

MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate

🗙 National Semiconductor

© 1995 National Semiconductor Corporation TL/F/5887 RRD-B30M105/Printed in U. S. A.

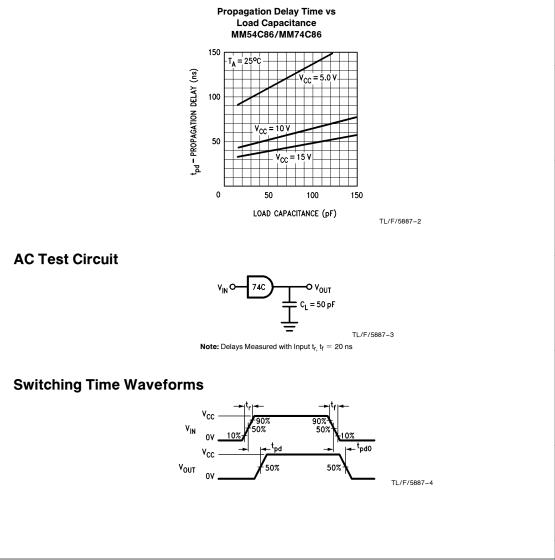
MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate

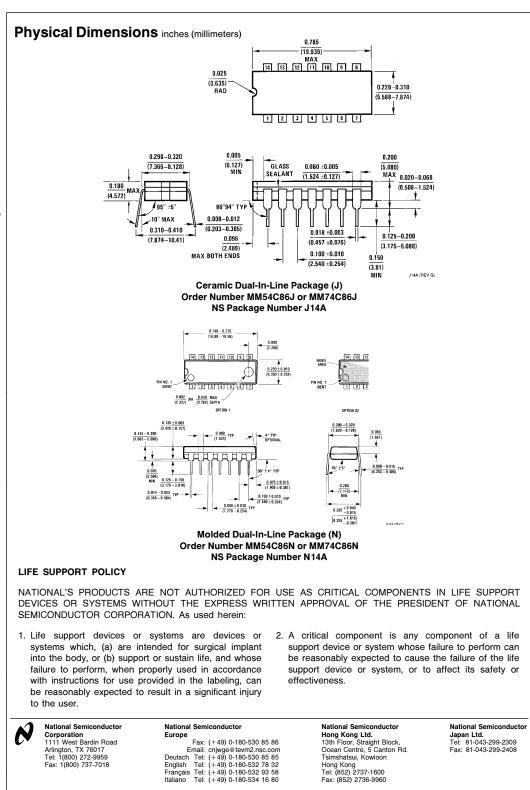
February 1988

1.0V

	stributors for availability and s any Pin (Note 1) -0.3	•	Small Outline Operating Range (V _{CC})			
Operating Temperature Range		Absolute Maximum (V _{CC}) -55°C to + 125°C Lead Temperature (Soldering, 10 seconds -40°C to + 85°C			18V s) 260°C	
		-65°C to +150°C				
DC Ele	ectrical Characteris	tics Min/max limits apply across temp	erature range u	Inless otherw	vise noted	í
Symbol	Parameter	Conditions	Min	Тур	Max	Units
MOS TO CN	NOS		II			1
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$			1.5 2.0	v v
V _{OUT(1)}	Logical "1" Output Voltage	$\begin{array}{l} V_{CC} = 5.0V, I_{O} = -10 \; \mu A \\ V_{CC} = 10V, I_{O} = -10 \; \mu A \end{array}$	4.5 9.0			v v
V _{OUT(0)}	Logical "0" Output Voltage	$ \begin{array}{l} V_{CC} = 5.0V, I_O = + 10 \; \mu A \\ V_{CC} = 10V, I_O = + 10 \; \mu A \end{array} $			0.5 1.0	v v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
ICC	Supply Current	$V_{CC} = 15V$		0.01	15	μΑ
MOS/LPTT						
V _{IN(1)}	Logical "1" Input Voltage	54C, $V_{CC} = 4.5V$ 74C, $V_{CC} = 4.75V$	V _{CC} -1.5 V _{CC} -1.5			v v
V _{IN(0)}	Logical "0" Input Voltage	54C, $V_{CC} = 4.5V$ 74C, $V_{CC} = 4.75V$			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C, V_{CC} = 4.5V, I_O = -360 μ A 74C, V_{CC} = 4.75V, I_O = -360 μ A	2.4 2.4			v v
V _{OUT(0)}	Logical "0" Output Voltage	54C, V_{CC} = 4.5V, I_O = 360 μ A 74C, V_{CC} = 4.75V, I_O = 360 μ A			0.4 0.4	V V
UTPUT DRI	VE (See 54/74C Family Chara	cteristics Data Sheet) (Short Circuit C	urrent)			
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-1.75	-3.3		mA
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	-15		mA
I _{SINK}	Output Sink Current (N-Channel)	$\label{eq:VCC} \begin{split} V_{CC} &= 5.0 V, V_{OUT} = V_{CC} \\ T_A &= 25^\circ C \end{split}$	1.75	3.6		mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA
		s beyond which the safety of the device cannot be be operated at these limits. The table of "Electric				

AC Electrical Characteristics [*] (MM54C86/MM74C86) $T_A = 25^{\circ}C$, $C_L = 50 \text{ pF}$, unless otherwise specified										
Symbol	Parameter	Conditions	Min	Тур	Max	Units				
t _{pd}	Propagation Time to Logical "1" or "0"	$V_{CC} = 5.0V$ $V_{CC} = 10V$		110 50	185 90	ns ns				
C _{IN}	Input Capacitance	Note 2		5.0		pF				
C _{PD}	Power Dissipation Capacitance	(Note 3) Per Gate		20		pF				


*AC Parameters are guaranteed by DC correlated testing.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CpD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics Application Note—AN-90.

Typical Performance Characteristics

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.