M37702M4AXXXFP, M37702M4BXXXFP M37702S4FP are respectively unified into M37702M4AXXXFP M37702S4FP, M37702S4BFP

and M37702S4AFP. SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M37702M4AXXXFP is a single-chip microcomputer designed with high-performance CMOS silicon gate technology. This is housed in a 80-pin plastic molded QFP. This single-chip microcomputer has a large 16M bytes address space, three instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that can also be switched to perform 8-bit parallel processing. This microcomputer is suitable for office, business and industrial equipment controller that require high-speed processing of large data.

The differences between M37702M4AXXXFP, M37702M4B XXXFP, M37702S4AFP and M37702S4BFP are the ROM size and the external clock input frequency as shown below. Therefore, the following descriptions will be for the M37702M4AXXXFP unless otherwise noted.

Type name	ROM size	External clock input frequency
M37702M4AXXXFP	32K bytes	16MHz
M37702M4BXXXFP	32K bytes	25MHz
M37702S4AFP	External	16MHz
M37702S4BFP	External	25MHz

The M37702M4AXXXFP has the same functions as the M37702M2AXXXFP except for the memory size.

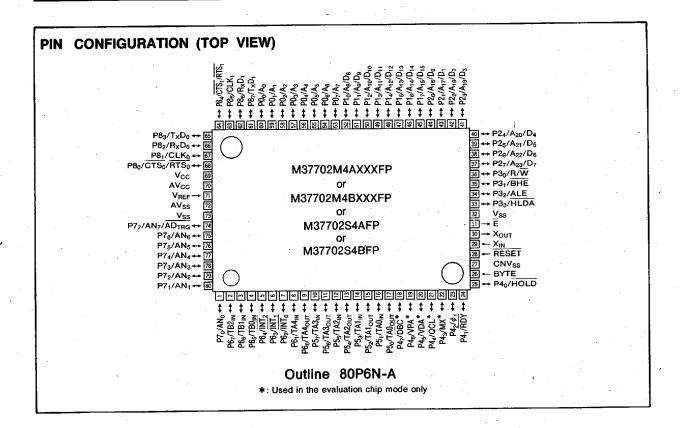
FEATURES

•	Number of basic	instructions·····103
•	Memory size	ROM ······32K bytes
		RAM 2048 bytes
•	Instruction exec	
	M37702M4AXXX	(FP, M37702S4AFP
	(The fastest inst	ruction at 16 MHz frequency)······ 250ns (FP, M37702S4BFP
		ruction at 25 MHz frequency)······ 160ns
•	Single nower su	pply·····5V±10%
•	low nower dissi	pation (at 16 MHz frequency)
_	power dissi	pation (at 16 MHz frequency)
_	Intermed	60mW (Typ.)
-	Market 5	19 types 7 levels
•		16-bit timer 5+3
•	UARI (may also	be synchronous) ·····2
•	8-bit A-D conver	ter ····· 8-channel inputs
•	12-bit watchdog	
•	Programmable in	
	(ports P0, P1, P2	2, P3, P4, P5, P6, P7, P8) ····· 68

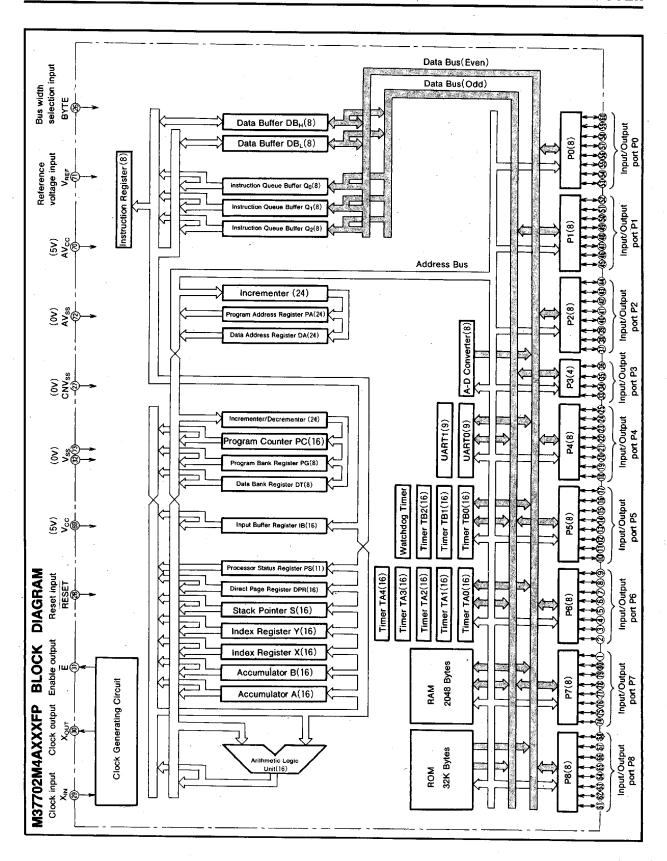
APPLICATION

Control devices for office equipment such as copiers, printers, typewriters, facsimiles, word processors and personal computers

