

Ultralow Offset Voltage Operational Amplifier

0P07

FEATURES

•	Low V _{OS}
	Low V _{OS} Drift 0.6μV/°C Max
	Ultra-Stable vs Time 1.0 μV/Month Max
•	Low Noise 0.6μV _{p-p} Max
	Wide Input Voltage Range ± 14\
	Wide Supply Voltage Range ±3V to ±18V

- Fits 725, 108A/308A, 741, AD510 Sockets
- 125° C Temperature-Tested Dice

ORDERING INFORMATION [†]

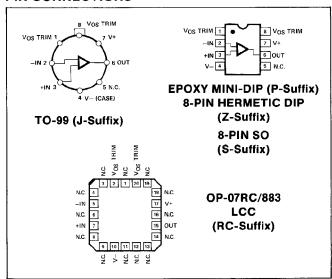
T _A = +25°C		P/	OPERATING		
νο _s MAX		CERDIP	PLASTIC	LCC	TEMPERATURE
(μ V)	TO-99	8-PIN	8-PIN	20-CONTACT	RANGE
25	OP07AJ*	OP07AZ*			MIL
75	OP07EJ	OP07EZ	OP07EP	_	COM
75	OP07J*	OP07Z*	_	OP07RC/88	3 MIL
150	OP07CJ	OP07CZ	OP07CP		XIND
150	_	_	OP07CS ^{††}	_	XIND
150	OP07DJ	_	OP07DP	_	XIND

- * For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.
- tt For availability and burn-in information on SO and PLCC packages, contact your local sales office.

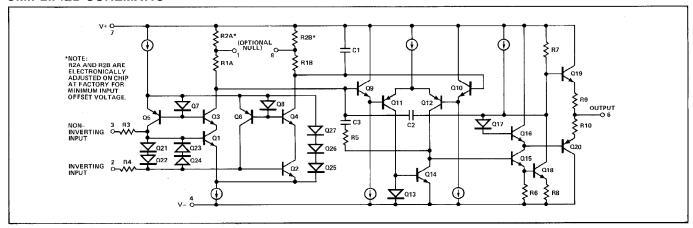
GENERAL DESCRIPTION

The OP-07 has very low input offset voltage ($25\mu V$ max for OP-07A) which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current ($\pm 2nA$ for OP-07A) and high open-loop gain (300V/mV for OP-07A). The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain instrumentation applications.

The wide input voltage range of \pm 13V minimum combined with high CMRR of 110dB (OP-07A) and high input impedace provides high accuracy in the noninverting circuit configuration. Excellent linearity and gain accuracy can be maintained


even at high closed-loop gains.

Stability of offsets and gain with time or variations in temperture is excellent. The accuracy and stability of the OP-07, even at high gain, combined with the freedom from external nulling have made the OP-07 a new industry standard for instrumentation and military applications.


The OP-07 is available in five standard performance grades. The OP-07A and the OP-07 are specified for operation over the full military range of -55° C to $+125^{\circ}$ C; the OP-07E is specified for operation over the 0°C to $+70^{\circ}$ C range, and OP-07C and D over the -40° C to $+85^{\circ}$ C temperature range.

The OP-07 is available in hermetically-sealed TO-99 metal can or ceramic 8-pin Mini-DIP, and in epoxy 8-pin Mini-DIP. It is a direct replacement for 725, 108A, and OP-05 amplifiers; 741-types may be directly replaced by removing the 741's nulling potentiometer. The OP-207, a dual OP-07, is available for applications requiring close matching of two OP-07 amplifiers. For improved specifications, see the OP-77/OP-177.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

PACKAGE TYPE	Θ _{jA} (Note 3)	ejc	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Hermetic DIP (Z)	148	16	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
20-Contact LCC	98	38	°C/W
8-Pin SO (S)	158	43	°C/W

NOTES:

- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted.

