

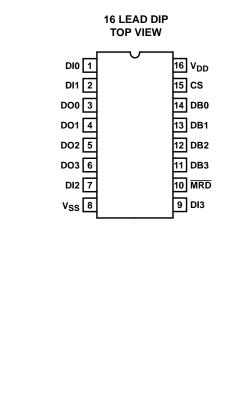
CDP1857C

4-Bit Bus Buffer/Separator

March 1997

Features

- Provides Easy Connection of I/O to CDP1800-Series Microprocessor Data Bus
- Non-Inverting Fully Buffered Data Transfer


Ordering Information

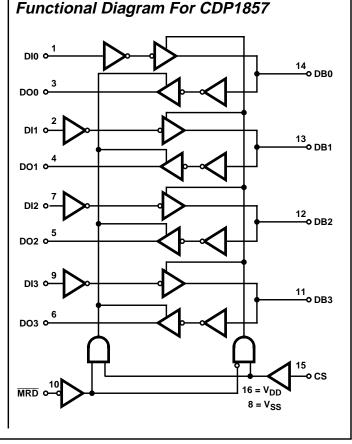
PART NUMBER	TEMP. RANGE	PACKAGE	PKG. NO.
CDP1857CE	-40°C to +85°C	PDIP	E16.3
CDP1857CD	-40 ^o C to +85 ^o C	SBDIP	D16.3

TABLE 1. CDP1857 FUNCTION FOR I/O BUS SEPARATOR **OPERATION**

cs	MRD	DATA BUS OUT DB0-DB3	DATA OUT DO0-DO3
0	Х	High Impedance	High Impedance
1	0	High Impedance	Data Bus
1	1	Data In	High Impedance

Pinout

Description


The CDP1857C is a 4-bit CMOS non-inverting bus separator designed for use in CDP1800-series microprocessor systems. It can be controlled directly by a 1800-series microprocessor without the use of additional components.

The CDP1857 is designed for use as a bus buffer or separator between the 1800-series microprocessor data bus and I/O devices. It provides a chip-select (CS) input signal which, when high (1), enables the bus-separator three-state output drivers. The direction of data flow, when enabled, is controlled by the MRD input signal.

In the CDP1857, when $\overline{\text{MRD}}$ = 1, it enables the three-state bus drivers (DB0-DB3) and transfers data from the DATA-IN lines onto the data bus. When $\overline{\text{MRD}} = 0$, it disables the three-state bus drivers (DB0-DB3) and enables the three-state data output drivers (DO0-DO3), thus, transferring data from the data bus to the DATA-OUT terminals.

The CDP1857 can be used as a bidirectional bus buffer by connecting the corresponding DI and DO terminals (Figure 1). The MRD output signal from the 1800-series microprocessor has the correct polarity to control the CDP1857 when it is used as I/O bus buffer/separator. Therefore, the 1800-series microprocessor MRD signal can be connected directly to the MRD input of CDP1857. See Function Table 1 for use of the CDP1857 as an I/O bus buffer/separator.

The CDP1857C is supplied in 16-lead hermetic, dual-in-line ceramic packages (D suffix), and in 16-lead plastic packages (E suffix).

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 4-62

Absolute Maximum Ratings

DC Supply Voltage Range, (V_{DD})

(All Voltages Referenced to V _{SS} Terminal)0.5V to +7V	/
Input Voltage Range, All Inputs0.5V to V _{DD} +0.5V	/
DC Input Current, Any One Input	١

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (^o C/W)	θ _{JC} (^o C/W)
PDIP Package	85	N/A
SBDIP Package	85	22
Device Dissipation Per Output Transistor		
T _A = Full Package Temperature Range		
(All Package Types)		100mW
Operating Temperature Range (T _A)		
Package Type D		
Package Type E		
Storage Temperature Range (T _{STG})	- 65 ⁰	^o C to +150 ^o C
Lead Temperature (During Soldering)		+265 ^о С
At distance 1/16 \pm 1/32 ln. (1.59 \pm 0.79	mm)	
from case for 10s max		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

		CONDITIONS						
PARAMETER	SYMBOL	V _O (V)	V _{IN} (V)	V _{DD} (V)	MIN	(NOTE 1) TYP	МАХ	
Quiescent Device Current	I _{DD}	-	0, 5	5	-	5	50	μA
Output Low Drive (Sink) Current	I _{OL}	0.4	0, 5	5	1.6	3.2	-	mA
Output High Drive (Source) Current	I _{ОН}	4.6	0, 5	5	-1.15	-2.3	-	mA
Output Voltage Low-Level (Note 3)	V _{OL}	-	0, 5	5	-	0	0.1	V
Output Voltage High-Level (Note 3)	V _{OH}	-	0, 5	5	4.9	5	-	V
Input Low Voltage	VIL	0.5, 4.5	-	5	-	-	1.5	V
Input High Voltage	VIH	0.5, 4.5	-	5	3.5	-	-	V
Input Leakage Current	I _{IN}	Any Input	0, 5	5	-	-	1	μA
Operating Current (Note 2)	I _{DD1}	0, 5	0, 5	5	-	50	100	μΑ
Input Capacitance	C _{IN}	-	-	-	-	5	7.5	pF

NOTES:

