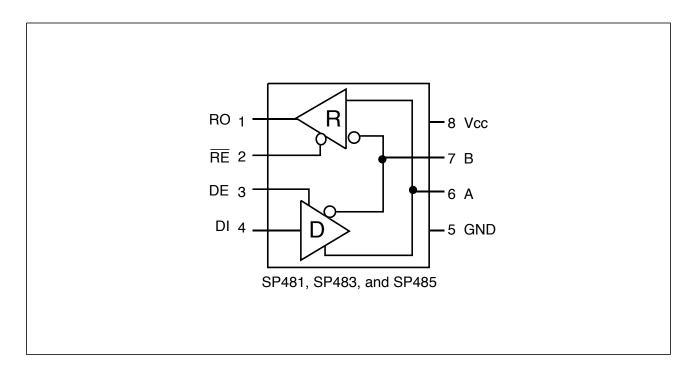


SP481/SP483/SP485

Low Power Half-Duplex RS-485 Transceivers

FEATURES


- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable
- Slew Rate Limited Driver for Low EMI (SP483)
- Low Power Shutdown Mode (SP481 and SP483)
- RS-485 and RS-422 Drivers/Receivers

SP481, SP483, SP485 Pinout (Top View)

DESCRIPTION

The **SP481**, **SP483**, and the **SP485** are a family of half-duplex transceivers that meet the requirements of RS-485 and RS-422. Their BiCMOS design allows low power operation without sacrificing performance. The **SP481** and **SP485** meet the requirements of RS-485 and RS-422 up to 5Mbps. Additionally, the **SP481** is equipped with a low power Shutdown mode. The **SP483** is internally slew rate limited to reduce EMI and can meet the requirements of RS-485 and RS-422 up to 250kbps. The **SP483** is also equipped with a low power Shutdown mode.

ABSOLUTE MAXIMUM RATINGS

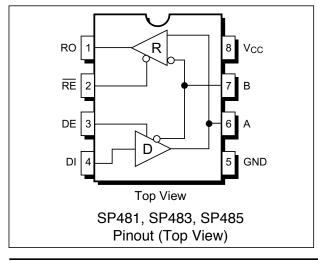
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}	±12V
Input Voltages	
Logic	0.3V to (V _{cc} +0.5V)
	0.3V to (V _{cc} +0.5V)
Receivers	±15V
Output Voltages	
Logic	0.3V to (V _{cc} +0.5V)
Drivers	±15V
Receivers	0.3V to (V _{cc} +0.5V)
Storage Temperature	0.3V to (V _{cc} +0.5V) 65°C to+150°C
	500mW

ELECTRICAL CHARACTERISTICS

 $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 5V \pm 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP483/SP485 DRIVER					
DC Characteristics					
Differential Output Voltage	GND		V _{CC}	Volts	Unloaded; $R = \infty$; see figure 1
Differential Output Voltage	2		V _{CC}	Volts	with load; $R = 50\Omega$; (RS422);
					see figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	with load; $R = 27\Omega$; (RS485); see figure 1
Change in Magnitude of Driver					
Differential Output Voltage for					
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Driver Common-Mode					
Output Voltage			3	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Input High Voltage	2.0			Volts	Applies to DE, DI, RE
Input Low Voltage			0.8	Volts	Applies to DE, DI, RE
Input Current			±10	μΑ	Applies to DE, DI, RE
Driver Short-Circuit Current					
V _{OUT} = HIGH	35		250	mA	$-7V \le V_O \le +12V$
V _{OUT} = LOW	35		250	mA	-7V ≤ V _O ≤ +12V
SP481/SP485 DRIVER					
AC Characteristics					
Maximum Data Rate	5			Mbps	$\overline{RE} = 5V$, DE = 5V
Driver Input to Output		30	60	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
Briver input to Gutput					see figures 3 and 6
Driver Input to Output		30	60	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
					see figures 3 and 6
Driver Skew		5	10	ns	see figures 3 and 6,
					$t_{SKEW} = I t_{DPLH} - t_{DPHL} I$ From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver Rise or Fall Time		15	40	ns	From 10% to 90%; $R_{\text{DIEE}} = 54\Omega$,
					$C_{L1} = C_{L2} = 100 \text{pF}$; see figures 3 and 6
Driver Enable to Output High		40	70	ns	C _L = 100pF; see figures 4 & 7; S ₂ closed
Driver Enable to Output Low		40	70	ns	C ₁ = 100pF; see figures 4 & 7; S ₁ closed
Driver Disable Time from Low		40	70	ns	C ₁ = 15pF; see figures 2 & 9; S ₁ closed
Driver Disable Time from High		40	70	ns	C _L = 15pF; see figures 2 & 9; S ₂ closed
00404/00400/00405 0505					
SP481/SP483/SP485 RECEIVE	.K ⊦				
DC Characteristics					71/ 1/ 1/01/
Differential Input Threshold		4.0	+0.2	Volts	-7V ≤ V _{CM} ≤ +12V
Input Hysteresis		10	_	mV	V _{CM} = 0 V
Output Voltage High	2.4		5	Volts	$I_0 = -4\text{mA}, V_{1D} = +200\text{mV}$
Output Voltage Low	0.0		0.4	Volts	$I_O^{\circ} = +4\text{mA}, V_{ID}^{\circ} = -200\text{mV}$
Three-State (High Impedance)			4		0.4V = V = 2.4V: DE = 5V
Output Current		15	±1	μA	$0.4V \le V_0 \le 2.4V; \overline{RE} = 5V$
Input Resistance		15	1 _0	kΩ mA	$-7V \le V_{CM} \le +12V$ DE = 0V, $V_{CC} = 0V$ or 5.25V, $V_{IN} = 12V$
Input Current (A, B); V _{IN} = 12V Input Current (A, B); V _{IN} = -7V			+1.0 -0.8	mA	DE = 0V, $V_{CC} = 0V$ of 5.25V, $V_{IN} = 12V$ DE = 0V, $V_{CC} = 0V$ or 5.25V, $V_{IN} = -7V$
Short-Circuit Current			95	mA	$0V \le V_{CM} \le V_{CC}$
Short Oncart Ourient				'''^	O A = A CW = A CC