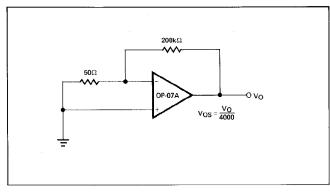
			(OP-07/	4		OP-07		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	(Note 1)		10	25		30	75	μ\
Long-Term Input Offset Voltage Stability	ΔV _{OS} /Time	(Note 2)	_	0.2	1.0		0.2	1.0	μV/Mo
input Offset Current	los		_	0.3	2.0	_	0.4	2.8	nA
Input Bias Current	l _B		_	±0.7	±2.0		±1.0	±3.0	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)	_	0.35	0.6	_	0.35	0.6	μV _{p-p}
Input Noise Voltage Density	e _n	f _O = 10Hz (Note 3) f _O = 100Hz (Note 3) f _O = 1000Hz (Note 3)	, <u> </u>	10.3 10.0 9.6	18.0 13.0 11.0	_	10.3 10.0 9.6	18.0 13.0 11.0	nV/√Hz
Input Noise Current	i _{np-p}	0.1Hz to 10Hz (Note 3)		14	30		14	30	pA _{p-p}
Input Noise Current Density	in	f _O = 10Hz (Note 3) f _O = 100Hz (Note 3) f _O = 1000Hz (Note 3)		0.32 0.14 0.12	0.80 0.23 0.17		0.32 0.14 0.12	0.80 0.23 0.17	pA/√Hz
Input Resistance — Differential-Mode	R _{IN}	(Note 4)	30	80	_	20	60		МΩ
Input Resistance — Common-Mode	R _{INCM}		_	200	-		200	_	GΩ
Input Voltage Range	IVR		±13	±14		± 13	±14		V
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	110	126		110	126	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V \text{ to } \pm 18V$, –	4	10	_	4	10	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = \pm 10V$ $R_L \ge 500\Omega$, $V_O = \pm 0.5V$, $V_S = \pm 3V$ (Note 4)	300 150	500 400	_	200 150	500 400		V/mV
Output Voltage Swing	v _o	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	±12.5 ±12.0 ±10.5	±13.0 ±12.8 ±12.0		±12.5 ±12.0 ±10.5	±13.0 ±12.8 ±12.0	<u>-</u> -	v
Slew Rate	SR	R _L ≥ 2kΩ (Note 3)	0.1	0.3	_	0.1	0.3	_	V/μs
Closed-Loop Bandwidth	BW	A _{VCL} = +1 (Note 3)	0.4	0.6	_	0.4	0.6	_	MHz
Open-Loop Output Resistance	R _O	$V_0 = 0, I_0 = 0$		60	_	_	60	_	Ω
Power Consumption	P _d	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load	_	75 4	120 6	_	75 4	120 6	mW
Offset Adjustment Range		$R_P = 20k\Omega$	_	±4			±4		mV

NOTES

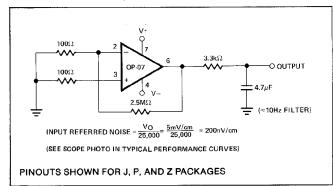
- OP-07A grade V_{OS} is measured approximately one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 seconds after application of power.
- Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation.

Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μ V — refer to typical performance curves. Parameter is sample tested.

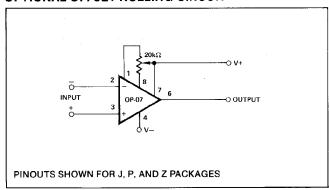
- Sample tested.
- 4. Guaranteed by design.


ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, -55° C $\leq T_A \leq + 125^{\circ}$ C, unless otherwise noted.

				OP-07A				OP-07	,	SOLDED ENGINEERING THE EDGE.
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	(Note 1)		_	25	60		60	200	μV
Average Input Offset Voltage Drift With-										
out External Trim	TCVos	(Note 2)		_	0.2	0.6		0.3	1.3	μV/°C
With External Trim	TCV _{OSn}	$R_P = 20k\Omega \text{ (Note 3)}$		_	0.2	0.6	-	0.3	1.3	μV/° C
Input Offset Current	Ios			_	8.0	4		1.2	5.6	nA
Average Input Offset Current Drift	TCIOS	(Note 2)			5	25	_	8	50	pA/°C
Input Bias Current	I _B		-		±1	±4		±2	±6	nA
Average Input Bias Current Drift	TCIB	(Note 2)		_	8	25	_	13	50	pA/°C
Input Voltage Range	IVR	_	-	±13	±13.5	·	±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V		106	123		106	123	_	dB
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 3V \text{ to } \pm 18V$			5	20	_	5	20	μ٧/٧
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$		200	400		150	400		V/mV
Output Voltage Swing	٧ _o	R _L ≥2kΩ		±12	±12.6		±12	±12.6		· v


NOTES

- OP-07A grade V_{OS} is measured approximately one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 seconds after application of power.
- 2. Sample tested.
- 3. Guaranteed by design.


