CD4066BM/CD4066BC Quad	Bilateral Switch
General Description The CD4066BM/CD4066BC is a quad bilateral switch in- tended for the transmission or multiplexing of analog or digi- tal signals. It is pin-for-pin compatible with CD4016BM/ CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.	$\label{eq:second} \begin{array}{c} \mbox{Extremely low ''OFF''} & 0.1 nA (typ switch leakage $
$\label{eq:supersonance} \begin{array}{llllllllllllllllllllllllllllllllllll$	 Applications Analog signal switching/multiplexing Signal gating Squelch control Chopper Modulator/Demodulator Commutating switch Digital signal switching/multiplexing CMOS logic implementation Analog-to-digital/digital-to-analog conversion Digital control of frequency, impedance, phase, and an alog-signal-gain
Schematic and Connection Diagrams	

CONTROL C -

v_{ss}

C SW C

Top View

©1995 National Semiconductor Corporation TL/F/5665

RRD-B30M105/Printed in U. S. A.

TL/F/5665-1

OUT/IN

IN/OUT

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-0.5V to $+18V$
-0.5V to V _{DD} $+0.5V$
-65°C to +150°C
700 mW
500 mW
300°C

Recommended Operating Conditions (Note 2)

COnditions (Note 2)	
Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A) CD4066BM CD4066BC	-55°C to +125°C -40°C to +85°C

DC Electrical Characteristics CD4066BM (Note 2)

Symbol	Parameter	Conditions		- {		+ 25°C				+ 125°C		
Symbol	Farameter			Min	Max	Min	Min Typ		Max	Min	Max	- Units
I _{DD}	Quiescent Device Current	V _{DD} =5V			0.25		0.0	1	0.25		7.5	μA
		V _{DD} =10V			0.5		0.0	1	0.5		15	μA
		V _{DD} =15V			1.0		0.0	1	1.0		30	μA
SIGNAL I	NPUTS AND OUTPUTS											
R _{ON}	"ON" Resistance	$R_L = 10 \text{ k}\Omega \text{ to} \frac{V_{DD}}{2}$	-V _{SS}									
		$V_{\rm C} = V_{\rm DD}, V_{\rm IS} = V_{\rm SS}$	to V _{DD}									
		V _{DD} =5V			800		27)	1050		1300	Ω
		V _{DD} =10V			310		12)	400		550	Ω
		V _{DD} =15V			200		80		240		320	Ω
ΔR_{ON}	∆"ON" Resistance	$R_{L} = 10 \text{ k}\Omega \text{ to } \frac{V_{DD}}{2}$	-V _{SS}									
	Between any 2 of	$ V_{C}=V_{DD}, V_{IS}=V_{SS}$										
	4 Switches	V _{DD} =10V					10					Ω
		V _{DD} =15V					5					Ω
IIS	Input or Output Leakage	V _C =0			±50		±0	1	± 50		±500	nA
Switch "OFF"		$V_{IS} = 15V$ and 0V,										
		$V_{OS} = 0V$ and 15V										
CONTROL	INPUTS									-		_
V _{ILC}	Low Level Input Voltage	$V_{IS} = V_{SS}$ and V_{DD}										
		$V_{OS} = V_{DD}$ and V_{SS}										
		$I_{IS} = \pm 10 \ \mu A$										
		V _{DD} =5V			1.5		2.2		1.5		1.5	V
		$V_{DD} = 10V$			3.0		4.5		3.0		3.0	V
		V _{DD} =15V			4.0		6.7	-	4.0		4.0	V
VIHC	High Level Input Voltage	V _{DD} =5V		3.5 7.0		3.5	2.7			3.5		V
			V _{DD} =10V (see note 6) V _{DD} =15V			7.0	5.5			7.0		V
		V _{DD} =15V				11.0	8.2	5		11.0		V
I _{IN}	Input Current $ \begin{array}{c} V_{DD} - V_{SS} = 15V \\ V_{DD} \geq V_{IS} \geq V_{SS} \end{array} $				±0.1		±10	-5	± 0.1		±1.0	μΑ
		$V_{DD} \ge V_C \ge V_{SS}$										
		oviotio-										
DCE	Electrical Charact	eristics CD4066		∋ 2) •0°C			0500			1.05	~ I	
Symbol	Parameter	Conditions				+ 25°0			-	+ 85°		Units
			Min	Max	Mir	и Т	ур	Мах	M	in	Max	