 T_{MIN} to T_{MAX} and $V_{\text{CC}} = 5V \pm 5\%$ unless otherwise noted.

T_{MIN} to T_{MAX} and $V_{CC} = 5V \pm 5\%$ unless otherw				T	CONDITIONS
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481/SP485 RECEIVER					
AC Characteristics	_				ov pc_ ov
Maximum Data Rate	5			Mbps	$\overrightarrow{RE} = 0V$, $DE = 0V$
Receiver Input to Output	60	90	200	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; Figures 3 & 8
Beerles III O II I	00		000		$C_{L1} = C_{L2} = 100 \text{pF}; Figures 3 & 8$
Receiver Input to Output	60	90	200	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$,
Diff. Description Of the latest and		40			$C_{L1}^{TIL} = C_{L2}^{TIL} = 100 \text{pF}; Figures 3 & 8$
Diff. Receiver Skew It _{PLH} -t _{PHL} I		13		ns	$R_{DIFF} = 54\Omega; C_{L1} = C_{L2} = 100pF;$
B					Figures 3 & 8
Receiver Enable to		00			0 45 5 5 0000 1 1
Output Low		20	50	ns	C _{RL} = 15pF; Figures 2 & 9; S ₁ closed
Receiver Enable to		20	F0		0 45:5: 5::
Output High		20	50	ns	C _{RL} = 15pF; Figures 2 & 9; S ₂ closed
Receiver Disable from Low		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9</i> ; S ₁ closed
Receiver Disable from High		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9;</i> S ₂ closed
00404					
SP481					
Shutdown Timing					== -,, == -,,
Time to Shutdown	50	200	600	ns	$\overline{RE} = 5V$, DE = 0V
Driver Enable from Shutdown		40	400		0 100.5 0 5 10.70
to Output High		40	100	ns	$C_L = 100pF$; See figures 4 & 7; S_2 closed
Driver Enable from Shutdown		40	400		0 100-5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
to Output Low		40	100	ns	$C_L = 100pF$; See figures 4 & 7; S_1 closed
Receiver Enable from		000	1000		C 15-5: Confirmed 2.8.0: C closed
Shutdown to Output High		300	1000	ns	$C_L = 15pF$; See figures 2 & 9; S_2 closed
Receiver Enable from		300	1000	no	C - 15pE: Soo fauros 2 8 0; S. closed
Shutdown to Output Low		300	1000	ns	$C_L = 15pF$; See figures 2 & 9; S_1 closed
DOWED DECLUDENTS					
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current					
SP481/485		000			<u></u>
No Load		900		μΑ	\overline{RE} , DI = 0V or V_{CC} ; DE = V_{CC} RE = 0V, DI = 0V or 5V; DE = 0V
CD402				μΑ	ME = UV, DI = UV OF 5V; DE = UV
SP483		600			E DI = 0V or V · DE = V
No Load		600		μ Α	RE , DI = 0V or V_{CC} ; DE = V_{CC} RE=0V, DI = 0V or 5V; DE = 0V
SP481/SP483				μΑ	
Shutdown Mode			10		$DE = 0V, \overline{RE} = V_{CC}$
Silutuowii ivioue			10	μΑ	DL - UV, NE=V _{CC}
ENIVIDONISATATAL AND	1			-	
ENVIRONMENTAL AND MECHANICAL					
Operating Temperature			. 70	00	
Commercial (_C_)	0		+70	°C	
Industrial (_E_)	-40		+85	°C	
Storage Temperature	-65		+150	°C	
Package					
Plastic DIP (_S)					
NSOIC (_N)					
	1	1	1	1	I .

