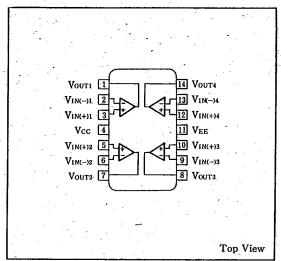
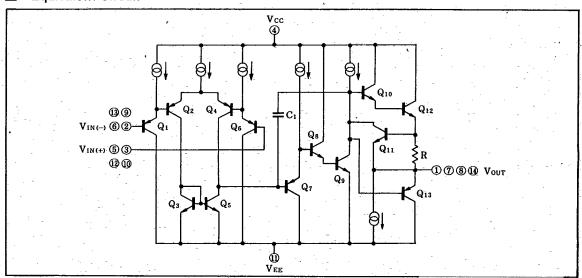
IR3702/IR3702N

Description

The IR3702/IR3702N is a general purpose high gain frequency compensated quad operational amplifier, which operates from a single supply over a wide range of voltages.


Features

- 1. Operate from a single power supply
- 2. No frequency compensation required
- 3. Input common-mode voltage range includes ground
- 4. 14-pin dual-in-line package (IR3702) 14-pin small-outline package (IR3702N)


General Purpose Quad

Operational Amplifier

Pin Connections

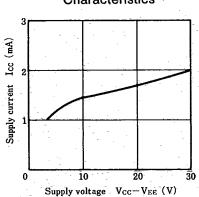
Equivalent Circuit

www.DataSheet4U.com

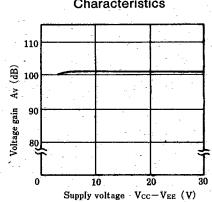
■ Absolute Maximum Ratings

(Ta=25℃)

Parameter	Symbol	Condition		Rating	Unit	
Supply voltage	$V_{CC} - V_{EE}$			36	V	
Differential input voltage	V_{iD}			$V_{\rm EE} \sim V_{\rm CC}$	V	
In-phase input voltage	V _{ICM}			$(V_{EE} - 0.3) \sim V_{CC}$	V	
Power dissipation	п	Ta≦25℃	- IR3702	650	mW	
	P _D		IR3702N	625 –		
P _D derating ratio	4 D /90	Ta>25℃	IR3702	6.5	mW/℃	
	ΔP _D /℃		IR3702N	5		
Operating temperature	Topr			-30~+85	- ზ	
Storage temperature			IR3702	-40~+125	92	
	T _{stg}	,	IR3702N	-55~±150	r	

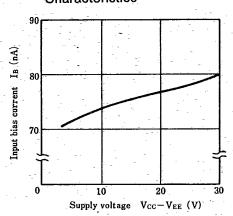

■ Electrical Characteristics

 $(V_{CC}=8V, V_{EE}=-8V, Ta=25^{\circ}C)$

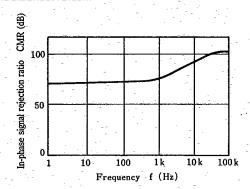

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input offset voltage	V _{IO}	$R_S=50\Omega$	-	2	7	mV	
Input offset current	I _{IO}			±5	±50	nA	
Input bias current	I _B			50	500	nA	
In-phase input voltage	V _{ICM}		V _{EE}	7 7 -	V _{cc} -1.5	V	
Major amplitude voltage gain	A _V	R _L ≥2kΩ	80	95		dB	
Supply current om	Icc			1.2	3.0	mA	
Common signal rejection ratio	CMR		70	85	_	dВ	
Supply voltage rejection ratio	SVR(+)		75	- 90		dB	
	SVR(-)	- -	70	84	-		
Maximum output voltage	$V_{OM}(+)$	$R_L = 2k\Omega, V_{IN(+)} - V_{IN(-)} = 1V$	6.0	6.4		v	
	V _{OM} (-)	$R_L = 2k\Omega, V_{IN(+)} - V_{IN(-)} = 1V$		7.4	-6.5		
Output source current	I _{os} (+)	$V_{OUT} = 0V, V_{IN(+)} - V_{IN(-)} = 1V$	20	50	-	mA	
Output sink current	I _{os} (-)	$V_{OUT} = 0V$, $V_{IN(-)} - V_{IN(+)} = 1V$	10	25			
Slew rate	- SR	$R_L = \infty$		0.6		V/ μ s	
Channel separation	C.S			- 120		dB	

■ Electrical Characteristic Curves (Unless otherwise specified, Ta=25°C)

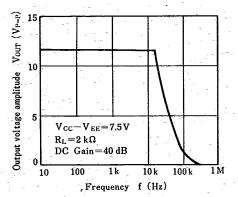
Supply current—Supply voltage Characteristics

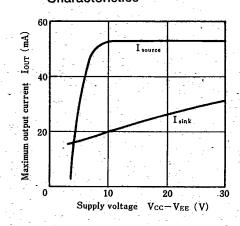


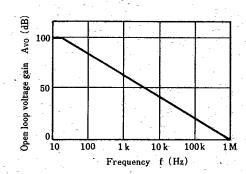
Voltage gain—Supply voltage Characteristics

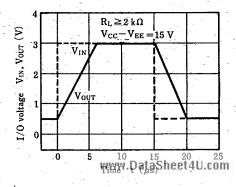


www.DataSheet4U.com


Input bias current—Supply voltage Characteristics


In-phase signal rejection ratio—Frequency Characteristics


Major amplitude frequency Characteristics


Maximum output current—Supply voltage Characteristics

Open loop voltage gain—Frequency Characteristics

Response time Characteristics