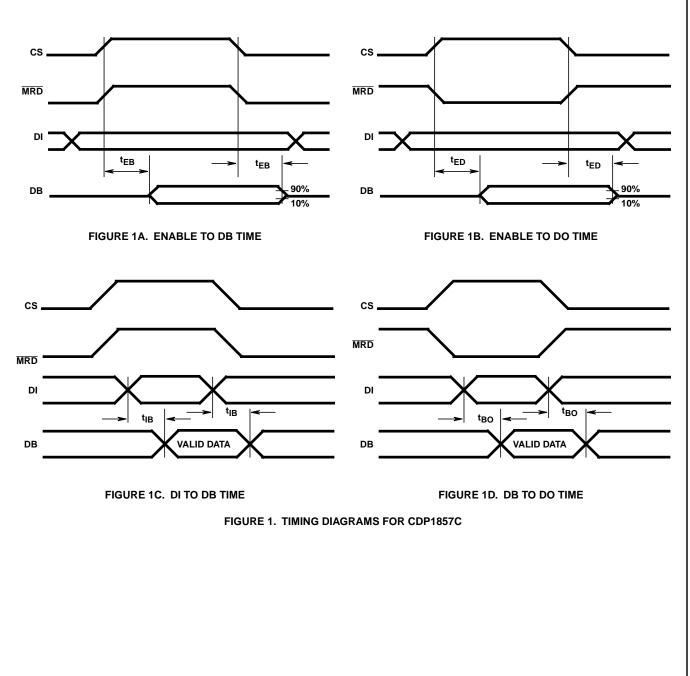
1. Typical values are for $T_A = +25^{\circ}C$ and nominal voltage.

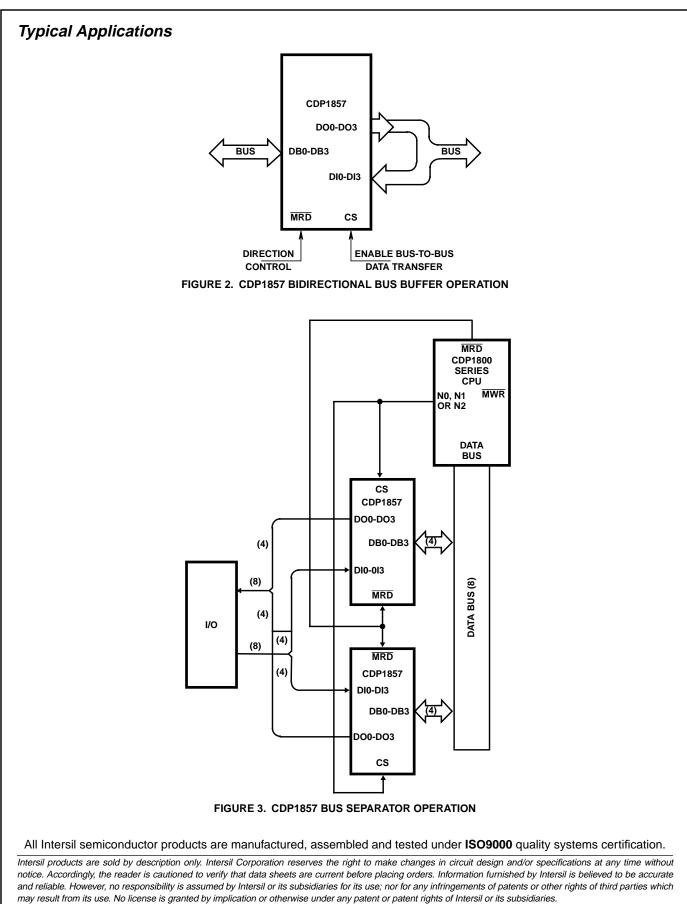
2. Operating current measured in a CDP1802 system at 3.2MHz with outputs floating.

3. $I_{OL} = I_{OH} = 1\mu A$.

$\textbf{Dynamic Electrical Specifications} \quad \text{At } T_{A} = -40^{o}\text{C to } +85^{o}\text{C}, \ \text{V}_{DD} = 5\text{V} \pm 5\%, \ \text{V}_{1H} = 0.7 \ \text{V}_{DD}, \ \text{V}_{IL} = 0.3 \ \text{V}_{DD}, \ \text{t}_{R}, \ \text{t}_{F} = 20\text{ns}, \ \text{C}_{L} = 100\text{pF} + 100\text{pF} +$

PARAMETER	SYMBOL	V _{DD} (V)	(NOTE 1) TYP	МАХ	UNITS
Propagation Delay Time:					
MRD or CS to DO	t _{ED}	5	150	225	ns
MRD or CS to DB	t _{EB}	5	150	225	ns
DI to DB	t _{IB}	5	100	150	ns
DB to DO	t _{BO}	5	100	150	ns


NOTE:


1. Typical values are for $T_A = 25^{\circ}C$ and nominal voltages.

 $\label{eq:Recommended Operating Conditions} At T_A = Full Package Temperature Range. For maximum reliability, operating conditions should be selected so that operation is always within the following ranges:$

PARAMETER	MIN	МАХ	UNITS	
Supply-Voltage Range	4	6.5	V	
Recommended Input Voltage Range	V _{SS}	V _{DD}	V	

Timing Diagrams

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com