SP483 AC SPECIFICATIONS

 T_{min} to T_{max} and V_{CC} = 5V ± 5% unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP483 DRIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Driver Input to Output	250	800	2000	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2}^{=100pF}$;
Duiven Cleave	050	000	0000		see figures 3 & 6
Driver Skew	250	800	2000	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see figures 3 & 6
Driver Rise and Fall Time		100	800	ns	see figures 3 & 6.
					t _{SKEW} = It _{DPLH} - t _{DPHL} I
	250		2000	ns	From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver Enable to Output High	250		2000		$C_{L1} = C_{L2} = 100 \text{pF}, \text{ see figures } 3 \& 6$
Driver Enable to Output Fight	250		2000	ns ns	C _L = 100pF; See figures 4 & 7; S ₂ closed C ₁ = 100pF; See figures 4 & 7; S ₁ closed
Driver Disable Time from Low	300		3000	ns	C ₁ = 15pF; <i>See figures 4 & 7;</i> S ₁ closed
Driver Disable Time from High	300		3000	ns	C ₁ = 15pF; See figures 4 & 7; S ₂ closed
SP483 RECEIVER					
AC Characteristics					
Maximum Data Rate	250			kbps	
Receiver Input to Output	250		2000	ns	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
Diff. Receiver Skew It _{PLH} -t _{PHI} I		100		ns	Figures 3 & 8 $R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF;$
Diff. Flocoiver exew riplin thin		100		110	Figures 3 & 8
Receiver Enable to					
Output Low		20	50	ns	C _{RL} = 15pF; <i>Figures 2 & 9;</i> S ₁ closed
Receiver Enable to Output High		20	50	ns	C = 15pF: Figures 2 & 0: S closed
Receiver Disable from Low		20	50	ns	C _{RL} = 15pF; Figures 2 & 9; S ₂ closed C _{RI} = 15pF; Figures 2 & 9; S ₁ closed
Receiver Disable from High		20	50	ns	C _{RI} = 15pF; <i>Figures 2 & 9;</i> S ₂ closed
-					112 2
SP483					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	RE = 5V, DE = 0V
Driver Enable from Shutdown			2000		C = 100nE; Con fauron 4 9 7; C alonad
to Output High Driver Enable from Shutdown			2000	ns	C _L = 100pF; See figures 4 & 7; S ₂ closed
to Output Low			2000	ns	C ₁ = 100pF; See figures 4 & 7; S ₁ closed
Receiver Enable from					
Shutdown to Output High			2500	ns	C _L = 15pF; See figures 4 & 7; S ₂ closed
Receiver Enable from Shutdown to Output Low			2500	ns	C ₁ = 15pF; See figures 4 & 7; S ₁ closed
Shaldown to Output Low			2300	113	10pi , 0cc ligules 4 α 7, 0 ₁ closed

PIN FUNCTION

Pin#	Name	Description
1	RO	Receiver Output.
2	$\overline{\text{RE}}$	Receiver Output Enable
		Active LOW.
3	DE	Driver Output Enable
		Active HIGH.
4	DI	Driver Input.
5	GND	Ground Connection.
6	A	Driver Output/Receiver Input
		Non-inverting.
7	В	Driver Output/Receiver Input
		Inverting.
8	Vcc	Positive Supply 4.75V <vcc< 5.25v.<="" td=""></vcc<>

DESCRIPTION SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a Sipex proprietary BiCMOS process, all three products require a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers SP481, SP483, SP485

The driver outputs of the **SP481**, **SP483**, and **SP485** are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 volts to +5 volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers of the **SP481**, **SP483** and **SP485** have an enable control line which is active HIGH. A logic HIGH on DE (pin 5) will enable the differential driver outputs. A logic LOW on DE (pin 5) will tri-state the driver outputs.

