MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH
some parametric limits a

DESCRIPTION

The M52756SP is a semiconductor integrated circuit for the RGBHV interface. The device features switching signals input from two types of image sources and outputting the signals to the CRT display, etc. Synchronous signals, meeting a frequency band of 10 kHz to 200 kHz , are output at TTL. The frequency band of video signals is 250 MHz , acquiring highresolution images, and are optimum as an interface IC with high-resolution CRT display and various new media.

DESCRIPTION

- Frequency band: RGB \qquad 250 MHz
HV \qquad 10 kHz to 200 kHz
- Input level: RGB \qquad .0.7Vp-p(typ.)
HV TTL input \qquad $3.5 \mathrm{Vo}-\mathrm{p}(\mathrm{both}$ channel)
- RGBOUT can drive connected load of 75Ω.
- Only the G channel is provided with sync-on video output.
- The TTL format is adopted for HV output.
- It is possible to save the consumption current by stopping current supply to Pin 2, 4, 24, 27, 30.

PIN CONFIGURATION (TOP VIEW)

	\checkmark		
INPUT1 (R) 1	3UNHO00		$\mathrm{VCC}(\mathrm{R})(12 \mathrm{~V})$
$\operatorname{VCC1}(\mathrm{R})(5 \mathrm{~V}) 2$		29	OUTPUT (R)
INPUT1 (B) 3		28	GND(R)
$\mathrm{VCC1}(\mathrm{~B})(5 \mathrm{~V}) 4$		27	$\mathrm{VCC}(\mathrm{B})(12 \mathrm{~V})$
INPUT1 (G) 5		26	OUTPUT (B)
INPUT1 (H) 6		25	GND(B)
INPUT1 (V) 7		24	$\mathrm{VCC}(\mathrm{G})(12 \mathrm{~V})$
INPUT2 (R) 8		23	OUTPUT (G)
VCC(G)(5V) 9		22	GND(G)
INPUT2 (B) 10		21	G Buffer OUT
,sync Sepa)(5V 11		20	Sync Sepa IN
INPUT2 (G) 12		19	Sync Sepa OUT
INPUT2 (H) 13		18	OUTPUT (H)
INPUT2 (V) 14		17	OUTPUT (V)
SWITCH 15		16	GND(H,V,Buffer, SW,sync Sepa)

Outline 30P4B

- Sync Separation circuit

APPLICATION

Display monitor

RECOMMENDED OPERATING CONDITION

Supply voltage range..................... 4.75 to 5.25 V , 11.5 to 12.5 V
Rated supply voltage. .5.0V, 12.0 V

30 pin plastic SDIP

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH

Absolute Maximum Rating (Ambient temperature: $25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	$6.0,13.0$	V
Power dissipation	Pd	1736	mW
Ambient temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$
Recommended supply Votage	Vopr	$5.0,12.0$	V
Recommended sopply voltage range	Vopr'	$4.75 \sim 5.25,11.5 \sim 12.5$	V
Electrostatic discharge	Surge	± 150	V

Thermal Derating Curve

Pin Description

Pin No.	Description	DC Voltage[V]	Peripheral circuits at pins	Notes
1 3 5	Input 1 (R) Input 1 (B) Input 1 (G)	2.25		Input signal with low impedance.
$\begin{array}{r} 2 \\ 4 \\ 9 \\ 11 \end{array}$	$\operatorname{Vcc}(R)$ $\operatorname{Vcc}(B)$ Vcc(G) Vcc(h,V,Buffer, sw,SyncSep)	5.0	-	
6 7	Input 1 (H) Input 1 (V)	-		Input pulse between 2 V and 5 V .
$\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$	Input 2 (R) Input 2 (B) Input 2 (G)	2.25		Input signal with low impedance.
13 14	Input 2 (H) Input 2 (V)	-		Input pulse between 2 V and 5 V .

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH
Pin Description

Pin No.	Description		
Voltage[V]		Peripheral circuits at pins	Notes
:---			
15			
Switch			

MITSUBISHI ICs (Monitor)
M52756SP

Pin Description

Pin No.	Description	DC Voltage[V]	Peripheral circuits at pins	Notes
22	OUTPUT(G)			This output pin can drive connected load of 75Ω.
26	OUTPUT(B)	1.8		
29	OUTPUT(R)			
24	$\operatorname{Vcc}(\mathrm{G})$			
27	$\operatorname{Vcc}(\mathrm{~B})$	12.0		
30	$\operatorname{Vcc}(\mathrm{R})$			

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH

Attached Fig. 3 Measuring Circuit Diagram

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH
Supplementary Table1 Electrical Characteristics (Vcc=5V,12V; Ta=25 ${ }^{\circ} \mathrm{C}$ unless otherwise specified)

