_{\text {rms }}$
Dynamic range	D.R	$1 \mathrm{kHz},-60 \mathrm{~dB}$	88	92	-	dB
Signal-to-noise ratio ${ }^{2}$	S/N	$1 \mathrm{kHz}, 0 /-\infty \mathrm{dB}$	88	92	-	dB
Channel separation	Ch. Sep	$1 \mathrm{kHz},-\infty / 0 \mathrm{~dB}$	84	86	-	dB

1. The LSI output level $=0.3058 \mathrm{AV}$ DD Vrms.
2. Signal-to-noise is measured following a device reset, with DATA $=0(\mathrm{DI}=\mathrm{LOW})$. Under these conditions, the signal-to-noise ratio includes noise-shaper noise.

3 V operation: $\mathrm{DV}_{\mathrm{SS}}=\mathrm{AV}_{\mathrm{SS}}=\mathrm{XV}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=\mathrm{XV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{AV}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DDL}}=\mathrm{AV}_{\mathrm{DDR}}$,
CKSL $=0 \mathrm{~V}$, deemphasis OFF, crystal oscillator frequency $\mathrm{f}_{\mathrm{OSC}}=16.9344 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Total harmonic distortion	THD + N	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	0.007	-	\%
LSI output level ${ }^{1}$	$\mathrm{V}_{\text {out1 }}$	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	0.92	-	$\mathrm{V}_{\text {rms }}$
Evaluation board output level	$V_{\text {out2 }}$	$1 \mathrm{kHz}, 0 \mathrm{~dB}$	-	1.2	-	$\mathrm{V}_{\text {rms }}$
Dynamic range	D.R	$1 \mathrm{kHz},-60 \mathrm{~dB}$	-	90	-	dB
Signal-to-noise ratio ${ }^{2}$	S/N	$1 \mathrm{kHz}, 0 /-\infty \mathrm{dB}$	-	90	-	dB
Channel separation	Ch. Sep	$1 \mathrm{kHz},-\infty / 0 \mathrm{~dB}$	-	82	-	dB

1. The LSI output level $=0.3058 \mathrm{AV}$ DD Vrms.
2. Signal-to-noise is measured following a device reset, with DATA $=0$ ($\mathrm{DI}=\mathrm{LOW}$). Under these conditions, the signal-to-noise ratio includes noise-shaper noise.

AC Measurement Circuit and Conditions

Measurement circuit block diagram

Measurement conditions

Parameter ${ }^{1}$	Symbol	3346A left/right-channel selector switch	AD725C distortion analyzer with built-in filter
Total harmonic distortion	THD + N	THRU	20 kHz lowpass filter ON 400 Hz highpass filter OFF
Output level	$V_{\text {out }}$		
Dynamic range	DR	D-RANGE	
Signal-to-noise ratio	S/N	THRU	20 kHz lowpass filter ON 400 Hz highpass filter OFF JIS A filter ON
Channel separation	Ch. Sep	THRU	20 kHz lowpass filter ON 400 Hz highpass filter OFF

1. Pins LO and RO should have an output load of $10 \mathrm{k} \Omega$ (min).

Measurement circuit

FUNCTIONAL DESCRIPTION

System Clock/Speed Switching (XTI, XTO, CKO, CKSL)

The system clock on XTI can be set to run at one of two speeds, 384 fs (normal speed) or 768 fs (doublespeed), where fs is the input frequency on LRCI. The speed for CD playback is set by the input level on CKSL, as shown in table 1.

Table 1. System clock select

Parameter	Symbol	CKSL	
		HIGH	LOW
XTI input clock frequency	f_{XI} $(=1 / \mathrm{txI})$	768 fs	384 fs
CD playback XTI frequency	f_{XI}	33.8688 MHz at $\mathrm{fs}=44.1$ kHz	16.9344 MHz at $\mathrm{fs}=44.1$ kHzz
CKO output clock frequency	f_{CO}	768 fs	384 fs
Internal system clock period	$\mathrm{T}_{\mathrm{SYS}}$	$2 \mathrm{t}_{\mathrm{XI}}$	t_{XI}

System Reset (RSTN)

The device should be reset in the following cases.

- At power ON
- When LRCI and/or the system clock XTI stop, or other abnormalities occur.
- When switching the XTI clock 768fs $\Leftrightarrow 384 \mathrm{fs}$.

Note that the input clock accuracy and signal-tonoise ratio greatly influence the AC analog characteristics. Accordingly, care should be taken to ensure that the clock is free from jitter.

The system clock can be controlled by a crystal oscillator comprising a crystal connected between XTI and XTO and the built-in CMOS inverter. Alternatively, an external system clock can be input on XTI. As the internal CMOS inverter has a feedback resistor, the external clock can be AC coupled to XTI. The system clock is output on CKO.

The device is reset by applying a LOW-level pulse on RSTN. At system reset, the internal arithmetic operation and output timing counter are synchronized on the next LRCI rising edge, as shown in figure 1.

Figure 1. System reset timing

Output mute

At power-ON reset (when RSTN goes LOW), the outputs LO (LON) and RO (RON) enter the output mute state. Mute is released on the 9th LRCI rising edge after RSTN goes HIGH. During this cycle, the timing reset can cause output noise to be generated.

Infinity-Zero Detector (analog mute control) Output (MUTEO)

The SM5876AM outputs an infinity-zero detection output signal under the following circumstances.

