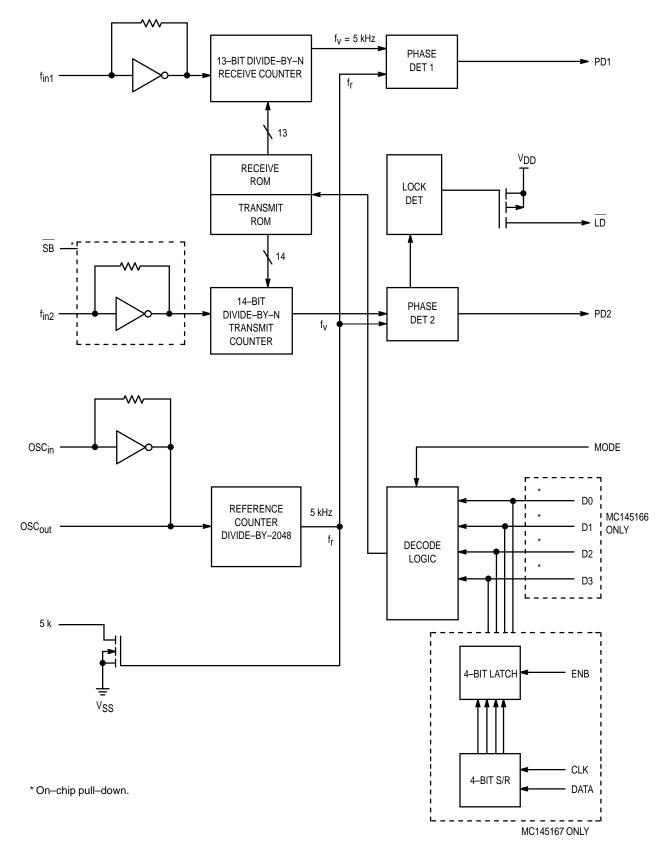
MC145166 MC145167

Image: product of the system Product of the system Image: product of the system Product of the system Image: product of the system

PIN ASSIGNMENTS							
MC145166P MC145166DW							
OSC _{out} [MODE [1• 2	16] OSC _{in} 15] V _{DD}					
SB [5 k [3 4	14] f _{in1} 13] PD1					
D0 [D1 [5 6	12 VSS 11 PD2					
D2 [D3 [7 8	10] LD 9] f _{in2}					
Ν	MC1451 IC14516						
	1•	16] OSC _{in}					
	2 3	15					
5 k [DATA [4 5	13] PD1 12] V _{SS}					
	6 7	11] PD2 10] LD					
	8 = NO CONN	9 f _{in2}					

Dual PLLs for 46/49 MHz Cordless Telephones CMOS

These devices are dual phase–locked loop (PLL) frequency synthesizers intended for use primarily in 46/49 MHz cordless phones with up to 10 channels. These parts contain two mask–programmable counter ROMs for receive and transmit loops with two independent phase detect circuits. A common reference oscillator and reference divider are shared by the receive and transmit circuits.


Frequency selection is accomplished via a 4-bit parallel input for the MC145166. The MC145167 utilizes a serial interface.

Other features include a lock detect circuit for the transmit loop, illegal code default, and a 5 kHz tone output.

- Synthesizes Up to Ten Channel Pairs
- Maximum Operating Frequency: 60 MHz @ Vin = 200 mV p-p
- Operating Temperature Range: 40 to + 75°C
- Operating Voltage Range: 2.5 to 5.5 V
- On-Chip Oscillator Circuit Supports External Crystal
- Lock Detect Signal
- Operating Power Consumption: 3.0 mA @ 3.0 V
- Standby Mode for Power Savings: 1.5 mA @ 3.0 V
- Also See MC145162

REV 2 1/98 TN98011400

BLOCK DIAGRAM

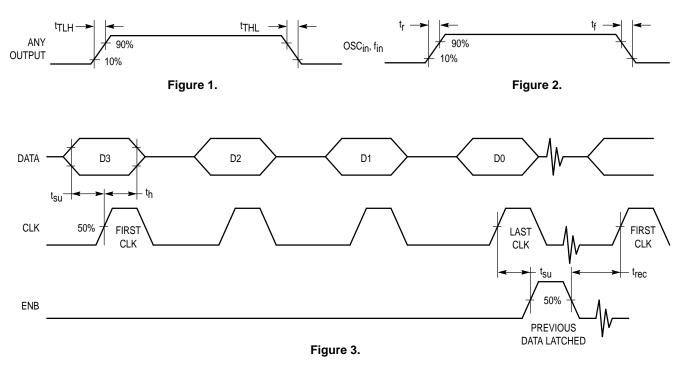
MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Rating	Value	Unit
V _{DD}	DC Supply Voltage	– 0.5 to + 6.0	V
V _{in}	Input Voltage, All Inputs	– 0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	DC Current Drain Per Pin	10	mA
I _{DD} , ISS	DC Current Drain V_{DD} or V_{SS} Pins	30	mA
T _{stg}	Storage Temperature Range	– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{\mbox{SS}}$ or $V_{\mbox{DD}}$). Unused outputs must be left open.