Control devices for industrial equipment such as ME, NC, communication, and measuring instruments


NOTE

Refer to "Chapter 5 PRECAUTIONS" when using this microcomputer.


The M37702M4AXXXFP and M37702S4AFP satisfy the timing requirements and the switching characteristics of the former M37702M4-XXXFP and M37702S4FP.

M37702M4AXXXFP,M37702M4BXXXFP M37702S4AFP,M37702S4BFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

M37702M4AXXXFP,M37702M4BXXXFP M37702S4AFP,M37702S4BFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

FUNCTIONS OF M37702M4AXXXFP

-	Parameter	Functions
Number of basic instructions		103
	M37702M4AXXXFP, M37702S4AFP	250ns (the fastest instruction at external clock 16MHz frequency)
Instruction execution time	M37702M4BXXXFP, M37702S4BFP	160ns (the fastest instruction at external clock 25MHz frequency)
	ROM	32K bytes
Memory size	RAM	2048 bytes
	P0~P2, P4~P8	8 -bit× 8
Input/Output ports	P3	4 -bit× 1
	TA0, TA1, TA2, TA3, TA4	16-bit× 5
Multi-function timers	16-bit× 3	
Serial I/O		(UART or clock synchronous serial I/O)X2
A-D converter	, ,	8 -bitX 1 (8 channels)
Watchdog timer		12-bit× 1
		3 external types, 16 internal types
Interrupts	·	(Each interrupt can be set the priority levels to $0 \sim 7$.)
Clock generating circuit		Built-in externally connected to a ceramic resonator or quartz crystal resonator
Supply voltage		5 V±10%
Power dissipation		60mW(at external clock 16MHz frequency)
	Input/Output voltage	5 V
Input/Output characteristic	Output current	5 mA
Memory expansion		Maximum 16M bytes
Operating temperature range	8	−20~85°C
Device structure	_	CMOS high-performance silicon gate process
Package		80-pin plastic molded QFP

