INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

DESCRIPTION

The HEF40163B is a fully synchronous edge-triggered 4-bit binary counter with a clock input (CP), four synchronous parallel data inputs (P₀ to P₃), four synchronous mode control inputs (parallel enable (\overline{PE}), count enable parallel (CEP), count enable trickle (CET) and synchronous reset (\overline{SR})), buffered outputs from all four bit positions (O₀ to O₃) and a terminal count output (TC).

Operation is fully synchronous and occurs on the LOW to HIGH transition of CP. When \overline{PE} is LOW, the next LOW to HIGH transition of CP loads data into the counter from P₀ to P₃. When \overline{PE} is HIGH, the next LOW to HIGH

transition of CP advances the counter to its next state only if both CEP and CET are HIGH; otherwise no change occurs in the state of the counter. TC is HIGH when the state of the counter is 15 (O_0 to O_3 = HIGH) and when CET is HIGH. A LOW on SR sets all outputs (O_0 to O_3 and TC) LOW on the next LOW to HIGH transition of CP, independent of the state of all other synchronous mode control inputs (CEP, CET and PE). Multistage synchronous counting is possible without additional components by using a carry look-ahead counting technique; in this case, TC is used to enable successive cascaded stages. CEP, CET, PE and SR must be stable only during the set-up time before the LOW to HIGH transition of CP.

TC 15

7Z85116

BINARY COUNTER

01

113

Fig.1 Functional diagram.

03

111

02

112

D

0₀

14

INH

CP

FAMILY DATA, I_{DD} LIMITS category MSI

1 SR 10 CET

7 CEP

2 CP

See Family Specifications

HEF40163B MSI

January 1995

4-bit synchronous binary counter with

Philips Semiconductors

Product specification

HEF40163B

ω

CET

CEP -

PE

SR

СР

_

MSI

HEF40163B

4-bit synchronous binary counter with synchronous reset

PINNING

PE	parallel enable input
P_0 to P_3	parallel data inputs
CEP	count enable parallel input
CET	count enable trickle input
CP	clock input (LOW to HIGH, edge-triggered)
SR	synchronous reset input (active LOW)
O_0 to O_3	parallel outputs
тс	terminal count output

 HEF40163BP(N):
 16-lead DIL; plastic (SOT38-1)

 HEF40163BD(F):
 16-lead DIL; ceramic (cerdip) (SOT74)

 HEF40163BT(D):
 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

SYNCHRONOUS MODE SELECTION

SR	PE	CEP	CET	MODE
Н	L	Х	Х	preset
Н	Н	L	Х	no change
Н	Н	Х	L	no change
н	Н	Н	н	count
L	Х	Х	Х	reset

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

TERMINAL COUNT GENERATION

CET	$(O_0 \cdot O_1 \cdot O_2 \cdot O_3)$	TC
L	L	L
L	н	L
Н	L	L
Н	Н	н

Note

1. TC = CET \cdot O₀ \cdot O₁ \cdot O₂ \cdot O₃

HEF40163B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1 200 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	5 600 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	$16\ 000\ f_{i} + \Sigma\ (f_{o}C_{L}) imes V_{DD}^{2}$	f _o = output freq. (MHz)
			C_L = load capacitance (pF)
			$\Sigma (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		45	95	ns	34 ns + (0,23 ns/pF) C _L
	15			35	65	ns	27 ns + (0,16 ns/pF) C _L
$CP \rightarrow TC$	5			130	260	ns	103 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	105	ns	44 ns + (0,23 ns/pF) C _L
	15			35	75	ns	27 ns + (0,16 ns/pF) C _L
	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	115	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$CET\toTC$	5			105	210	ns	78 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	75	ns	27 ns + (0,16 ns/pF) C _L
	5			90	185	ns	63 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Minimum clock	5		100	50	ns	
pulse width; LOW	10	t _{WCPL}	40	20	ns	
	15		30	15	ns	
Set-up times	5		110	55	ns	
$P_n \rightarrow CP$	10	t _{su}	40	20	ns	
	15		30	15	ns	
	5		120	60	ns	
$\overline{PE} \to CP$	10	t _{su}	40	20	ns	
	15		25	10	ns	
	5		260	130	ns	
$CEP,CET\toCP$	10	t _{su}	100	50	ns	
	15		70	35	ns	
	5		50	25	ns	ana alaa wayafarma
$\overline{SR} \to CP$	10	t _{su}	20	10	ns	Figs 5, 6, 7 and 8
	15		15	10	ns	
Hold times	5		20	-35	ns	
$P_n \to CP$	10	t _{hold}	10	-10	ns	
	15		5	-10	ns	
	5		15	-45	ns	
$\overline{PE} \to CP$	10	t _{hold}	5	-15	ns	
	15		5	-10	ns	
	5		25	-105	ns	
$CEP,CET\toCP$	10	t _{hold}	15	-35	ns	
	15		10	-25	ns	
	5		15	-10	ns	
$\overline{SR}\toCP$	10	t _{hold}	5	-5	ns	
	15		5	0	ns	
Maximum clock	5		2,5	5	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		9	18	MHz	

MSI

HEF40163B

HEF40163B MSI

HEF40163B MSI

Note

Set-up and hold times are shown as positive values but may be specified as negative values.

January 1995

MSI

HEF40163B

4-bit synchronous binary counter with synchronous reset

APPLICATION INFORMATION

An example of an application for the HEF40163B is:

• Programmable binary counter.

HEF40163B MSI