TYPICAL OFFSET VOLTAGE TEST CIRCUIT

TYPICAL LOW-FREQUENCY NOISE TEST CIRCUIT

OPTIONAL OFFSET NULLING CIRCUIT

BURN-IN CIRCUIT

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted.

			-	OP-07	E		OP-07C			OP-07D		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	v _{os}	(Note 1)	_	30	75	_	60	150		60	150	μ٧
Long-Term V _{OS} Stability	V _{OS} /Time	(Note 2)	_	0.3	1,5	_	0.4	2.0	_	0.5	3.0	μV/ M o
Input Offset Current	los			0.5	3.8		0.8	6.0	_	0.8	6.0	nA
Input Bias Current	I _B		_	±1.2	±4.0	_	±1.8	±7.0	_	±2.0	±12	nA
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz (Note 3)		0.35	0.6		0.38	0.65	_	0.38	0.65	μV _{p-p}
Input Noise		f _O = 10Hz		10.3	18.0	_	10.5	20.0	_	10.5	20.0	
Voltage Density	e _n	f _O = 100Hz (Note 3)	_	10.0	13.0	_	10.2	13.5	_	10.3	13.5	nV/√Hz
		f _O = 1000Hz		9.6	11.0		9.8	11.5	_	9.8	11.5	
Input Noise Current	i _{np-p}	0.1Hz to 10Hz (Note 3)	_	14	30		15	35		15	35	рА _{р-р}
Input Noise		$f_O = 10Hz$	_	0.32	0.80	_	0.35	0.90	_	0.35	0.90	
Current Density	in	f _O = 100Hz (Note 3)	_	0.14	0.23	_	0.15	0.27	_	0.15	0.27	pA/√Hz
		f _O = 1000Hz		0.12	0.17		0.13	0.18		0.13	0.18	
Input Resistance — Differential-Mode	R _{IN}	(Note 4)	15	50	_	8	33	_	7	31	_	МΩ
Input Resistance — Common-Mode	R _{INCM}		_	160		_	120	_	_	120	_	GΩ
Input Voltage Range	IVR		±13	±14	_	±13	±14	_	±13	±14	_	٧
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	106	123	_	100	120	_	94	110	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$		5	20	_	7	32	_	7	32	μV/V
Large-Signal Voltage Gain	A _{VO}	$\begin{aligned} R_L &\geq 2k\Omega, \\ V_O &= \pm 10V \\ R_L &\geq 500\Omega \\ V_O &= \pm 0.5V \\ V_S &= \pm 3V \ (\text{Note 4}) \end{aligned}$	200 150	500 400	- -	120 100	400 400	-	120	400	- -	V/mV
						±12.0	±13.0	_	±12.0	±13.0		
Output Voltage	v _o	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$	± 12.5 ± 12.0	±13.0 ±12.8	_	±12.0	± 13.0	_	± 12.0 ± 11.5	±12.8	_	٧
Swing	•0	$R_L \ge 1k\Omega$	± 10.5	±12.0	_		± 12.0	_		±12.0		
Slew Rate	SR	$R_L \ge 2k\Omega \text{ (Note 3)}$	0.1	0.3	_	0.1	0.3		0.1	0.3	_	V/μs
Closed-Loop Bandwidth	BW	A _{VCL} = +1 (Note 5)	0.4	0.6	_	0.4	0.6	_	0.4	0.6	_	MHz
Open-Loop Output Resistance	Ro	V _O = 0, I _O = 0		60	_		60	_	_	60		Ω
Power Consumption	P _d	$V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load	_	75 4	120 6		80 4	150 8	_	80 4	150 8	mW
Offset Adjustment Range		$R_p = 20k\Omega$	-	±4	_	_	±4	_	_	±4		mV

NOTES

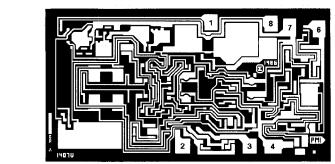
- 3. Sample tested.
- 4. Guaranteed by design.
- 5. Guaranteed but not tested.

Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

Long-Term Input Offset Voltage Stability refers to the averaged trend line
of V_{OS} vs. Time over extended periods after the first 30 days of operation.

 Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 μV — refer to typical performance curves.
 Parameter is sample tested.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $0^{\circ}C \le T_A \le +70^{\circ}C$ for OP-07E, and $-40^{\circ}C \le T_A \le +85^{\circ}C$ for OP-07C/D, unless otherwise noted.


			<u></u>	OP-07E			OP-070	3	OP-07D			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	v _{os}	(Note 1)	_	45	130		85	250		85	250	μ٧
Average Input Offset Voltage Drift With-												
out External Trim	TCVOS	(Note 3)		0.3	1.3		0.5	1.8	_	0.7	2.5	μV/° C
With External Trim	TCV _{OSn}	R _P = 20kΩ (Note 3)		0.3	1.3	_	0.4	1.6		0.7	2.5	μV/° C
Input Offset Current	Ios		_	0.9	5.3	_	1.6	8.0	-	1.6	8.0	пА
Average Input Offset Current Drift	TCIOS	(Note 2)	_	8	35		12	50	_	12	50	pA/°C
Input Bias Current	IB		_	±1.5	±5.5	_	±2.2	±9.0	_	±3.0	±14	nA
Average Input Bias Current Drift	TCIB	(Note 2)		13	35	_	18	50	_	18	50	pA/°C
Input Voltage Range	IVR		±13.0	±13.5	_	±13.0	±13.5	_	±13.0	±13.5		٧
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	103	123		97	120	-	94	106		dB
Power Supply Rejection Ratio	PSRR	$V_{S} = \pm 3V \text{ to } \pm 18V$	_	7	32	_	10	51	-	10	51	μV/V
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	180	450	_	100	400	_	100	400	_	V/mV
Output Voltage Swing	v _o	R _L ≥2kΩ	±12	±12.6	_	±11	±12.6	-	±11	±12.6	. –	٧

NOTES:

^{1.} Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

Sample tested.
 Guaranteed by design.

DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE)

DIE SIZE 0.100×0.055 inch, 5500 sq. mils (2.54 \times 1.40 mm, 3.56 sq. mm)

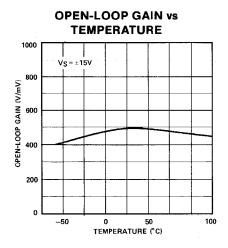
- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 6. OUTPUT
- 7. V+
- 8. BALANCE

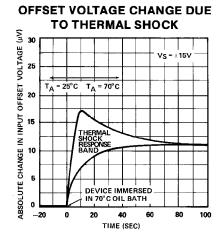
WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = 25$ °C for OP-07N, OP-07G and OP-07GR devices; $T_A = 125$ °C for OP-07NT and OP-07GT devices, unless otherwise noted.

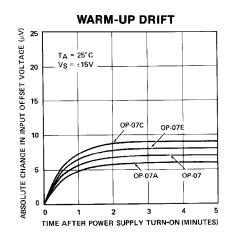
PARAMETER	SYMBOL	CONDITIONS	OP-07NT	OP-07N LIMIT	OP-07GT	OP-07G	OP-07GR	UNITS
Input Offset Voltage	Vos		140	40	210	- 80	150	μV MAX
Input Offset Current	Ios		4.0	2.0	5.6	2.8	6.0	nA MAX
Input Bias Current	I _B		±4	±2	±6	±3	±7	nA MAX
Input Resistance Differential-Mode	R _{IN}	(Note 2)		20	_	20	8	MO MIN
Input Voltage Range	IVR		±13	±13	±13	±13	± 13	V MIN
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	100	110	100	110	100	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	20	10	20	10	30	μV/V MAX
		$R_L = 10k\Omega$		±12.5	_	±12.0	±12.0	
Output Voltage Swing	v _o	$R_{L} = 2k\Omega$ $R_{L} = 1k\Omega$	±12.0 —	±12.0 ±10.5	±12.0	±11.5 ±10.5	±11.5 —	V MIN
Large-Signal Voltage Gain	A _{VO}	$R_L = 2k\Omega$ $V_O = \pm 10V$	200	200	150	120	120	V/mV MIN
Differential Input Voltage	•		±30	±30	±30	±30	±30	V MAX
Power Consumption	P _d	V _{OUT} = 0V	_	120	-	120	150	mW MAX