M37702M4AXXXFP,M37702M4BXXXFP M37702S4AFP,M37702S4BFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	Functions
V _{CC} , V _{SS}	Power supply		Supply 5 V±10% to V _{CC} and 0 V to V _{SS} .
CNV _{SS}	CNV _{SS} input	Input	This pin controls the processor mode. Connect to V_{SS} for single-chip mode, and to V_{CC} for external ROM types.
RESET	Reset input	Input	To enter the reset state, this pin must be kept at a "L" condition which should be maintained for the required time.
X _{IN}	Clock input	Input	These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz crystal resonator between X_{IN} and X_{OUT} . When an external clock is used, the clock source should be connected to the X_{IN} pin
Хоит	Clock output	Output	and the X _{OUT} pin should be left open.
Ē	Enable output	Output	Data or instruction read and data write are performed when output from this pin is "L".
ВҮТЕ	Bus width selection input	Input	In memory expansion mode or microprocessor mode, this pin determines whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits when "L" signal inputs and 8 bits when "H" signal inputs.
AV _{CC} AV _{SS}	Analog supply input		Power supply for the A-D converter. Connect AV _{CC} to V _{CC} and AV _{SS} to V _{SS} externally.
V _{REF}	Reference voltage input	Input	This is reference voltage input pin for the A-D converter.
P0 ₀ ~P0 ₇	I/O port P0	1/0	In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in input mode when reset . $Address(A_7 \sim A_0)$ is output in memory expansion mode or microprocessor mode.
P1 ₀ ~P1 ₇	I/O port P1	1/0	In single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to "L" in memory expansion mode or microprocessor mode and external data bus is 16-bit width, high-order data $(D_{15}\sim D_8)$ is input or output when \widetilde{E} output is "L" and an address $(A_{15}\sim A_8)$ is output when \widetilde{E} output is "H". If the BYTE pin is "H" that is an external data bus is 8-bit width, only address $(A_{15}\sim A_8)$ is output.
P2 ₀ ~P2 ₇	I/O port P2	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microp-rocessor mode low-order data($D_7 \sim D_0$) is input or output when \overline{E} output is "L" and an address($A_{23} \sim A_{16}$) is output when \overline{E} output is "H".
P3 ₀ ~P3 ₃	I/O port P3	I/O	In single-chip mode , these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, R/W, BHE, ALE, and HLDA signals are output.
P4 ₀ ~P4 ₇	I/O port P4	1/0	In single-chip mode, these pins have the same functions as port P0. In memory expansion mode or microprocessor mode, P4 ₀ and P4 ₁ become $\overline{\text{HOLD}}$ and $\overline{\text{RDY}}$ input pin respectively. Functions of other pins are the same as in single-chip mode. In single-chip mode or memory expansion mode, port P4 ₂ can be programmed for ϕ_1 output pin divided the clock to X _{IN} pin by 2. In microprocessor mode, P4 ₂ always has the function as ϕ_1 output pin.
P5 ₀ ~P5 ₇	I/O port P5	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O plns for timer A1, timer A2 and timer A3.
P6 ₀ ~P6 ₇	I/O port P6	I/O	In addition to having the same functions as port P0 in single-chip mode, these pins also function as I/O pins for timer A4, external interrupt input $\overline{\text{INT}_0}$, $\overline{\text{INT}_1}$ and $\overline{\text{INT}_2}$ pins, and input pins for timer B0, timer B1 and timer B2.
P7 ₀ ∼P7 ₇	I/O port P7	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as analog input $AN_0 \sim AN_7$ input pins. $P7_7$ also has an A-D conversion trigger input function.
P8 ₀ ~P8 ₇	I/O port P8	1/0	In addition to having the same functions as port P0 in single-chip mode, these pins also function as R_XD , T_XD , CLK , $\overline{CTS}/\overline{RTS}$ pins for UART 0 and UART 1.

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

BASIC FUNCTION BLOCKS

The M37702M4AXXXFP has the same functions as the M37702M2AXXXFP except for the following.

- (1) The ROM size is 32K bytes.
- (2) The RAM size is 2048 bytes.

Therefore, refer to the section on the M37702M2AXXXFP.

MEMORY

The memory map is shown in Figure 1.

ADDRESSING MODES

The M37702M4AXXXFP has 28 powerful addressing modes. Refer to the 7700 Family addressing mode description for the details of each addressing mode.

MACHINE INSTRUCTION LIST

The M37702M4AXXXFP has 103 machine instructions. Refer to the 7700 Family machine instruction list for details.

DATA REQUIRED FOR MASK ORDERING

Please send the following data for mask orders.

- (1) Mask ROM order confirmation form
- (2) 80P6N mark specification form
- (3) ROM data (EPROM 3 sets)

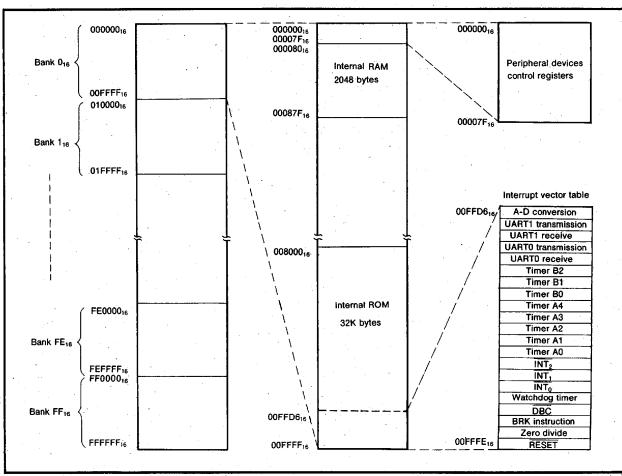


Fig. 1 Memory map

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		−0.3~7	V
AV _{CC}	Analog supply voltage		-0.3~ 7	V
Vį	Input voltage RESET, CNVss, BYTE		-0.3~12	V
Vi	Input voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , V _{REF} , X _{IN}		-0.3~V _{cc} +0.3	v
V _o	Output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P6 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{0UT} , Ē		-0,3~V _{cc} +0.3	v
Pd	Power dissipation	Ta=25°C	300	mW
Topr	Operating temperature		-20~85	~°C
Tstg	Storage temperature		-40~150	T C