The transmitters of the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** has internally slew rate limited driver outputs to minimize EMI. The maximum data rate for the **SP483** driver is 250kbps.

Receivers SP481, SP483, SP485

The **SP481**, **SP483**, and **SP485** receivers have differential inputs with an input sensitivity as low as $\pm 200 \text{mV}$. Input impedance of the receivers is typically $15 \text{k}\Omega$ ($12 \text{k}\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers of the **SP481**, **SP483** and **SP485** have a tri-state enable control pin. A logic LOW on $\overline{\text{RE}}$ (pin 4) will enable the receiver, a logic HIGH on $\overline{\text{RE}}$ (pin 4) will disable the receiver.

The receiver for the **SP481** and **SP485** will operate up to at least 5Mbps. The **SP483** receiver is rated for data rates up to 250kbps. The receiver for each of the three devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected and floating.

Shutdown Mode SP481/SP483

The **SP481** and **SP483** are equipped with a Shutdown mode. To enable the Shutdown state, both the driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 5) and a logic HIGH on $\overline{\text{RE}}$ (pin 4) will put the **SP481** or **SP483** into Shutdown mode. In Shutdown, supply current will drop to typically $1\mu\text{A}$.

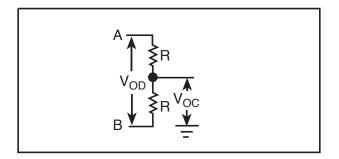


Figure 1. Driver DC Test Load Circuit

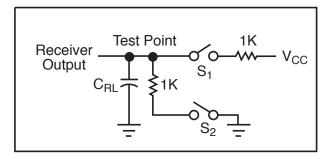


Figure 2. Receiver Timing Test Load Circuit

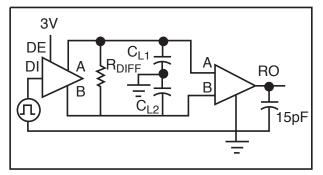


Figure 3. Driver/Receiver Timing Test Circuit

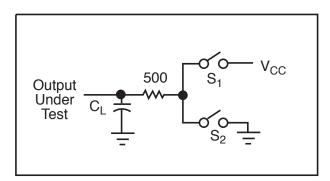


Figure 4. Driver Timing Test Load #2 Circuit

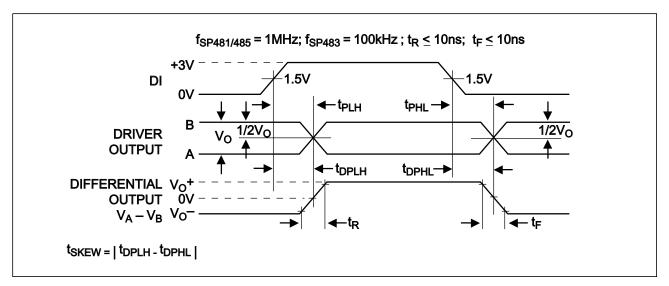


Figure 6. Driver Propagation Delays

INPUTS			OUTI	PUTS	
RE	DE	DI	LINE CONDITION	В	A
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	X	X	Z	Z
X	1	X	Fault	Z	Z