		Symbo	$\begin{gathered} \text { Test } \\ \text { Point(s) } \end{gathered}$	Vcc (V)	$\operatorname{Vcc}(5 \mathrm{~V})$				Input										$\begin{aligned} & \text { s.Sep } \\ & \hline \text { swzo } \\ & \text { s.Sepin } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SW } \\ \hline \text { SW15 } \\ \text { Swich } \end{array}$	Standard			Unit	Remark
				Vcc	$\begin{array}{\|c\|} \hline \text { sw2 } \\ \text { vocsv } \end{array}$	SW4	SW9	SWW1	SWI	$\begin{array}{\|l\|} \hline \text { SW3 } \\ \text { Binin } \end{array}$	$\begin{aligned} & \text { SW5 } \\ & \text { G1in } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SW6 } \\ \text { H-in } \end{array}$	$\begin{array}{l\|} \hline \text { SW/ } \\ \text { Min } \end{array}$	$\begin{aligned} & \mathrm{SWB} \\ & R \partial_{n} \end{aligned}$	$\begin{gathered} \hline \text { SWyo } \\ \text { BZ̃n } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { SW12 } \\ \text { Gz̈n } \end{array}$	$\begin{aligned} & \hline \text { SWl3 } \\ & \mathrm{H} \mathrm{O}_{\mathrm{n}} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { sw14 } \\ \text { vain } \end{array}$			MIN	TYP	MAX		
	Circuit current 1 (no signal)	Icc1	A	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\underset{-}{\mathrm{b}}$	b	b	b	b	b	b	b	b	b	a	a / b	27	37	47	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~A} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { note } \\ 1 \end{gathered}\right.$			
1	Circuit current 2 (no signal)	Icc2	B	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	b	b	b	b	b	b	a	a / b	58	78	98	mA	$\left\|\begin{array}{c} \text { note } \\ 1 \end{array}\right\|$			
	Circuit current 3 (power save)	Icc3	A	5	b	b	b	a 5 V	b	b	b	b	b	b	b	b	b	b	a	a/b	15	20	25	mA	$\left\|\begin{array}{c} \text { note } \\ 1 \end{array}\right\|$

No.		Symbo	$\begin{gathered} \text { Test } \\ \text { Point(s) } \end{gathered}$	Vcc (V)	$\mathrm{Vcc}(5 \mathrm{~V})$				Input										$\begin{aligned} & \text { s.Sep } \\ & \hline s W 20 \\ & s . \text { Sepin } \end{aligned}$	SW SW15 Swich	Standard			Unit	Remarh
				Vcc	$\begin{array}{\|l\|l\|} \hline \text { SW2 } \\ \text { Vcco } \end{array}$	SW4	SW9	SWW11 voc5V		$\left[\begin{array}{c} s_{3} W_{3 B} \\ n \end{array}\right.$	$\begin{aligned} & \text { SW5 } \\ & \text { Ginn } \end{aligned}$	$\begin{aligned} & \hline \text { SW6 } \\ & \text { HTin } \end{aligned}$	$\begin{aligned} & \hline \text { SW7 } \\ & \text { Vin } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SWB } \\ \text { Rãn } \\ \hline \end{array}$	$\begin{gathered} \text { swyo } \\ \text { Ban } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SW12 } \\ \text { G2in } \end{array}$	$\begin{array}{\|c} \hline \mathrm{SW} 33 \\ \mathrm{H} 2 \mathrm{n} \end{array}$	$\begin{array}{\|c\|} \hline \text { SW14 } \\ \text { vain } \end{array}$			MIN	TYP	$\begin{aligned} & \text { MA } \\ & X \end{aligned}$		
2	Output DC voltage 1	VDC1	$\begin{array}{\|l\|l\|} \hline \text { I. } 29 \\ -: P: 236 \\ \hline \end{array}$	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	b	b	b	b	b	b	a	$\begin{gathered} \mathrm{b} \\ \mathrm{GND} \end{gathered}$	0.7	1.0	$\begin{aligned} & 1 . \\ & 3 \\ & \hline \end{aligned}$	V	note2
	Output DC voltage 2	Voc2	$\begin{array}{\|l\|} \hline \text { I.P. } 29 \\ -: P: 23 \\ \hline \end{array}$	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	${ }_{-}^{b}$	b	$\underset{-}{b}$	b	b	b	a	$\begin{array}{\|c\|} \hline a \\ \text { OPEN } \end{array}$	0.7	1.0	$\begin{aligned} & 1 . \\ & 3 \\ & \hline \end{aligned}$	V	note2
3	Output DC voltage 3	Voc3	T.P. 21	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	b	b	b	b	b	b	a	$\begin{gathered} \mathrm{b} \\ \text { GND } \end{gathered}$	0.7	1.0	$\begin{aligned} & 1 . \\ & 3 \\ & \hline \end{aligned}$	V	note3
	Output DC voltage 4	VD04	T.P. 21	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	b	b	b	b	b	b	$\underset{-}{\mathrm{a}}$	$\begin{array}{c\|} \hline a \\ \text { OPEN } \end{array}$	0.7	1.0	$\begin{aligned} & 1 . \\ & 3 \\ & \hline \end{aligned}$	V	note3			
4	Maximum allowable input 1	Vimax	干:R:3	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{abb} \\ & \mathrm{SG} 1 \end{aligned}$	$\begin{aligned} & \mathrm{bab} \\ & \mathrm{SG} 1 \end{aligned}$	$\begin{aligned} & \mathrm{bba} \\ & \mathrm{SG} 1 \end{aligned}$	b	b	b	b	b	b	b	a	$\begin{gathered} \mathrm{b} \\ \text { GND } \end{gathered}$	1.6	2.0	-	$\begin{array}{\|c} \mathrm{Vp}- \\ \mathrm{p} \\ \hline \end{array}$	note4
	Maximum allowable input 2	Vimax 2	F:B:8	5,12	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	b	b	b	b	b	$\left\|\begin{array}{ll} a & b \\ s G 1 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { bab } \\ \text { SG1 } \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{b} \quad \mathrm{ba} \\ \mathrm{SG} 1 \\ \hline \end{array}$	b	b	a	$\begin{gathered} a \\ \text { OPEN } \end{gathered}$	1.6	2.0	-	Vp-	note4