1. When an infinity-zero occurs on both the left and right channels.
2. When an infinity-zero occurs in the input data for the channel set by the output mode setting.
3. When the output mode setting is muting for both the left and right channels.
4. When the attenuation counter for both the left and right channels is $0(-\infty)$.

Also from immediately after a reset input on RSTN until the initialization cycle finishes and the first data cycle occurs.

In cases 1 and 2, from when an infinity-zero is detected a period of $2^{14} \times(1 / \mathrm{fs}) \approx 0.37$ seconds takes place before MUTEO goes HIGH.
In cases 3 and 4, from when the attenuation counter value is 0 a period of $2^{14} \times(1 / \mathrm{fs}) \approx 0.37$ seconds takes place before MUTEO goes HIGH.

Figure 2. MUTEO output timing

Audio Data Input (DI, BCKI, LRCI)

The digital audio data is input on DI in MSB-first, 2 s -complement, 16 -bit serial format.

Serial data bits are read into the SIPO register (serial-to-parallel converter register) on the rising edge of the bit clock BCKI.

The arithmetic operation and output timing are independent of the input timing. Accordingly, after a reset, as long as the clock frequency ratio between LRCI and the system clock XTI is maintained, phase differences between LRCI, BCKI and the system clock XTI do not affect the functional operation. Also, any jitter present on the data input clock does not appear as output pulse jitter.

The bit clock frequency on BCKI should be between 32 fs and 64fs.

Operating Modes (MLEN, MDT, MCK)

The microcontroller data is used to control the following parameters.

Digital attenuator

Digital attenuation is controlled by attenuation data input on MDT.

The attenuation operation is determined by a mathematical operation of the internal 8 -bit up/down counter's output data on the signal data. The 8 -bit up/down counter, when attenuation data is input on

MDT, can control the left and right channels either independently or together (independent when the MDT attenuation control flag is LOW, and together when HIGH).

The left-channel counter contents DATTL and the right-channel counter contents DATTR control the left-channel gain and right-channel gain, respectively, using the following equations.

Left-channel gain $=20 \times \log \left(\frac{\text { DATTL }}{255}\right)[\mathrm{dB}]$

Right-channel gain $=20 \times \log \left(\frac{\text { DATTR }}{255}\right)[\mathrm{dB}]$

After system reset initialization, independent left/right-channel attenuation mode with the maximum gain of 0 dB is the default.

Deemphasis filter (MDT DEM flag)

The built-in digital deemphasis filter is designed to operate at 44.1 kHz . Deemphasis is ON when the DEM flag is HIGH, and OFF when the DEM flag is LOW. After reset, deemphasis OFF is the default.

Output mode setting (MDT 4-bit data)

The left-channel and right-channel outputs can be set to any one of 16 different modes, as shown in table 2.

Table 2. Output mode control

PLO	PL1	PL2	PL3	Left-channel output	Right-channel output	Notes
0	0	0	0	Mute	Mute	Mute
0	0	0	1	Mute	R	
0	0	1	0	Mute	L	
0	0	1	1	Mute	$(L+R) / 2$	
0	1	0	0	R	Mute	
0	1	0	1	R	R	
0	1	1	0	R	L	Reverse
0	1	1	1	R	$(L+R) / 2$	
1	0	0	0	L	Mute	
1	0	0	1	L	R	Stereo
1	0	1	0	L	L	
1	0	1	1	L	$(L+R) / 2$	
1	1	0	0	$(L+R) / 2$	Mute	
1	1	0	1	$(L+R) / 2$	R	
1	1	1	0	$(L+R) / 2$	L	
1	1	1	1	$(L+R) / 2$	$(L+R) / 2$	

"Stereo" is the default after system reset.
"Mute" refers to soft muting.

Soft mute (output mode setting)

The channel output muting set by the output mode control 4-bit data is soft mute mode.

The attenuation counter output decrements by 1 step at a time, reducing the gain. The signal is completely muted after a time of (1024/fs), which corresponds to approximately 23.2 ms when $\mathrm{fs}=44.1 \mathrm{kHz}$.

Conversely, when soft mute is released using the output mode control, the attenuation counter output increments by 1 step at a time, increasing the gain. The time taken to return to 0 dB from full muting is also (1024/fs).

When an attenuation value is set, the output gain decreases from the value set by the attenuation data until the gain is $-\infty$. Similarly for mute release, the output gain increases from the current value until the gain is 0 dB .

Soft mute operation is shown in figure 3.

Upon system reset initialization, mute is released, which corresponds to the maximum gain of 0 dB .

Figure 3. Soft mute operation example

Attenuator control (ATC flag)

The attenuator control (ATC) flag is input on MDT. When the ATC flag is HIGH, the left-channel and right-channel attenuator data is common. In this mode, the left-channel data is used for both channels.

TIMING DIAGRAMS

Input Timing
(DI, BCKI, LRCI)

(MDT, MCK, MLEN)

TYPICAL APPLICATIONS

Input Interface Circuit

Note that the output analog characteristics and other specifications are not guaranteed for a particular format or application circuit.

Output Analog Processing Circuit

(Left channel only is shown.)

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.
NPC
4-3, 2-chome Fukuzumi
Koutou-ku, Tokyo 135-8430, Japan
Telephone: 03-3642-6661
Facsimile: 03-3642-6698