Table 1. Transmit Function Truth Table

INP	UTS		OUTPUTS
RE	DE	A - B	R
0	0	+0.2V	1
0	0	-0.2V	0
0	0	Inputs Open	1
1	0	X	Z

Table 2. Receive Function Truth Table

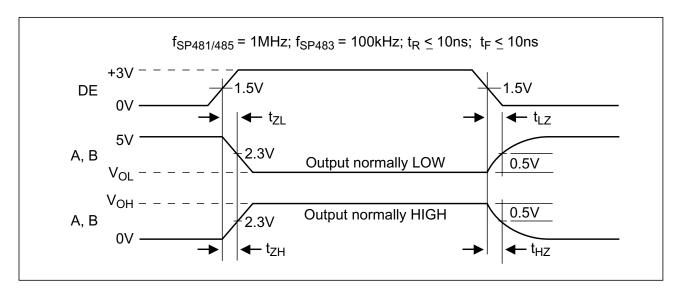


Figure 7. Driver Enable and Disable Times

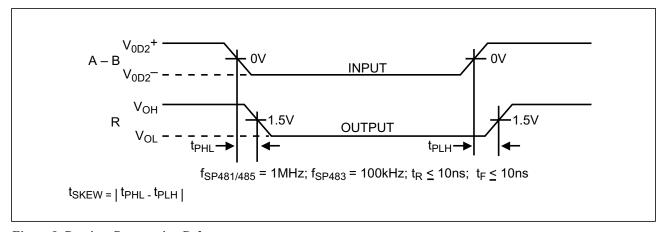
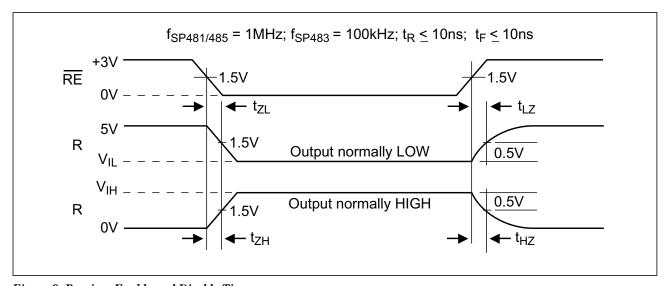
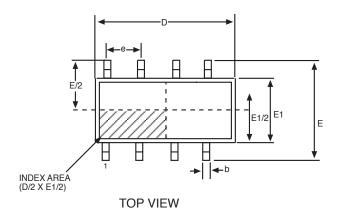
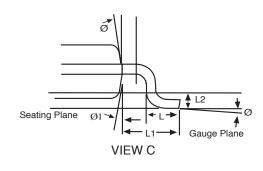
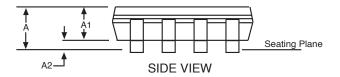
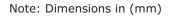
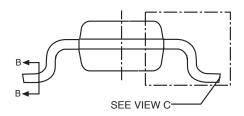


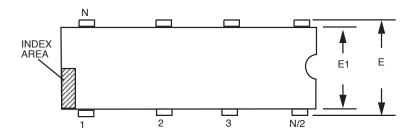
Figure 8. Receiver Propagation Delays

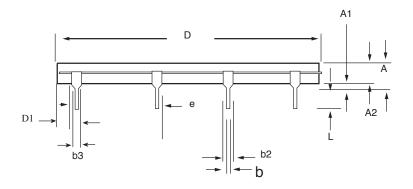





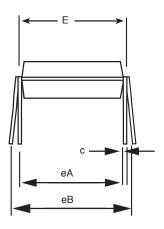

Figure 9. Receiver Enable and Disable Times

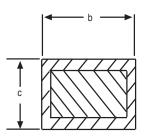





8 Pin NSOIC JEDEC MO-012 (AA) Variation						
SYMBOL	MIN	NOM	MAX			
		INOIVI				
A	1.35	-	1.75			
A1	0.1	-	0.25			
A2	1.25	-	1.65			
b	0.31	-	0.51			
С	0.17	-	0.24			
D	4.90 BSC					
E	6.00 BSC					
E1	3.90 BSC					
е		1.27 BSC				
L	0.4	-	1.27			
L1	1.04 REF					
L2	0.25 BSC					
Ø	00	-	80			
ø1	50	-	15º			







SECTION B-B WITH PLATING

8 PIN PDIP JEDEC MS-001 (BA) Variation						
SYMBOL	MIN	NOM	MAX			
Α	-	-	0.21			
A1	0.15	-	ı			
A2	0.115	0.13	0.195			
b	0.014	0.018	0.022			
b2	0.045	0.06	0.07			
b3	0.3	0.039	0.045			
С	0.008	0.01	0.014			
D	0.355	0.365	0.4			
D1	0.005	-	-			
E	0.3	0.31	0.325			
E1	0.24	0.25	0.28			
е	.100 BSC					
eA	.300 BSC					
eВ	-	-	0.43			
L	0.115	0.13	0.15			

Note: Dimensions in (mm)

ORDERING INFORMATION Model **Temperature Range Package** SP481CS EOL, recommended upgrade SP481E 0°C to +70°C 8-pin PDIP SP481EN EOL, recommended upgrade SP481E -40°C to +85°C 8-pin NSOIC SP481EN/TR EOL, recommended upgrade SP481E -40°C to +85°C 8-pin NSOIC SP483EN --40°C to +85°C 8-pin NSOIC SP483EN/TR -40°C to +85°C -8-pin NSOIC SP485EN -40°C to +85°C 8-pin NSOIC

For lead-free packages, improved ESD protection and performance: upgrade to SP485E, SP481E, SP483E Example: SP485EN/TR = upgrade to SP485EN-L/TR

/TR = Tape and Reel

Pack quantity is 2,500 for NSOIC.

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600 e-mail: sales@sipex.com

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.