MITSUBISHI ICs（Monitor）
M52756SP
WIDE BAND ANALOG SWITCH

	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 80.0 \\ & \stackrel{0}{6} \\ & \hline \end{aligned}$		$\begin{aligned} & \overline{\bar{B}_{2}} \\ & \underline{C} \end{aligned}$	$\begin{aligned} & \frac{8}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{8}{6} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ©iٍ } \\ & \stackrel{y y}{\circ} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underline{C} \end{aligned}$	$\stackrel{\text { \％}}{\text { ¢ }}$
	¢	¢	\％	¢	m	\％	¢	m	m	¢	¢	m	¢
	$\stackrel{\square}{\square}$	$\stackrel{+}{\circ}$	$\stackrel{\square}{+}$	$\stackrel{+}{\circ}$	$\stackrel{+}{\circ}$	\bigcirc	\bigcirc	$\stackrel{\square}{\circ}$	$\stackrel{\bigcirc}{-}$	$\stackrel{\circ}{\circ}$	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{\bigcirc}{-}$
	$\stackrel{\text { ¢ }}{\stackrel{-}{\square}}$	\bigcirc	$\stackrel{\text { ¢ }}{\stackrel{-}{+}}$	\bigcirc	\bigcirc	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{i}$	$\stackrel{\sim}{\square}$	\bigcirc	$\stackrel{\sim}{\square}$	\bigcirc	$\stackrel{1}{\square}$	$\stackrel{\stackrel{1}{\square}}{\stackrel{\circ}{1}}$
	10	$\begin{aligned} & \text { i } \\ & i \end{aligned}$	$\stackrel{10}{0}$	$\begin{aligned} & \text { ì } \\ & i \end{aligned}$	$\begin{aligned} & \text { ì } \\ & i \end{aligned}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\stackrel{1}{1}}$	\bigcirc	$\stackrel{+}{\circ}$	\bigcirc	$\begin{aligned} & \stackrel{0}{+} \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$
方	-		$\sigma \underset{\substack{2 \\ 0}}{2}$	$$	$\begin{aligned} & 010 \\ & \text { O} \\ & \text { O } \end{aligned}$	$\therefore \sum_{0}^{0}$		$\bigcirc \sum_{\mathbb{N}}^{0}$	0 8 8 8 8	$\approx \underset{\underset{0}{2}}{\substack{\underset{0}{2} \\ \hline}}$	$\begin{aligned} & 010 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\therefore \sum_{0}^{1}$	๙¢ $\substack{\text { ¢ }}$ 1
	๘ I		๔ ।			๔ I	๘ I	๘ I		๔ I		๘ I	๘ I
$\begin{aligned} & \text { 플 } \\ & \text { 를 } \end{aligned}$	$\bigcirc 1$		－ 1			$\bigcirc 1$	○ I	○ I		$\bigcirc 1$		○ 1	$\bigcirc 1$
	$\bigcirc 1$		으		$\begin{aligned} & \mathbb{N} \\ & \stackrel{1}{3} \\ & \underset{\sim}{0} \end{aligned}$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$		$\bigcirc 1$	$\begin{aligned} & \infty \\ & \frac{\otimes}{3} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	－1	$\bigcirc 1$
	$\bigcirc 1$		$\begin{array}{\|l\|} \hline \sigma \\ \text { on } \\ \text { o } \\ \hline \end{array}$			－I	๙	－I				－ 1	
	$\bigcirc 1$				$\begin{aligned} & \text { O } \\ & \underline{y} \end{aligned}$	$\bigcirc 1$	－I	$\bigcirc 1$	\cong		$\begin{aligned} & \bar{O} \\ & \underline{U} \end{aligned}$	으	
	ㅇ． 1				$\begin{aligned} & \overrightarrow{0} \\ & \underset{\sim}{\infty} \end{aligned}$	$\bigcirc 1$	○ I	$\bigcirc 1$	$\stackrel{\bar{\rightharpoonup}}{\omega}$		$\begin{aligned} & \overline{\widetilde{N}} \\ & \underset{\sim}{\otimes} \\ & \hline \end{aligned}$	으 1	
	$\bigcirc 1$		ค 1		ε	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	E	$\bigcirc 1$	$\begin{aligned} & E \\ & \hline 9 \end{aligned}$	$\bigcirc 1$	－ 1
	－ 1		$\bigcirc 1$	ϱ	ϱ	$\bigcirc 1$	○ I	－I	（1）	$\bigcirc 1$	\pm	－I	으 1
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline 0 \\ \text { Q } \\ \hline \end{array}$		$\bigcirc 1$	$\underset{\sim}{\mathbb{0}}$	$\underset{\sim}{\mathbb{0}}$	๙ ¢	－1	$\begin{aligned} & \hline \sigma \text { J } \\ & \text { Q } \\ & \text { Q } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \frac{\pi}{0} \\ & \mathbb{N} \end{aligned}$	$\bigcirc 1$	$\underset{\sim}{\pi}$	－	ค I
	$$		이			－I	○ 1	$$		$\bigcirc 1$		O O O O O 0	으 1
	$\begin{array}{\|l\|} \hline \text { O N } \\ \text { O } \\ \text { N } \\ \hline \end{array}$		$\bigcirc 1$			－ 1	－I	$\begin{aligned} & \hline \text { O } \\ & \text { Q } \\ & \sigma \\ & \sigma \\ & \hline \end{aligned}$		$\bigcirc 1$		－	－ 1
$\begin{aligned} & 5 \\ & 10 \\ & 8 \\ & 8 \end{aligned}$	\％${ }^{\text {¢ }}$		\sim_{0} ¢			๘	๘	σ ¢		๘		$\cdots \stackrel{3}{\circ}$	$\omega^{\text {® }}$
	๗）		\cdots			๘	0 \％	ω ¢		๗ヶ		σ is	\cdots ¢
	σ ¢		๙			๘	ธ $ゝ$	π is		๙ ${ }_{\text {¢ }}$		ธ入	\cdots is
	\sim \％		π \％			\cdots	\cdots	ธ）		ธ		$\cdots \stackrel{1}{5}$	\cdots
¢S	$\stackrel{N}{N}$		$\stackrel{N}{\text { N }}$			$\stackrel{N}{\text { N }}$	$\stackrel{N}{N}$	$\stackrel{N}{5}$		$\overline{50}$		$\overline{50}$	5
							$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \\ & \stackrel{1}{\vdash} \\ & \hline \end{aligned}$	$\stackrel{\ominus \vdash}{ }$					
$\begin{aligned} & \bar{\delta} \\ & \text { 合 } \\ & \hline \end{aligned}$	$\overline{5}$	$\begin{aligned} & \bar{J} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-3 \\ & \hline \text { O} \end{aligned}$	$$	$\stackrel{\text { U }}{\sim}$	¢	\％	§	N	\％	¢
$\stackrel{\circ}{2}$	\bigcirc					\bigcirc		N				∞	