RECOMMENDED OPERATING CONDITIONS ($V_{cc}=5V\pm10\%$, $T_a=-20\sim85^{\circ}C$, unless otherwise noted)

Symbol	Parameter	L			
Cyllibon	raiametei	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage	4.5	5.0	5.5	٧
AVcc	Analog supply voltage		Vcc		V
Vss	Supply voltage		0		V
AVss	Analog supply voltage		0		V
V _{IH}	High-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0.8V _{cc}		Vcc	V
V _{IH}	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0.8V _{CC}		Vcc	v
V _{IH}	High-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0.5V _{cc}		Vcc	V
V _{IL}	Low-level input voltage P0 ₀ ~P0 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	0		0. 2V _{CC}	V
V _{IL}	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in single-chip mode)	0		0. 2V _{CC}	٧
V _{IL}	Low-level input voltage P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ (in memory expansion mode and microprocessor mode)	0		0.16V _{cc}	V
Іон(реак)	High-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇		_	-10	mA
l _{он(avg)}	High-level average output current $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0 \sim P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$			-5	-mA
l _{ou(peak)}	Low-level peak output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			10	mA
l _{oL(avg)}	Low-level average output current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇			5	mA
f(X _{IN})	External clock frequency input M37702M4AXXXFP, M37702S4AFP			16	мн
	M37702M4BXXXFP, M37702S4BFP			25	

Note 1. Average output current is the average value of a 100ms interval.

2. The sum of I_{OL}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OH}(peak) for ports P0, P1, P2, P3, and P8 must be 80mA or less, the sum of I_{OL}(peak) for ports P4, P5, P6, and P7 must be 80mA or less, and the sum of I_{OH}(peak) for ports P4, P5, P6, and P7 must be 80mA or less.

M37702M4AXXXFP,M37702M4BXXXFP M37702S4AFP,M37702S4BFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

M37702M4AXXXFP

ELECTRICAL CHARACTERISTICS (V_{CC}=5V, V_{SS}=0V, T_a=25°C, f(X_{IN})=16MHz, unless otherwise noted)

0	Descriptor	Test conditions		est conditions Limits			Unit
Symbol	Parameter	Test co	·	Min.	Тур.	Max.	Offic
V _{OH}	High-level output voltage $P0_0 \sim P0_7$, $P1_0 \sim P1_7$, $P2_0 \sim P2_7$, $P3_0$, $P3_1$, $P3_3$, $P4_0 \sim P4_7$, $P5_0 \sim P5_7$, $P6_0 \sim P6_7$, $P7_0 \sim P7_7$, $P8_0 \sim P8_7$	I _{ОН} =-10mA		3			>
V _{OH}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OH} =-400μA		4.7			. V
V _{OH}	High-level output voltage P3₂	I _{OH} =-10mA I _{OH} =-400μA		3.1 4.8		-,	v
V _{OH}	High-level output voltage E	I _{OH} =-10mA I _{OH} =-400μA		3.4 4.8			٧
V _{OL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OL} =10mA				2	٧
V _{OL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OL} =2mA				0. 45	٧
VoL	Low-level output voltage P3 ₂	I _{OL} =10mA				1.9 0.43	٧
VoL	Low-level output voltage E	I _{OL} =10mA				1.6	v
V _{T+} -V _{T-}	Hysteresis HOLD, RDY, TA0 _{IN} ~TA4 _{IN} , TB0 _{IN} ~TB2 _{IN} , INT ₀ ~INT ₂ , AD _{TRS} , CTS ₀ , CTS ₁ , CLK ₀ , CLK ₁	10[21115		0.4		1	v
$V_{T+}-V_{T-}$	Hysteresis RESET			0.2		0.5	V
V _{T+} V _{T-}	Hysteresis X _{IN}			0.1	į.	0.3	. V
l _{iH}	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V _i =5V				5	μΑ
l _{IL}	Low-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₈ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V ₁ =0V				—5	μΑ
V _{RAM}	RAM hold voltage	When clock is stoppe	d.	2			V
		In single-chip mode	f(X _{IN})=16MHz, square waveform		12	24	mĄ
loc	Power supply current	output only pin is open and other pins	T _a =25°C when clock is stopped.			1	
		are V _{SS} during reset.	Ta=85°C when clock is stopped.	:		20	μΑ

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (V_{cc} = 5V, \, V_{ss} = 0V, \, T_{a} = 25^{\circ}C, \, f(X_{\text{IN}}) = 16 \text{MHz, unless otherwise noted})$