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.


ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS}, T_A = 25°C)

				Guarante	Unit	
Symbol	Characteristic	V _{DD}	Min	Max		
V _{DD}	Power Supply Voltage Range		_	2.5	5.5	V
VOL	Output Voltage (I _{out} = 0)	0 Level	2.5 5.5	_	0.05 0.05	V
VOH	$(V_{in} = V_{DD} \text{ or } 0)$	1 Level	2.5 5.5	2.45 5.45	—	
VIL	Input Voltage (V _{out} = 0.5 V or V _{DD} – 0.5 V)	0 Level	2.5 5.5	_	0.75 1.65	V
VIH		1 Level	2.5 5.5	1.75 3.85	—	
ЮН	Output Current $(V_{out} = 2.2 V)$ $(V_{out} = 5.0 V)$	Source	2.5 5.5	- 0.18 - 0.55	—	mA
IOL	(V _{out} = 0.3 V) (V _{out} = 0.5 V)	Sink	2.5 5.5	0.18 0.55		
Ι _{ΙL}	Input Current (V _{in} = 0)	OSC _{in} , f _{in1} , f _{in2}	2.5 5.5		- 30 - 66	μA
		DATA, SB, Mode	2.5 5.5	_	- 0.05 - 0.11	
ΙΙΗ	$(V_{in} = V_{DD} - 0.5)$	OSC _{in} , f _{in1} , f _{in2}	2.5 5.5		30 66	μA
		DATA, SB, Mode	2.5 5.5		50 121	
C _{in}	Input Capacitance		_	—	14.0	pF
Cout	Output Capacitance		_	_	8.0	pF
IDD	Standby Current, SB = V _{SS} or Open	2.5 5.5	_	1.4 3.6	mA	
ldd	Operating Current (200 mV p-p input at f_{in1} and f_{in2} , \overline{SB} =	V _{DD})	2.5 5.5	_	2.8 6.2	mA
I _{OZ}	Three–State Leakage Current (Vout = 0 or 5.5 V)		5.5	—	± 1.0	μA

SWITCHING CHARACTERISTICS (T_A = 25° C, C_L = 50 pF)

		Figure		Guarante	eed Limit	
Symbol	Characteristic	No.	V _{DD}	Min	Max	Unit
^t TLH	Output Rise Time	1, 5	3.0 5.0		200 100	ns
^t THL	Output Fall Time	1, 5	3.0 5.0		200 100	ns
t _r , t _f	Input Rise and Fall Time, OSC _{in}	2	3.0 5.0		5.0 4.0	μs
f _{max}	Input Frequency OSC _{in} Input = Sine Wave 200 mV p–p f _{in1} fin2		3.0 - 5.0 3.0 - 5.0 3.0 - 5.0	 	12 60 60	MHz
t _{su}	Setup Time (MC145167) DATA to CLK	3	3.0 5.0	100 50		ns
	ENB to CLK		3.0 5.0	200 100		
t _h	Hold Time (MC145167), CLK to DATA	3	3.0 5.0	80 40		ns
trec	Recovery Time (MC145167), ENB to CLK	3	3.0 5.0	80 40		ns
t _w	Input Pulse Width (MC145167), CLK and ENB	4	3.0 5.0	80 60	_	ns

SWITCHING WAVEFORMS

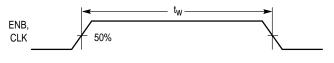


Figure 4.

PIN DESCRIPTIONS

INPUT PINS

OSCin/OSCout Reference Oscillator Input/Output (Pins 1,16)

These pins form a reference oscillator when connected to an external parallel–resonant crystal. For a 46/49 MHz cordless phone application, a 10.24 MHz crystal is needed. OSC_{in} may also serve as input for an externally generated reference signal. This signal is typically ac coupled to OSC_{in} , but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required for OSC_{out} .

MODE

Mode Select (Pin 2)

Mode is for determining whether the part is to be used in the base or handset of a cordless phone. Internally, this pin is used in the decoding logic for selecting the ROM address. When high, the device is set in the base mode, and when low, it is set in the handset mode. This input has an internal pull-down device.

SB

Standby Input (Pin 3)

The standby pin is used to save power when not transmitting. When high, both the transmit and receive loops are in operation. When low, the transmit loop is disabled, thereby reducing power consumption. This input has an internal pulldown device.