ELECTRIC

MITSUBISHI ICs（Monitor）
M52756SP
WIDE BAND ANALOG SWITCH

$$		$\begin{aligned} & \text { OQ } \\ & \stackrel{\otimes}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { © } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { N } \\ & \stackrel{\text { N}}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { ח } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\varrho}{\infty} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$$	¢
$\frac{\pi}{5}$	¢	¢	¢	¢	¢	¢	$\frac{\mathrm{Q}}{\mathrm{O}}$	$\frac{\mathrm{m}}{\mathrm{o}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \hline \end{aligned}$	O 0	¢
	－8	＋80	¢	9	\bigcirc	$\stackrel{8}{+}$	$\stackrel{10}{\sim}$	$\stackrel{10}{\sim}$	$\stackrel{\bigcirc}{\circ}$	$\stackrel{\bigcirc}{\circ}$	$\stackrel{\bigcirc}{\circ}$	$\stackrel{\bigcirc}{\circ}$
	\bigcirc	9	9	\％	\bigcirc	\％	¢	¢	$\stackrel{\bigcirc}{-}$	$\stackrel{\bigcirc}{-}$	$\stackrel{\bigcirc}{-}$	$\stackrel{\bigcirc}{-}$
									1	｜	｜	1
$\begin{array}{l\|ll} \hline 3 & 0 \\ \infty & \sum_{0} & \frac{5}{3} \\ \hline \end{array}$	$\sum_{\mathbb{N}} \rightarrow{\underset{O}{0}}_{\mathbf{O}}^{0}$		$\sum_{0} \rightarrow \frac{i}{n}$		\sum_{0}^{9}	$\cdots \underset{\substack{11 \\ 0}}{2}$	$\bigcirc \sum_{0}^{\infty}$	$\approx \underset{\substack{1 \\ 0}}{2}$	$\sum_{(1)}^{9}$	ㅇ	$\approx \underset{\substack{1 \\ 0}}{2}$	$\approx \underset{\substack{11}}{2}$
$\begin{array}{l\|ll} \hline \infty & \stackrel{\Sigma}{0} \\ \infty & 0 & 0 \\ \infty & \infty & 0 \\ \hline \end{array}$	๘ I	๘ I	๙ I	๙ I	๙ I	๙ I	๘ I	๙ I	๙ I	๘ I	๘ I	๙ I
	오 I	요 1	요 1	요 I	요	요	오 1	－1	오 1	요 1	으 1	요
	오 I	요 I	요 1	요 1	오 1	요 1	으 1	요 I	요 1	요 1	으 1	요 1
N	오 1		요 I		으 1	$\begin{array}{ll} \hline \pi & 9 \\ \Omega & \bigcup \\ 0 & 0 \end{array}$	으 1		오 1	요 1	๘ ¢ ¢	
	오 I		요 I	$$	오 I		으 1	$\begin{array}{\|l\|} \hline \text { Q } \\ \text { Q } \\ \sigma \\ \hline \end{array}$	오 1	요 1	๘ $\begin{gathered}\text { ¢ } \\ 0 \\ 0\end{gathered}$	\％ $\begin{gathered}\text { ¢ } \\ \\ 0 \\ 0 \\ 0\end{gathered}$
	오 1		요 I		으 1	$\begin{array}{lc} \hline \text { O } & 0 \\ \text { 几 } & (\\ \sigma & 0 \\ \hline \end{array}$	오 1	$$	이 1	요 1	匹¢	
$\frac{5}{5}$	으	이	요	요 1	으 1	요 1	으 1	요 I	이 1	으 1	이	으 1
患	오 I	오 I	요 1	요 1	요 1	요 I	으 1	요 I	요 1	요 1	으 1	요 1
		요	［10	요 I		요 I		요 I	¢	¢	오 1	요 1
旁		ค 1	$$	ค 1	$\begin{aligned} & \hline \text { Q M } \\ & \text { o } 0 \\ & \text { O O } \end{aligned}$	ㅇ． 1	$$	요	๘	\％	이 1	요 1
	$\begin{array}{ll} \hline \Omega & \vdots \\ 0 & V \\ \sigma & 0 \\ \hline \end{array}$	오 1	$\begin{array}{\|lc} \hline \Omega & 寸 \\ \Omega & 0 \\ \sigma & 0 \\ \hline \end{array}$	이 1	迢	요 I		요 I	\％¢	¢	으 1	요 I
	\cdots	\sim_{1}	\cdots	\sim	\sim_{0}	$\sim_{1}>$	\％	\checkmark	$\sim_{0}>$	~ 3	๙	π ¢
	\sim ®	\cdots	\cdots	$\pi>$	\cdots	\sim_{5}	๗ゝ	$\sim>$	\sim_{0}	\cdots	\cdots	\cdots
$\begin{array}{lll} 8 \\ 8 & \text { 苞 } \\ \hline \end{array}$	๙	๘	$\sim_{\sim}>$	\cdots	\sim_{0}	\sim_{0}	๙》	$\sim>$	๘	\％	๙》	\cdots
	\cdots	$\pi>$	$\sim_{0}>$	\cdots	$\sim_{0}>$	$\sim_{\sim}>$	๗ゝ	π	$\sim>$	π	$\sigma>$	π
$8 \geq 8$	$\stackrel{N}{5}$	$\stackrel{N}{N}$	$$	$\stackrel{N}{N}$	$\stackrel{N}{5}$	$\begin{aligned} & \mathrm{N} \\ & \hline 10 \\ & \hline \end{aligned}$	$\stackrel{N}{N}$	$\begin{gathered} \mathrm{N} \\ \hline 0 \\ \hline \end{gathered}$	$\begin{aligned} & N \\ & N \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \hline \end{aligned}$	$\begin{gathered} N \\ N \\ \hline \end{gathered}$
苍		W్Nल్ － トート		ल్ఞN ㅁㅁ ートト	ल్బN్ ㅁㅁ トトト	N®M NヘM 	N以N ㅁㅁ	مొMM － 0	Nown 0	Nem －	 믄믄	Nen
$\begin{aligned} & \hline \text { ס } \\ & \text { E } \\ & 6 \end{aligned}$	$\begin{aligned} & \bar{\zeta} \\ & \stackrel{\zeta}{\circ} \end{aligned}$	$\stackrel{\stackrel{N}{\square}}{\stackrel{\sim}{6}}$	$\stackrel{\stackrel{n}{\square}}{\stackrel{0}{6}}$	$\stackrel{+}{\stackrel{+}{5}}$	$\begin{aligned} & \bar{U} \\ & \hline- \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$$	$$	F	$\stackrel{\square}{F}$	N	$\stackrel{N}{N}$
										$\begin{aligned} & \text { T} \\ & \frac{0}{0 N} \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & \frac{\pi}{\pi} \\ & \frac{1}{0} \end{aligned}$		
$\stackrel{\circ}{2}$	σ		안		Γ		$\stackrel{\sim}{\sim}$		$\stackrel{\square}{\square}$			