		Ttdition		Limits			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
_	Resolution	V _{REF} =V _{CC}			8	Bits	
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB	
RLADDER	Ladder resistance	V _{REF} =V _{CC}	2		10	kΩ	
tconv	Conversion time		14. 25			μ8	
V _{REF}	Reference voltage		2		Vcc	V	
V _{IA}	Analog Input voltage		0		VREF	V	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

M37702M4BXXXFP

ELECTRICAL CHARACTERISTICS (V_{CC}=5V, V_{SS}=0V, T_a=25°C, f(X_{IN})=25MHz, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
		10000		Min.	Тур.	Max.	Unit
V _{OH}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OH} =-10mA		3			>
V _{OH}	High-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OH} =-400μA		4. 7			٧
VoH	High-level output voltage P3 ₂	I _{OH} =-10mA	-	3. 1			
	3	I _{OH} =-400μA		4.8			\ \
V _{OH}	High-level output voltage E	I _{OH} =-10mA		3. 4			
		I _{OH} =-400μA		4.8			\ V
V _{OL}	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇	I _{OL} =10mA				2	٧
VoL	Low-level output voltage P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ , P3 ₁ , P3 ₃	I _{OL} =2mA				0. 45	
VoL	Low-level output voltage P3 ₂	I _{OL} =10mA				1,9	
VOL.	Low-level output voltage P32	I _{OL} =2mA				0.43	٧
VoL	Low-level output voltage E	I _{OL} =10mA				1.6	
		I _{OL} =2mA				0.4	V
V _{T+} -V _{T-}	Hysteresis HOLD, RDY, TA0 _{IN} ~TA4 _{IN} , TB0 _{IN} ~TB2 _{IN} , INT ₀ ~INT ₂ , AD _{TRG} , CTS ₀ , CTS ₁ , CLK ₀ , CLK ₁			0.4		1	٧
$V_{T+}-V_{T-}$	Hysteresis RESET			0. 2		0.5	V
$V_{T+}-V_{T-}$	Hysteresis X _{IN}			0. 1		0.3	V
I _{IH}	High-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₈ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V _I =5V		,		5	μΑ
l _{IL}	Low-level input current P0 ₀ ~P0 ₇ , P1 ₀ ~P1 ₇ , P2 ₀ ~P2 ₇ , P3 ₀ ~P3 ₃ , P4 ₀ ~P4 ₇ , P5 ₀ ~P5 ₇ , P6 ₀ ~P6 ₇ , P7 ₀ ~P7 ₇ , P8 ₀ ~P8 ₇ , X _{IN} , RESET, CNV _{SS} , BYTE	V ₁ =0V				-5	μΑ
VRAM	RAM hold voltage	When clock is stoppe	d.	2			V
		In single-chip mode	f(X _{IN})=25MHz, square waveform		19	38	m.A
lcc	Power supply current	output only pin is open and other pins	T _a =25℃ when clock is stopped.			1	
		are V _{SS} during reset.	T _a =85℃ when clock is stopped.			20	μA

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \; (\textit{V}_{cc}=5\textit{V}, \, \textit{V}_{ss}=0\textit{V}, \, \textit{T}_{a}=25\,\textrm{C}, \, \textit{f}(\textit{X}_{iN})=25\,\textrm{MHz, unless otherwise noted}) \\$

Symbol Parameter	Parameter Test conditions	Limits				
		Tool obliditions	Min.	Тур.	Max.	Unit -
	Resolution	V _{REF} =V _{CC}			8	Bits
	Absolute accuracy	V _{REF} =V _{CC}			±3	LSB
R _{LADDER}	Ladder resistance	V _{REF} =V _{CC}	2		10	kΩ
tconv	Conversion time		9. 12			μs
VREF	Reference voltage		2		V _{CC}	
VIA	Analog input voltage		0		V _{REF}	-

M37702M4AXXXFP,M37702M4BXXXFP M37702S4AFP,M37702S4BFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

TIMING REQUIREMENTS ($v_{cc}=5V\pm10\%$, $v_{ss}=0V$, $T_a=25^{\circ}C$, unless otherwise noted)

External clock input

	Parameter		Limits					
Symbol			16MHz		25MHz			
		Min.	Max.	Min.	Max.			
tc	External clock input cycle time	62		40		ns		
t _{W(H)}	External clock input high-level pulse width	25		15		ns		
tw(L)	External clock input low-level pulse width	25		15		ns		
tr	External clock rise time		10		. 8	ns		
tr	External clock fall time		10		8	ns		

