

Truth Table

INPUT STATES					"ON" CHANNELS		
	INHIBIT	C	B	A	CD4051B	CD4052B	

*Don't Care condition

Absolute Maximum Ratings (Note 1) $_{1 \text { 1 }}$

DC Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	$-0.5 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	
Power Dissipation ($\left.\mathrm{P}_{\mathrm{D}}\right)$	700 mW
\quadDual-In-Line	
Small Outline Lead Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$	500 mW
\quad (soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating

 Conditions| DC Supply Voltage (V_{DD}) | $+5 \mathrm{~V}_{\mathrm{DC}}$ to $+15 \mathrm{~V}_{\mathrm{DC}}$ |
| :---: | :---: |
| Input Voltage (V | V to $V_{D D} V_{D C}$ |
| Operating Temperature Range (T_{A}) | |
| CD4051BC/CD4052BC/CD4053BC | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Note 1: "Absolute Maximum Ratings" are those safety of the device cannot be guaranteed. Except ture Range" they are not meant to imply that the ated at these limits. The Electrical Characteristics for actual device operation. | ues beyond which the "Operating Temperavices should be operles provide conditions |

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$		+25 ${ }^{\circ}$			$+85^{\circ} \mathrm{C}$		Units
				Min	Max	Min	Typ	Max	Min	Max	
Control A, B, C and Inhibit											
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & -10^{-5} \\ & 10^{-5} \end{aligned}$	-0.1 0.1		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{\mathrm{I} D}$	Quiescent Device Current	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Signal Inputs ($\mathrm{V}_{\text {IS }}$) and Outputs ($\mathrm{V}_{\text {OS }}$)											
$\mathrm{R}_{\text {ON }}$	"ON" Resistance (Peak for $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{DD}}$)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { (any channel } \\ & \text { selected) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		850		270	1050		1200	Ω
			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		330		120	400		520	Ω
			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		210		80	240		300	Ω
$\overline{\Delta \mathrm{R}_{\text {ON }}}$	Δ "ON" Resistance Between Any Two Channels	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (any channel selected)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$				10				Ω
			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$				10				Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$				5				Ω
	"OFF" Channel Leakage Current, any channel "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \mathrm{O} / \mathrm{l}= \pm 7.5 \mathrm{~V}, \mathrm{I} / \mathrm{O}=0 \mathrm{~V} \end{aligned}$			± 50		± 0.01	± 50		± 500	nA
	"OFF" Channel Leakage Current, all channels "OFF" (Common OUT/IN)	$\begin{aligned} & \text { Inhibit }=7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V}, \\ & \mathrm{O} / \mathrm{I}=0 \mathrm{~V} \\ & \mathrm{I} / \mathrm{O}= \pm 7.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { CD4051 } \\ & \text { D4052 } \\ & \text { CD4053 } \end{aligned}$		$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$		$\begin{aligned} & \pm 0.08 \\ & \pm 0.04 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$		$\begin{aligned} & \pm 2000 \\ & \pm 2000 \\ & \pm 2000 \end{aligned}$	nA nA nA
Control Inputs A, B, C and Inhibit											

AC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.							
Symbol	Parameter	Conditions	V_{DD}	Min	Typ	Max	Units
$\begin{aligned} & \hline \text { tpzH, } \\ & t_{\text {PZLL }} \end{aligned}$	Propagation Delay Time from Inhibit to Signal Output (channel turning on)	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \hline 600 \\ & 225 \\ & 160 \end{aligned}$	$\begin{aligned} & 1200 \\ & 450 \\ & 320 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Propagation Delay Time from Inhibit to Signal Output (channel turning off)	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{gathered}$		$\begin{gathered} 210 \\ 100 \\ 75 \end{gathered}$	$\begin{aligned} & 420 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance Control input Signal Input (IN/OUT)				$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{Cout}^{\text {O }}$	Output Capacitance (common OUT/IN)						
	CD4051 CD4052 CD4053	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 30 \\ 15 \\ 8 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{C}_{10 \mathrm{~S}}$	Feedthrough Capacitance				0.2		pF
CPD	Power Dissipation Capacitance						
	$\begin{aligned} & \hline \text { CD4051 } \\ & \text { CD4052 } \\ & \text { CD4053 } \end{aligned}$				$\begin{gathered} 110 \\ 140 \\ 70 \end{gathered}$		pF pF pF
Signal Inputs ($\mathrm{V}_{\text {IS }}$) and Outputs ($\mathrm{V}_{\text {OS }}$)							
	Sine Wave Response (Distortion)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SI}}=0 \mathrm{~V} \end{aligned}$	10V		0.04		\%
	Frequency Response, Channel "ON" (Sine Wave Input)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & 20 \log _{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{IS}}=-3 \mathrm{~dB} \\ & \hline \end{aligned}$	10V		40		MHz
	Feedthrough, Channel "OFF"	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & 20 \log _{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\text {IS }}=-40 \mathrm{~dB} \end{aligned}$	10V		10		MHz
	Crosstalk Between Any Two Channels (frequency at 40 dB)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}(\mathrm{~A})=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & 20 \log _{10} \mathrm{~V}_{\mathrm{OS}}(\mathrm{~B}) / \mathrm{V}_{\mathrm{IS}}(\mathrm{~A})=-40 \mathrm{~dB}(\text { Note 4) } \\ & \hline \end{aligned}$	10V		3		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Propagation Delay Signal Input to Signal Output	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & \hline 25 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Control Inputs, A, B, C and Inhibit							
	Control Input to Signal Crosstalk	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ at both ends of channel. Input Square Wave Amplitude $=10 \mathrm{~V}$	10V		65		mV (peak)
$t_{\text {PHL, }}$ $t_{\text {PLH }}$	Propagation Delay Time from Address to Signal Output (channels "ON" or "OFF")	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & \hline 500 \\ & 180 \\ & 120 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1000 \\ 360 \\ 240 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Note 3: AC Parameters are guaranteed by DC correlated testing. Note 4: A, B are two arbitrary channels with A turned "ON" and B "OFF".							

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