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH

SYNC SEP

		$\frac{0}{2}$	$\frac{0}{2}$	$>$	$>$	$$	O
	$\underset{X}{X}$	$\stackrel{\circ}{\circ}$	1	｜	$\stackrel{18}{\circ}$	8	－
	$\stackrel{\square}{\square}$			$\stackrel{9}{+}$	$\stackrel{\bigcirc}{\circ}$	8	꾼
	$\bar{\Sigma}$	｜	$\stackrel{\mathrm{N}}{\bigcirc}$	$\stackrel{18}{8}$	｜	｜	｜
3_{∞}^{3}		$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	이	$\bigcirc 1$
$\begin{aligned} & \hline \frac{0}{\infty} \\ & \infty \\ & \infty \end{aligned}$		$\begin{array}{\|l\|l} \hline \infty \\ \hline 0 \\ \hline \end{array}$		$\begin{gathered} \text { © } \\ \hline \text { ○ } \\ \hline 0 \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { O } \\ \hline \text { O } \end{array}$	$\begin{gathered} \infty \\ \hline \text { ○ } \\ \hline \end{gathered}$	$\begin{array}{r} \infty \\ \hline \text { م } \begin{array}{c} 0 \\ 0 \\ \hline \end{array} \\ \hline \end{array}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{2}} \\ & \underline{I} \end{aligned}$		$\bigcirc 1$	－I	－I	－I	－I	$\bigcirc 1$
	骨产	$\bigcirc 1$	ㅇ I	$\bigcirc 1$	－I	이	이
	零	$\bigcirc 1$	ค 1	$\bigcirc 1$	$\bigcirc 1$	ㅇ 1	$\bigcirc 1$
	号気	$\bigcirc 1$	ㅇ I	$\bigcirc 1$	$\bigcirc 1$	ㅇ I	요
	咢気	$\bigcirc 1$	ค I	$\bigcirc 1$	－I	ค I	$\bigcirc 1$
	穷	$\bigcirc 1$	－I	$\bigcirc 1$	$\bigcirc 1$	－I	－I
		$\bigcirc 1$	ค 1	$\bigcirc 1$	－I	$\bigcirc 1$	ค I
	爰宕	$\bigcirc 1$	$\bigcirc 1$	－1	－I	$\bigcirc 1$	ค I
	䈁言	$\bigcirc 1$	$\bigcirc 1$	이	－I	이	ค I
	気	$\bigcirc 1$	$\bigcirc 1$	요	－I	이	$\bigcirc 1$
$\begin{aligned} & 5 \\ & \frac{10}{8} \\ & 8 \end{aligned}$		の ${ }^{\text {¢ }}$	の ${ }^{\text {¢ }}$	๗	『々	$\omega^{\text {® }}$	๙
	咢宕	\cdots	๗	๗	๗	$\sigma \stackrel{3}{0}$	σ_{\square}
	考宕	๙	๙	ธ	๘	๙	『®
	永砍		『 ${ }^{\circ}$	\％${ }^{\circ}$	๗ถ	σ \％	『＜
88	－	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\sim}{\mathrm{~N}} \\ & \hline \end{aligned}$	$$	$\begin{gathered} \mathrm{N} \\ \stackrel{\sim}{5} \\ \hline \end{gathered}$	$$	$\begin{aligned} & \hline \mathrm{N} \\ & \stackrel{5}{5} \\ & \hline \end{aligned}$
		$\frac{0}{2}$	$\stackrel{\circ}{\square}$	$\frac{\stackrel{\pi}{\Gamma}}{\stackrel{1}{+}}$	$\begin{aligned} & \stackrel{\pi}{\Gamma} \\ & \stackrel{i}{-} \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{\Gamma} \\ & \stackrel{i}{-} \end{aligned}$	$\stackrel{\stackrel{\pi}{2}}{\stackrel{1}{+}}$
$$		$\begin{aligned} & 3 \\ & \vdots \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \vec{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\frac{\mathrm{T}}{\mathrm{~S}}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\overleftarrow{\pi}}{\stackrel{\circ}{\circ}}$	$\stackrel{\text { ¢ }}{\square}$