Single-chip mode

			Limits				
Symbol	Parameter	16MHz		25MHz		Unit	
		Min.	Max.	Min.	Max.		
tsu(POD—E)	Port P0 input setup time	100		60		ns	
tsu(P1D-E)	Port P1 input setup time	100		60		ns	
tsu(P2D-E)	Port P2 input setup time	100		60		ns	
tsu(P3D—E)	Port P3 input setup time	100		60		ns	
tsu(P4D-E)	Port P4 input setup time	100		60		. ns	
tsu(P5D-E)	Port P5 input setup time	100		60	·	ns	
tsu(P6D-E)	Port P6 input setup time	100		60		ns	
tsu(P7D-E)	Port P7 input setup time	100		60		пѕ	
tsu(P8D-E)	Port P8 input setup time	100		60		ns	
th(E-POD)	Port P0 input hold time	0		. 0		ns	
th(E-P1D)	Port P1 input hold time	· 0		0		ns	
th(E-P2D)	Port P2 input hold time	0		0		ns	
th(EP3D)	Port P3 input hold time	0		. 0		ns	
th(E-P4D)	Port P4 Input hold time	0	·	0	1.0	ns	
th(E-P6D)	Port P5 input hold time	0		0		ns	
th(E—P6D)	Port P6 input hold time	0		0		ns	
th(E—P7D)	Port P7 input hold time	0		0		пѕ	
th(E-P8D)	Port P8 Input hold time	0		0	1	ns	

Memory expansion mode and microprocessor mode

			Lín	nits		
Symbol	Parameter	160	16MHz		1Hz	Unit
		Min.	Max.	Min.	Max.	
tsu(P1D-E)	Port P1 input setup time	45		30		ns
t _{SU(P2D-E)}	Port P2 input setup time	45		30		ns
tsu(RDY-#1)	RDY input setup time	60		55		ns
tsu(HOLD-#1)	HOLD input setup time	60		55	-	ns
th(E—P1D)	Port P1 input hold time	0		0		ns
th(E-P2D)	Port P2 input hold time	0		: 0		ns
th(ø1—RDY)	RDY input hold time	0		. 0		ns
th(#i-HOLD)	HOLD input hold time	0		0		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer A input (Count input in event counter mode)

			Lin	Limits			
Symbol	Parameter	161	16MHz		MHz	Unit	
	·	Min.	Max.	Min.	Max.	1	
t _{C(TA)}	TAi _{IN} input cycle time	125		80		ns	
tw(TAH)	TAI _{IN} Input high-level pulse width	62	 	40		ns	
tw(TAL)	TAi _{IN} input low-level pulse width	62		40		ns	

Timer A input (Gating input in timer mode)

			Limits				
Symbol	Parameter	161	16MHz		ИНZ	Unit	
		Min.	Max.	Min.	Max.	1	
t _{C(TA)}	TAi _{IN} input cycle time	500		320		ns	
tw(TAH)	TAI _{IN} Input high-level pulse width	250		160		ns	
t _{W(TAL)}	TAi _{IN} input low-level pulse width	250		160		ns	

Timer A input (External trigger input in one-shot pulse mode)

			Limits				
Symbol	Parameter	16	16MHz		25MHz		
		Min.	Max.	Min.	Max.		
t _{C(TA)}	TAI _{IN} input cycle time	250		160		ns	
t _{W(TAH)}	TAI _{IN} input high-level pulse width	125		80	1	ns	
tw(TAL)	TAi _{IN} input low-level pulse width	125		80		ns	

Timer A input (External trigger input in pulse width modulation mode)

Symbol	Parameter		Limits					
		16N	16MHz		25MHz			
		Min.	Мах.	Min.	Max.			
t _{W(TAH)}	TAI _{IN} input high-level pulse width	125		80		ns		
t _{W(TAL)}	TAI _{IN} input low-level pulse width	125		80	 	ns		

Timer A input (Up-down input in event counter mode)

			Limits				
Symbol	Parameter	16MF	-lz	25MHz		Unit	
		Min.	Max.	Min.	Max.		
tc(up)	TAI _{OUT} input cycle time	2500		2000		ns	
t _{W(UPH)}	TAiout input high-level pulse width	1250		1000	-	ns	
tw(UPL)	TAI _{DUT} input low-level pulse width	1250		1000		ns	
tsu(UP-TIN)	TAI _{OUT} input setup time	500		400		ns	
th(TiN-UP)	TAI _{OUT} input hold time	500		400	-	ns	