NOTES:

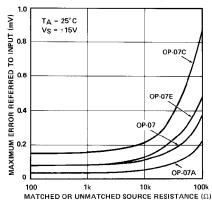
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

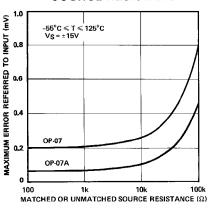

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15$ V, $T_A = +\,25^{\circ}$ C, unless otherwise noted.

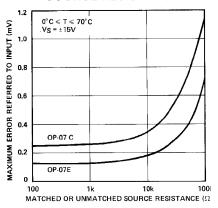

PARAMETER	SYMBÓL	CONDITIONS	OP-07NT TYPICAL	OP-07N TYPICAL	OP-07GT TYPICAL	OP-07G TYPICAL	OP-07GR TYPICAL	UNITS
Average Input Offset Voltage Drift	TCVos	R _S = 50Ω	0.2	0.2	0.3	0.3	0.7	μ V/° C
Nulled Input Offset Voltage Drift	TCV _{OSn}	$R_S = 50\Omega$, $R_P = 20k\Omega$	0.2	0.2	0.3	0.3	0.7	μ V/° C
Average Input Offset Current Drift	TCIOS		5	5	8	8	12	pA/°C
Slew Rate	SR	$R_L \ge 2k\Omega$	0.3	0.3	0.3	0.3	0.3	V/μs
Closed-Loop Bandwidth	вw	A _{VCL} =+1	0.6	0.6	0.6	0.6	0.6	MHz

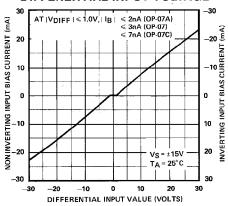

For 25°C characteristics of OP-07NT and OP-07GT, see OP-07N and OP-07G characteristics, respectively.

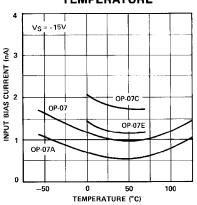
Guaranteed by design.

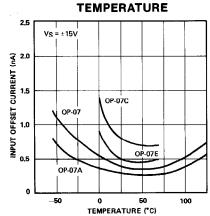

TYPICAL PERFORMANCE CHARACTERISTICS

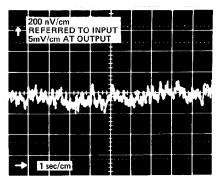




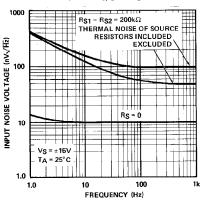



MAXIMUM ERROR vs SOURCE RESISTANCE

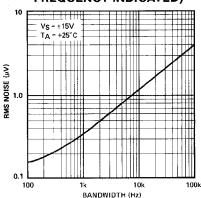

INPUT BIAS CURRENT vs DIFFERENTIAL INPUT VOLTAGE

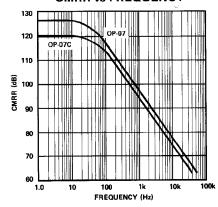


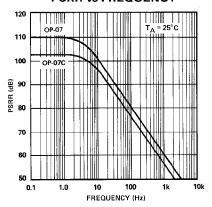
INPUT OFFSET CURRENT vs

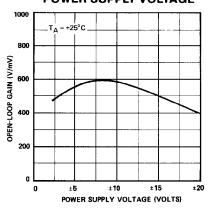


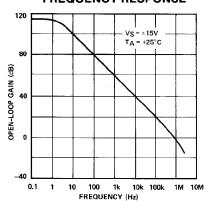
TYPICAL PERFORMANCE CHARACTERISTICS

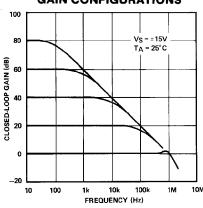

OP-07 LOW FREQUENCY NOISE

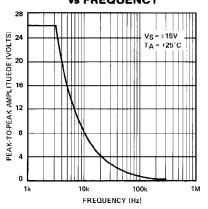

TOTAL INPUT NOISE VOLTAGE vs FREQUENCY


INPUT WIDEBAND NOISE vs BANDWIDTH (0.1Hz TO FREQUENCY INDICATED)