$\stackrel{\circ}{2}$		앙	$\stackrel{\text { ᄃ }}{ }$				

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH
note) It omits the SW.No accorded with signal input pin because it is already written in Table 1.
SW A is in side a if there is not defined specially.
note1) The condition is shown as Table 1. Set SW15 to GND(or OPEN) and SW A to side b, measure the current by current meter A(or B). The current is as Icc1(Icc2,Icc3).
note2) Set SW15 to GND (or OPEN), measure the DC voltage of T.P.29(T.P.26,T.P.23) when there is no signal input.The DC voltage is as Vdc1 (or Vdc2).
note3) Measure the DC voltage of T.P. 21 same as note2, the $D C$ voltage is as $V_{D C 3}(o r \operatorname{Vdc} 4)$.
note4) Set SW15 to GND, SG1 as the input signal of Pin 1.Rising up the amplitude of SG1 slowly, read the amplitude of input signal when the output waveform is distorted. The amplitude is as Vimax1. And measure Vimax1 when SG1 as the input signal of Pin 3,Pin 5 in same way. Next, set SW 15 to OPEN, measure Vimax2 when SG1 as the input signal of Pin8, 10, 12.
note5) 1. The condition is shown as Table 1.
2. Set SW15 to GND, SG2 as the input signal of Pin 1. At this time, read the amplitude output from T.P 29. The amplitude is as Vor1.
3. Voltage gain Gv1 is

$$
\mathrm{G}_{\mathrm{v}} 1=20 \mathrm{LOG} \frac{\mathrm{~V}_{\mathrm{or}} 1[\mathrm{Vp}-\mathrm{p}]}{0.7[\mathrm{Vp}-\mathrm{p}]}[\mathrm{dB}]
$$

4. The method as same as 2 and 3, measure the voltage gain Gv1 when SG2 as the input signal of Pin 3, 5.
5. The difference of each channel relative voltage gain is as $\Delta \mathrm{Gv} 1$.
$\Delta G v 1=G v 1 R-G v 1 B, G v 1 B-G v 1 G, G v 1 G-G v 1 R$
6. Set SW15 to OPEN, measure Gv2, $\Delta \mathrm{Gv} 2$ in the same way.
note5') Voltage gain $\Delta \mathrm{Gv}^{\prime}$ is

$$
\Delta G^{\prime}=G v 1 R-G v 2 R, G v 1 G-G v 2 G, G v 1 B-G v 2 B
$$

note6) 1. The condition is shown as table 1. This test is by active probe.
2. Measure the amplitude output from T.P.21.
3. Measure the Gv3,Gv4 by the same way as note5.
note7) 1. The condition is shown as table 1. This test is by active probe.
2. Set SW15 to GND, SG2 as the input signal of Pin 1. Measure the amplitude output from T.P.29. The amplitude is as Vor1.By the same way, measure the output when SG4 is as input signal of Pin 1, the output is as Vor2.
3. The frequency characteristic Fc1 is

$$
\mathrm{F}_{\mathrm{c}} 1=20 \mathrm{LOG} \frac{\mathrm{~V}_{\text {or2 }}[\mathrm{Vp}-\mathrm{p}]}{\mathrm{V}_{\mathrm{or}} 1[\mathrm{Vp}-\mathrm{p}]}[\mathrm{dB}]
$$