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Timer B input (Count input in event counter mode)

		Limits				
Symbol	Parameter	161	16MHz		25MHz	
		Min.	Max.	Min.	Max.	
t _{C(TB)}	TBi _{IN} input cycle time (one edge count)	125		80	}	ns
t _{W(TBH)}	TBi _{IN} input high-level pulse width (one edge count)	62		40		ns
tw(TBL)	TBi _{IN} input low-level pulse width (one edge count)	62		40		ns
t _{C(TB)}	TBI _{IN} input cycle time (both edges count)	250		: 160		ns
tw(твн)	TBi _{IN} input high-level pulse width (both edges count)	125		80		ns .
t _{W(TBL)}	TBi _{IN} input low-level pulse width (both edges count)	125		80		ns

Timer B input (Pulse period measurement mode)

			Limits			
Symbol	Parameter	161	ИHz	25N	ИНZ	Unit
		Min.	Max.	Min.	Max.	
t _{C(TB)}	TBi _{IN} input cycle time	500		320		ns
t _{W(TBH)}	TBI _{IN} input high-level pulse width	250		160		ns
t _{W(TBL)}	TBi _{IN} input low-level pulse width	250	-	160 ·		ns

Timer B input (Pulse width measurement mode)

					Limits			
Symbol	·	Parameter	16MHz		25MHz		Unit.	
				Min.	Max.	Min.	Max.	
t _{C(TB)}	TBi _{IN} input cycle time			500		320		ns
t _{w(твн)}	TBi _{IN} input high-level pulse width			250	,	160		ns .
tw(TBL)	TBi _{IN} input low-level pulse width	,		250		160		ns

A-D trigger input

		1.5	Limits			
Symbol	Parameter		16MHz		25MHz	
1		Min.	Max.	Min.	Max.	1
t _{C(AD)}	AD _{TRG} input cycle time (minimum allowable trigger)	1000		1000		ns
t _{W(ADL)}	AD _{TRG} input low-level pulse width	125		125		ns

Serial I/O

			Lin	nits		
Symbol	Parameter	161	16MHz		25MHz	
		Min.	Max.	Min.	Max.	
t _{c(ck)}	CLK _i input cycle time	250		200		ns
tw(ckH)	CLK; input high-level pulse width	125		100		ns
tw(ckL)	CLK; input low-level pulse width	125		100		ns
td(c-a)	TxD _i output delay time		90		80	ns
th(c-o)	TxD _i hold time	0		0.		ns.
t _{su(D-C)}	RxDi input setup time	30		20		ns
th(c-p)	RxD _i input hold time	90		90		ns

External interrupt INT; input

`			Limits			
Symbol	Parameter	16MHz		25MHz		Unit
		Min.	Max.	Min.	Max.]
t _{W(INH)}	INT _i input high-level pulse width	250		250		ns
t _{W(INL)}	INT _i input low-level pulse width	250		. 250		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

SWITCHING CHARACTERISTICS ($V_{cc}=5V\pm10\%$, $V_{ss}=0V$, $T_a=25$ °C, unless otherwise noted) Single-chip mode

Symbol	Parameter						
		Test conditions	16MHz		25MHz		Unit
			Min.	Max.	Min.	Max.	1
td(E-POQ)	Port P0 data output delay time			100		80	ns
td(E-P1Q)	Port P1 data output delay time			100		80	ns
td(E-P2Q)	Port P2 data output delay time			100	-	80	
td(E-P3Q)	Port P3 data output delay time			100			ns
td(E-P4Q)	Port P4 data output delay time	Fig. 2		100	-	80	ns
td(E-P5Q)	Port P5 data output delay time			100		80	ns
td(E-P6Q)	Port P6 data output delay time		· · · · · ·	100		80	ns
t _{d(E—P7Q)}	Port P7 data output delay time			100		80	ns
td(E-P8Q)	Port P8 data output delay time	· ·		100		80	ns ns

Memory expansion mode and microprocessor mode (when wait bit = "1")