D0 – D3

Data Inputs (MC145166 — Pins 5 – 8)

These inputs provide the BCD code for selecting the one of ten channels to be locked in both the transmit and receive loop. When address data other than 1 - 10 are input, the decoding logic defaults to channel 10. The frequency assignments with reference to Mode and D0 - D3 are shown in Table 1. These inputs have internal pull-down devices.

fin1, fin2

Frequency Inputs (Pins 14, 9)

 f_{in1} and f_{in2} are inputs to the divide–by–N receive and transmit counters, respectively. These signals are typically derived from the loop VCO and are ac coupled. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used. The minimum input level is 200 mV p–p.

CLK, DATA Clock, Data (MC145167 — Pins 5, 6)

These pins provide the BCD input by using serial channel programming instead of parallel. Logical high represents a 1. Each low–to–high transition of the clock shifts one bit of data into the on–chip shift register.

ENB

Enable (MC145167 — Pin 8)

The enable pin controls the data transfer from the shift register to the 4–bit latch. A positive pulse latches the data.

OUTPUT PINS

5 k

5 kHz Tone Signals (Pin 4)

The 5 kHz tone signals are N-channel, open-drain outputs derived from the reference oscillator.

LD

Lock Detect Signal (Pin 10)

The lock detect signal is associated with the transmit loop. The lock output goes high to indicate an out–of–lock condition. This is a P–channel open–drain output.

PD1, PD2

Phase Detector Outputs (Pins 13, 11)

These are three–state outputs of the transmit and receive phase detectors for use as loop error signals. Phase detector gain is $V_{DD}/4 \pi$ volts per radian.

Frequency $f_V > f_r$ or f_V leading: Output = Negative pulses Frequency $f_V < f_r$ or f_V lagging: Output = Positive pulses Frequency $f_V = f_r$ and phase coincidence: Output = Highimpedance state

POWER SUPPLY

Vss

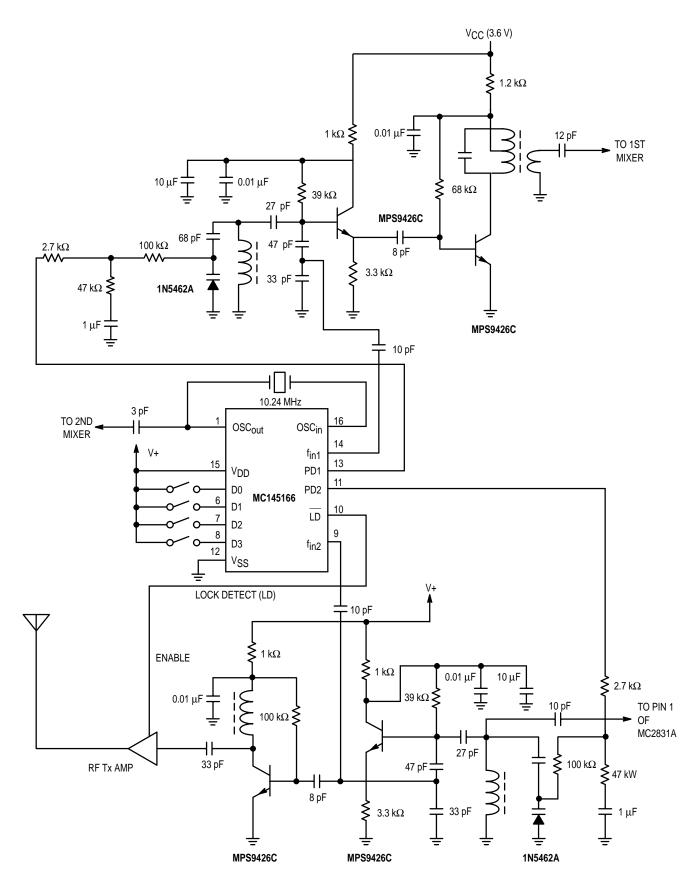
Negative Power Supply (Pin 12)

This pin is the negative supply potential and is usually ground.