4. The method as same as 2 and 3, measure the frequency Fc1 when input signal to Pin 3, 5.
5. The difference between of each channel frequency characteristic is as $\Delta \mathrm{Fc} 1$.
6. Set SW15 to OPEN, measure Fc2, $\Delta \mathrm{Fc} 2$.
note8) By the same way as Note7 measure the Fc3, Fc4 when SG5 of input signal.
note9) 1. The condition is shown as Table1. This test is by active prove.
7. Set SW15 to GND, SG3 as the input signal of Pin 1. Measure the amplitude output from T.P.29. The amplitude is as Vor3.
8. Set SW15 to OPEN, measure the amplitude output from T.P.29. The amplitude is as Vor3'.
9. The crosstalk between two inputs C.T.I. 1 is

$$
\text { C.T.I. } 1=20 \text { LOG } \frac{V_{o R 3 ' ~}[V p-p]}{V_{\text {or3 }}[\mathrm{Vp}-\mathrm{p}]}[\mathrm{dB}]
$$

5. By the same way, measure the crosstalk between two inputs when SG3 as the input signal of Pin3, Pin 5.
6. Next, set SW15 to OPEN, SG3 as the input signal of Pin 8, measure the amplitude output from T.P.29. The amplitude is as Vor4.
7. Set SW15 to GND, measure the amplitude output from T.P.29. The amplitude is as Vor4'.
8. The crosstalk between two inputs C.T.I. 2 is

$$
\text { C.T.I. } 2=20 \text { LOG } \frac{V_{o R} 4{ }^{\prime}[V p-p]}{V_{o R} 4[V p-p]}[d B]
$$

9. By the same way, measure the crosstalk between channels when SG3 as the input signal of $\operatorname{Pin} 10,12$.
note10) Set SG4 as the input signal, and then the same method as note9, measure C.T.I.3, C.T.I.4.
note11) 1. The condition is as Table 1. This test is by active prove.
10. Set SW15 to GND, SG3 as the input signal of Pin 1. Measure the amplitude output from T.P.29. The amplitude is as Vor5.
11. Next, measure T.P.26, T.P. 23 in the same state, and the amplitude is as Vog 5, Vob 5.
12. The crosstalk between channels C.T.C. 1 is

$$
\text { C.T.C1 }=20 \text { LOG } \frac{V_{\text {OG5 }} \text { or } V_{\text {ob5 }}}{V_{\text {OR5 }}}[\mathrm{dB}]
$$

5. Measure the crosstalk between channels when SG3 is as the input signal of Pin 3, Pin 5
6. Next, set SW15 to OPEN, SG3 as the input signal of Pin8, measure the amplitude output from T.P.29. The amplitude is as Vor6.
7.Next, measure the amplitude output from T.P.26, T.P. 23 in the same state. The amplitude is
as
Vog6, Vob6
7. The crosstalk between channels C.T.C. 2 is C.T. $\mathrm{C} 2=20 \mathrm{LOG} \frac{\mathrm{V}_{\text {og6 }} \text { or } \mathrm{V}_{\text {o86 }}}{\mathrm{V}_{\text {ов6 }}}$ [dB]
8. By the same way, measure the crosstalk between channels when input signal to Pin10, 12.
note12) Set SG4 as the input signal, and the same method as note11, measure C.T.C.3, C.T.C.4.
note13) 1. The condition is as Table 1. Set SW15 to GND (or OPEN).
9. The rising of $10 \% \sim 90 \%$ for input pulse is Tri, the falling of 10% ~ 90% for input pulse is Tfi.
10. Next, the rising of 10% ~ 90% for output pulse is Tro, the falling of 10% ~ 90% for output pulse is Tfo.
11. The pulse characteristic Tr1, Tf1 (Tr2, Tf2) is

$$
\operatorname{Tr} 1(\mathrm{Tr} 2)=\sqrt{(\mathrm{Tro})^{2}-(\mathrm{Tri})^{2}} \quad(\mathrm{nsec}) \quad \mathrm{Tf} 1(\mathrm{Tf} 2)=\sqrt{(\mathrm{Tfo})^{2}-(\mathrm{Tfi})^{2}} \quad(\mathrm{nsec})
$$

note14) The condition is as Table 1. Set SW15 to GND (OPEN), input 5V at input terminal. Measure the output voltage, the voltage is as VoH 1 (VoH2).
note15) The condition is as Table 1. Set SW15 to GND (OPEN), input OV at input terminal. Measure the output voltage, the voltage is as VoL1 (VoL2).
note16) The condition is as table 1 . Set SW15 to GND (OPEN), increasing gradually the voltage of input terminal from 0 V , measure the voltage of input terminal when output terminal is 4.5 V . The input voltage is as Vith1(Vith 2).
some parametric limits are subje
note17, note18) The condition is as table 1. Set SW15 to GND (OPEN), SG7 is as the input signal of input terminal, measure the waveform of output. Rising delay time is as Trd1 (Trd2). Falling delay time is as Tfd1(Tfd2). Reference to the Fig. as shown below.