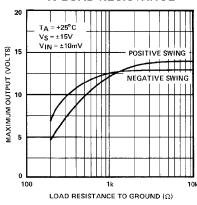

CMRR vs FREQUENCY


PSRR vs FREQUENCY

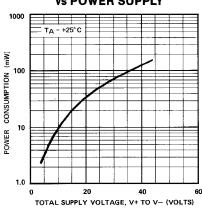

OPEN-LOOP GAIN vs POWER SUPPLY VOLTAGE


OPEN-LOOP FREQUENCY RESPONSE

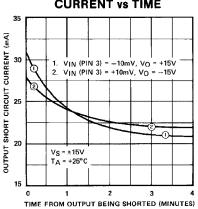
CLOSED-LOOP RESPONSE FOR VARIOUS GAIN CONFIGURATIONS

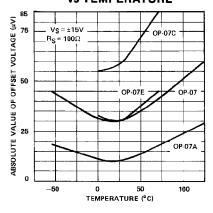


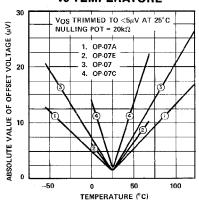
MAXIMUM OUTPUT SWING vs FREQUENCY

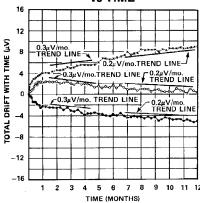


TYPICAL PERFORMANCE CHARACTERISTICS

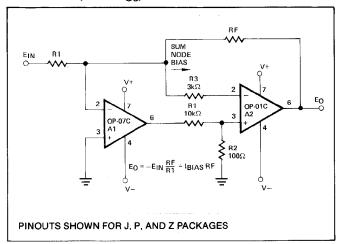

MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE


POWER CONSUMPTION vs POWER SUPPLY

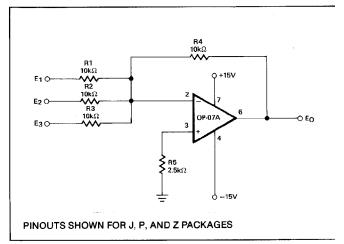

OUTPUT SHORT-CIRCUIT CURRENT vs TIME


UNTRIMMED OFFSET VOLTAGE vs TEMPERATURE

TRIMMED OFFSET VOLTAGE VS TEMPERATURE

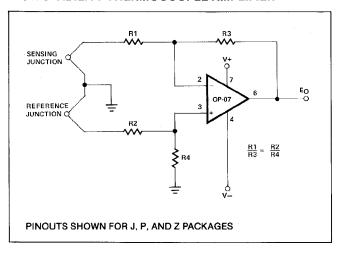


OFFSET VOLTAGE STABILITY vs TIME



TYPICAL APPLICATIONS

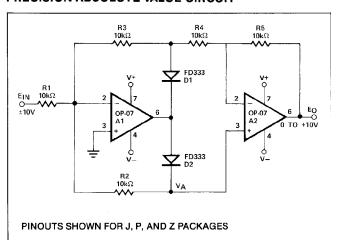
HIGH SPEED, LOW Vos, COMPOSITE AMPLIFIER



ADJUSTMENT-FREE PRECISION SUMMING AMPLIFIER

TYPICAL APPLICATIONS

HIGH-STABILITY THERMOCOUPLE AMPLIFIER



APPLICATIONS INFORMATION

OP-07 series units may be substituted directly into 725, 108A/308A* and OP-05 sockets with or without removal of external compensation or nulling components. Additionally, the OP-07 may be used in unnulled 741-type sockets. However, if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-07 operation. OP-07 offset voltage may be nulled to zero through use of a potentiometer (see offset nulling circuit diagram).

*TO-99 Package only

PRECISION ABSOLUTE-VALUE CIRCUIT

The OP-07 provides stable operation with load capacitance of up to 500pF and \pm 10V swings; larger capacitances should be decoupled with a 50 Ω decoupling resistor.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can degrade drift performance. Therefore, best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the package temperature.