Symbol							
		Test conditions	16MHz		25MHz		Unit
			Min.	Max.	. Min.	Max.	1
td(POA-E)	Port P0 address output delay time		30	1	12		ns
td(E-P1Q)	Port P1 data output delay time (BYTE="L")			70		45	, ns
t _{PXZ(E—P1Z)}	Port P1 floating start delay time (BYTE="L")			5		5	ns
td(P1A-E)	Port P1 address output delay time		30		12		ns
td(P1A-ALE)	Port P1 address output delay time		24		5		ns
td(E-P2Q)	Port P2 data output delay time			70	<u> </u>	45	ns
t _{PXZ(E-P2Z)}	Port P2 floating start delay time			5		5	ns
td(P2A-E)	Port P2 address output delay time		30		12	<u> </u>	
td(P2A-ALE)	Port P2 address output delay time		24		5		ns
td(ø1-HLDA)	HLDA output delay time			50	- 3	50	ns
td(ALE-E)	ALE output delay time		4		4	- 30	ns
tw(ALE)	ALE pulse width		35		22		
td(BHE-E)	BHE output delay time	-	30		20		ns
td(R/W-E)	R/W output delay time	Fig. 2.	30		20		ns
t _{d(E-#1)}	φ ₁ output delay time		0	20	0	18	ns
th(E-POA)	Port P0 address hold time .		25	20	18	- 10	
th(ALE-PIA)	Port P1 address hold time (BYTE="L")		9	,	9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		18		ns
t _{PZX(E-P1Z)}	Port P1 floating release delay time (BYTE="L")		25		18		ns
th(E-P1A)	Port P1 address hold time (BYTE="H")	·	25		18		ns
th(ALE-P2A)	Port P2 address hold time		9	-	9		ns
th(E-P2Q)	Port P2 data hold time		25		18		ns
t _{PZX(E-P2Z)}	Port P2 floating release delay time		25		18		ns
th(E—BHE)	BHE hold time	·	18		18		ns
th(E-R/W)	R/W hold time		18				ns
t _{W(EL)}	E pulse width		95		18		ns
, ,			35		50		ns

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Memory expansion mode and microprocessor mode (when wait bit = "0", and external memory area accessed)

Symbol	Parameter	Test conditions		<u> </u>			
			16MHz		25MHz		Unit
			Min.	Max.	Min.	Max.	
td(POA—E)	Port P0 address output delay time		30		12		ns
td(E-PIQ)	Port P1 data output delay time (BYTE="L")		1	70		45	ns
t _{PXZ(E-P1Z)}	Port P1 floating start delay time (BYTE="L")			5		5	ns
t _{d(P1A—E)}	Port P1 address output delay time		30		12		ns
td(PIA-ALE)	Port P1 address output delay time		24		5		ns
td(E-P2Q)	Port P2 data output delay time			70		45	ns
t _{PXZ(E—P2Z)}	Port P2 floating start delay time			5		5	ns
td(P2A-E)	Port P2 address output delay time		30		12		ns
td(P2A-ALE)	Port P2 address output delay time		24		5		ns
td(#1-HLDA)	HLDA output delay time			50		50	ns
td(ALE-E)	ALE output delay time		4		4		ns
t _{W(ALE)}	ALE pulse width		35		22		ns
td(BHE-E)	BHE output delay time		30		20		ns
t _{d(R/W-E)}	R/W output delay time	Fig. 2	30		20		ns
td(E-ø1)	φ ₁ output delay time		0	20	0	18	ns
th(E—POA)	Port P0 address hold time		25		18		ns
th(ALE—PIA)	Port P1 address hold time (BYTE="L")		. 9		.9		ns
th(E-P1Q)	Port P1 data hold time (BYTE="L")		25		18		ns
t _{PZX(E—P1Z)}	Port P1 floating release delay time (BYTE="L")		25		- 18		ns
th(E-PIA)	Port P1 address hold time (BYTE="H")		25		18		ns
th(ALE-P2A)	Port P2 address hold time		9		9		ns
th(E-P2Q)	Port P2 data hold time		25		18		ns
t _{PZX(E—P2Z)}	Port P2 floating release delay time		25		18		ns
th(E-BHE)	BHE hold time		18		18		ns
th(E-R/W)	R/W hold time		18		18		ns
tw(EL)	E pulse width		220		130		ns

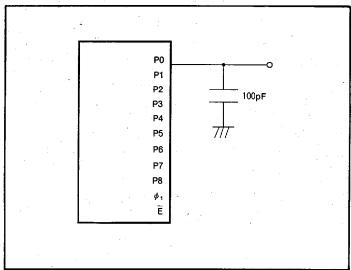


Fig. 2 Testing circuit for ports P0 \sim P8, ϕ_1