note19) 1. The condition is as table 1. SG1 is as the input signal of Pin1, Pin3, Pin5, and SG7 is as the input signal of Pin6, Pin7. There is no input at another pins.
2. Input 0 V at Pin15, confirm that there are signals output from T.P.29, T.P.26, T.P.23, T.P.21, T.P.18,T.P. 17.
3. Increasing gradually the voltage of terminal Pin15. Read the voltage when there is no signal output from the terminals listed as above. The voltage is as Vsth1.
4. SG1 as the input signal of Pin8, Pin10, Pin12, and SG7 as the input signal of Pin13, Pin14. There is no input at another pins.
5. Inputs 5V at Pin15, confirm that there is no signal output from T.P29, T.P.26, T.P.23, T.P.21, T.P.18,T.P. 17
6. Decreasing gradually the voltage of terminal Pin 15 . Read the voltage when there are signals output from the terminals listed as above. The voltage is as Vsth2.
note20) The condition is as table 1. SG8 of luminance 0% is the input signal of Pin20. Increase sync level from 0 Vp -p to 0.02 Vp -p. Confirm outputting no pluse.
note21) The condition is as table 1. SG8 of luminance 100% (or 0\%) is the input signal of Pin20. Decrease sync level from 0.3 Vp -p to 0.2 Vp -p. Confirm no malfunction produced by noise.
note22) The condition is as table 1. SG8 of luminance 100% (or 0%) is the input signal of Pin20. Measure the high(low) at SyncOUT. The measured value is treated as $\mathrm{Vsh}_{\mathrm{sh}}(\mathrm{VsL})$.
note23) The condition is as table 1. SG8 of luminance 100% (or 0\%) is the input signal of Pin20. SyncOUT becomes High with sync part of SG8. Measure the time needed for the front(rear) edge of SG8 sync to fall(rise) from 50% and for SyncOUT to rise(fall) from 50% with an active prove. The measured value is treated as Tdsf(Tdsr).

Symbol	Input Signal
	Sine wave ($\mathrm{f}=60 \mathrm{kHz}, 0.7 \mathrm{Vp}-\mathrm{p}$, amplitude variable)
SG1	
SG2	Sine wave ($f=1 \mathrm{MHz}$, amplitude 0.7 Vp -p)
SG3	Sine wave ($\mathrm{f}=10 \mathrm{MHz}$, amplitude 0.7 Vp p)
SG4	Sine wave ($\mathrm{f}=100 \mathrm{MHz}$, amplitude 0.7 Vp -p)
SG5	Sine wave ($\mathrm{f}=250 \mathrm{MHz}$, amplitude 0.7 Vp p p)
SG6	Pulse with amplitude $0.7 \mathrm{Vp}-\mathrm{p}$ ($f=60 \mathrm{kHz}$, duty 80%)
SG7	Square wave (Amplitude 5.0 Vo-p TTL, $f=60 \mathrm{KHz}$, duty 50%)
SG8	Video signal (luminance $100 \%, 0 \%$) 60KHz Video width of $12.5 \mu \mathrm{sec}(75 \%)$

some parametric limits are subjen

MITSUBISHI ICs (Monitor)
M52756SP
WIDE BAND ANALOG SWITCH

Note how to use this IC

1. R, G, B input signal is $0.7 \mathrm{Vp}-\mathrm{p}$ of standard video signal.
2. H, V input is 2.0 V (minimum) TTL type.
3. Input signal with sufficient low impedance to input terminal.
4. The terminal of H, V output pin are shown as Fig.4. It is possible to reduce rise time by insert the resistor between Vcc line and H, V output Pin, but set the value of resistor in order that the current is under 7.5 mA .

Fig. 4
5. Switch (Pin 15) can be changed when this terminal is GND or OPEN

When GND : Signal output from input 1
When OPEN : Signal output from input 2
When the switch is being used as Fig. 5
$0 \sim 0.5 \mathrm{~V} \quad: \quad$ Signal output from input 1
2~5 V : Signal output from input 2
It is not allowable to set voltage higher than Vcc.

Fig. 5

Notice of making printed circuit board.

Please notice following as shown below. It will maybe cause something oscillation because of the
P.C.B. layout of the wide band analog switch.

- The distance between resistor and output pin is as short as possible.
- The capacitance of output terminal as small as possible.
- Set the capacitance between Vcc and GND near the pins if possible.
- Using stable power-source.

The separated 12V-power-source (if possible the separated 5V-power-source will be better).

- Assign an area as large as possible for grounding.
- Pay attention to leak of signaling from the output.

Attached Fig. 6 Application Example

Marking

Structure

Material

Mold Material	: Epoxy
Wire Material	: Au
Outer Lead Treatment	: Solder Plating
Lead Flame Material	$:$ Tin Nickel Copper
Inner Lead Treatment	$:$ Silver Plating
Over Passivation	$:$ SiN

Factory

Fukuoka,Japan