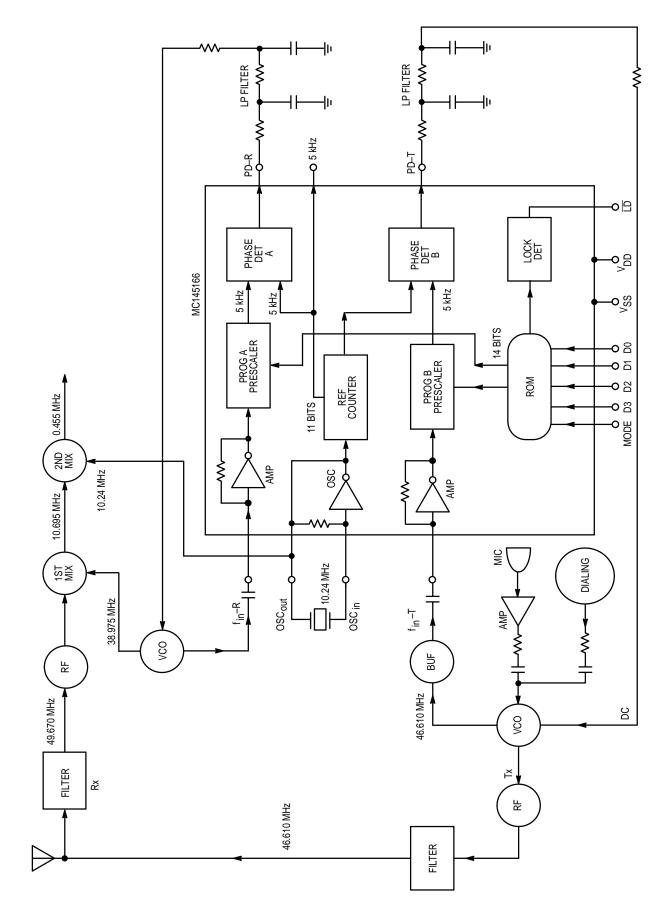
VDD

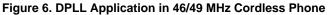
Positive Power Supply (Pin 15)

This pin is the positive supply potential and may range from + 2.5 to + 5.5 V with respect to VSS.

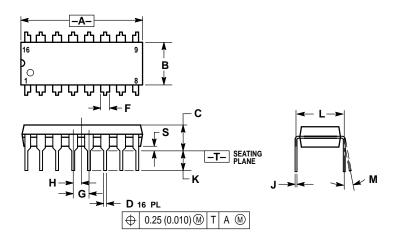

Table 1. MC145166/67 Divide Ratios and VCO Frequencies

					Handset (Mode = 0)					Base (M	ode = 1)	
	Channels				Transmit		Receive		Transmit		Receive	
D3	D2	D1	D0	CH#	f _{in2} (MHz)	÷N	f _{in1} (MHz)	$\div N$	f _{in2} (MHz)	÷N	f _{in1} (MHz)	÷N
0	0	0	1	1	49.670	9934	35.915	7183	46.610	9322	38.975	7795
0	0	1	0	2	49.845	9969	35.935	7187	46.630	9326	39.150	7830
0	0	1	1	3	49.860	9972	35.975	7195	46.670	9334	39.165	7833
0	1	0	0	4	49.770	9954	36.015	7203	46.710	9342	39.075	7815
0	1	0	1	5	49.875	9975	36.035	7207	46.730	9346	39.180	7836
0	1	1	0	6	49.830	9966	36.075	7215	46.770	9354	39.135	7827
0	1	1	1	7	49.890	9978	36.135	7227	46.830	9366	39.195	7839
1	0	0	0	8	49.930	9986	36.175	7235	46.870	9374	39.235	7847
1	0	0	1	9	49.990	9998	36.235	7247	46.930	9386	39.295	7859
1	0	1	0	10	49.970	9994	36.275	7255	46.970	9394	39.275	7855


NOTES:


1. Other input combinations will be defaulted to channel 10.

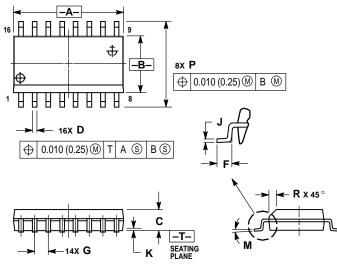
2. 0 = logic low, 1 = logic high.



MOTOROLA

P SUFFIX PLASTIC DIP CASE 648-08

NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI

2. 3.

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL. 4. 5

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
Κ	0.110	0.130	2.80	3.30	
L	0.295 0.305		7.50	7.74	
М	0° 10°		0 °	10 °	
s	0.020	0.040	0.51	1.01	

DW SUFFIX SOG PACKAGE CASE 751G-02

NOTES:

- IDES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD DEPOTOLISION
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER DISC.

SIDE.

SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MINERAL OPUINTERSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	10.15	10.45	0.400	0.411			
В	7.40	7.60	0.292	0.299			
С	2.35	2.65	0.093	0.104			
D	0.35	0.49	0.014	0.019			
F	0.50	0.90	0.020	0.035			
G	1.27	BSC	0.050 BSC				
J	0.25	0.32	0.010	0.012			
K	0.10	0.25	0.004	0.009			
M	0 °	7 °	0 °	7 °			
Р	10.05	10.55	0.395	0.415			
R	0.25	0.75	0.010	0.029			

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such uninte

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1–602–244–6609

 Motorola Fax Back System
 - US & Canada ONLY 1–800–774–1848

 - http://sps.motorola.com/mfax/

 \Diamond

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

CUSTOMER FOCUS CENTER: 1-800-521-6274