SEMICONDUCTOR

MM74C86 Quad 2-Input EXCLUSIVE-OR Gate

General Description

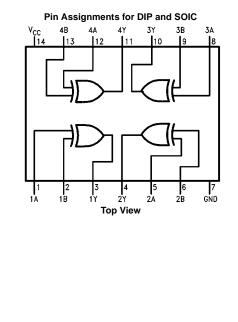
The MM74C86 employs complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption and high noise margin these gates provide basic functions used in the implementation of digital integrated circuit systems. The N- and P-channel enhancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No DC power other than that caused by leakage current is consumed during static condition. All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features

■ Wide supply voltage range: 3.0V to 15V

October 1987

Revised January 1999


- Guaranteed noise margin: 1.0V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power: TTL compatibility: Fan out of 2 driving 74L
- Low power consumption: 10 nW/package (typ.)
- The MM74C86 follows the MM74LS86 Pinout

Ordering Code:

Order Number	Package Number	Package Description			
MM74C86M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow			
MM74C86N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Device also available in Tana and Deal. Specify by appending suffix letter "V" to the ordering code					

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

Inputs		Output
Α	В	Y
L	L	L
L	н	Н
н	L	н
н	н	L

H = HIGH Level L = LOW Level

© 1999 Fairchild Semiconductor Corporation DS005887.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Voltage at any Pin (Note 1)	-0.3V to V _{CC} + 0.3V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line Package	700 mW
Small Outline	500 mW
Operating Range (V _{CC})	3.0V to 15V

Absolute Maximum (V _{CC})	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C

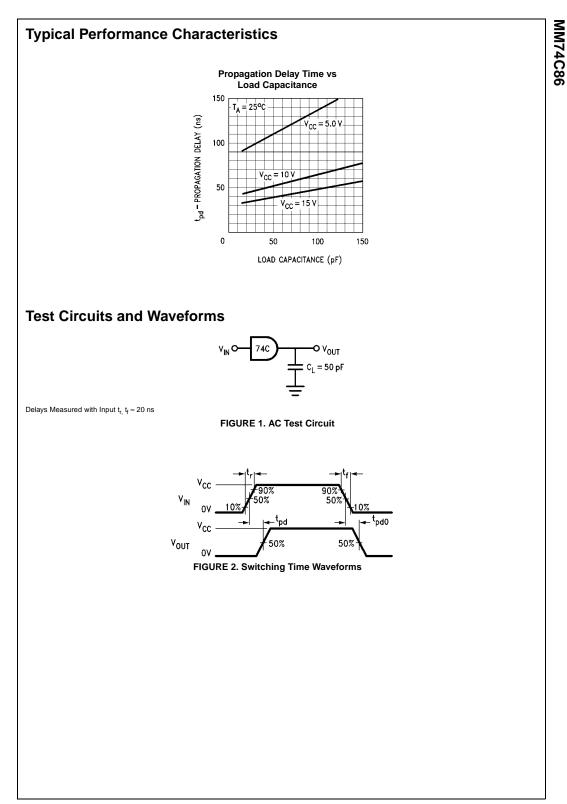
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be oper-ated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Min/max limits apply across temperature range unless otherwise noted Symbol Conditions Paramotor

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS		I			
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = +10 \ \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
IN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
сс	Supply Current	$V_{CC} = 15V$		0.01	15	μA
CMOS/LP	TTL INTERFACE	I				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} -1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT	ORIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
SOURCE	Output Source Current	$V_{CC} = 5.0V, V_{OUT} = 0V$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
SOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-8.0	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
SINK	Output Sink Current	$V_{CC} = 5.0V$, $V_{OUT} = V_{CC}$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
SINK	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}$	8.0	16		mA
	(N-Channel)	$T_{A} = 25^{\circ}C$				

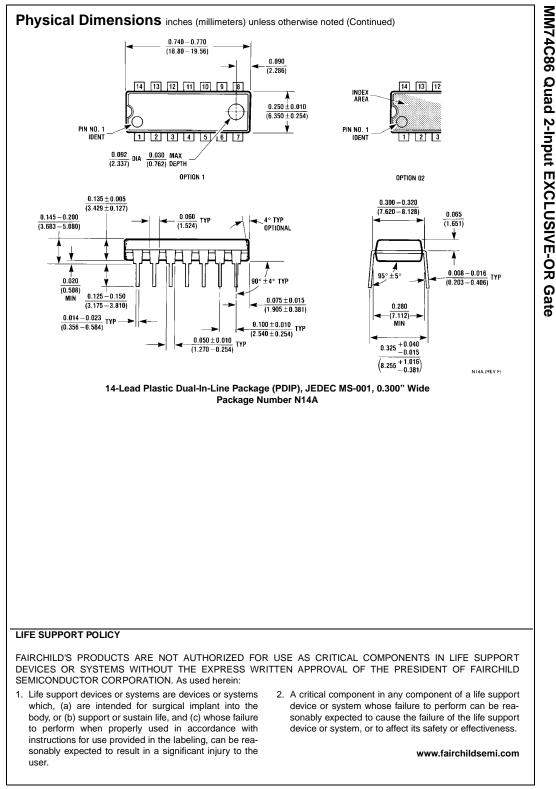
AC Electrical Characteristics (Note 2) 25° C C = 50 pE uploss otherwise specified


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Time to Logical	$V_{CC} = 5.0V$		110	185	ns
	"1" or "0"	$V_{CC} = 10V$		50	90	ns
CIN	Input Capacitance	(Note 3)		5.0		pF
CPD	Power Dissipation Capacitance	Per Gate (Note 4)		20		pF
Note 2: AC	Parameters are guaranteed by DC correl	ated testing.		1	1	

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note-AN-90.

www.fairchildsemi.com


2

www.fairchildsemi.com

4

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.