1.0

2.0

4.0

0.01

0.01

0.01

1.0

2.0

4.0

7.5

15

30

μΑ

μA

μΑ

 $V_{DD} = 5V$

 $V_{DD} = 10V$ $V_{DD} = 15V$

 I_{DD}

Quiescent Device Current

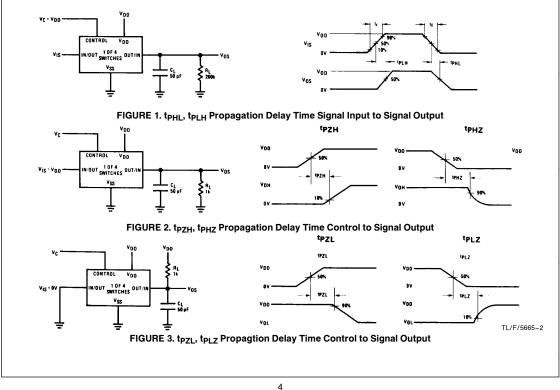
Cumhal	Devementer		ditions	-40°C			+ 2	5°C		+ 85°C		
Symbol	Parameter		onditions	Min	Max	Min	Ту	'p	Max	Min	Max	Unite
SIGNAL II	NPUTS AND OUTPUTS											
R _{ON}	"ON" Resistance	R _L =10 kΩ	to $\frac{V_{DD} - V_{SS}}{2}$									
		$V_{C} = V_{DD},$ $V_{DD} = 5V$ $V_{DD} = 10V$			850 330		27 12		1050 400		1200 520	Ω Ω
		V _{DD} =15V			210		8	0	240		300	Ω
∆R _{ON}	Δ"ON" Resistance Between Any 2 of 4 Switches	$ \begin{array}{l} R_{L} = 10 \; k \Omega \; to \; \frac{V_{DD} - V_{SS}}{2} \\ V_{CC} = V_{DD}, \; V_{IS} = V_{SS} \; to \; V_{DD} \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array} $					1					Ω Ω
I _{IS}	Input or Output Leakage Switch "OFF"	V _C =0			±50		±C).1	±50		±200	nA
CONTRO	LINPUTS											
V _{ILC}	Low Level Input Voltage	$V_{IS} = V_{SS} \text{ and } V_{DD}$ $V_{OS} = V_{DD} \text{ and } V_{SS}$ $I_{IS} = \pm 10 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$			1.5 3.0		2.2 4.	5	1.5 3.0		1.5 3.0	V V
		V _{DD} =15V			4.0		6.7		4.0		4.0	V
VIHC	High Level Input Voltage	$V_{DD} = 5V$ $V_{DD} = 10V$ (See note 6) $V_{DD} = 15V$		3.5 7.0 11.0		3.5 7.0 11.0	2.1 5. 8.2	5		3.5 7.0 11.0		
I _{IN}	Input Current	$\begin{array}{c} V_{DD} - V_{SS} = 15V \\ V_{DD} \geq V_{IS} \geq V_{SS} \\ V_{DD} \geq V_{C} \geq V_{SS} \end{array}$			±0.3		± 10)-5	±0.3		±1.0	μA
AC E	Electrical Charac	teristic	S* T _A =25°C, t _r =1	t _f =20 r	ns and V	/ _{SS} =0\	/ unle	ss oth	erwise	noted		
Symbo	Paramete	r	Conditions					Min	יד	ур	Max	Units
t _{PHL} , t _{PLH} Propagation Delay Time Signal Input to Signal Output		$V_{C} = V_{DD}, C_{L} = 50 \text{ pF}, (Figure 1)$ $R_{L} = 200 \text{k}$ $V_{DD} = 5 \text{V}$ $V_{DD} = 10 \text{V}$ $V_{DD} = 15 \text{V}$						1	5 5 0	55 35 25	ns ns ns	
t _{PZH} , t _{P2}	$ \begin{array}{c c} t_{\text{PZL}} & \text{Propagation Delay Time} \\ \text{Control Input to Signal} \\ \text{Output High Impedance to} \\ \text{Logical Level} \\ \end{array} \begin{array}{c} \text{R}_{L} = 1.0 \ \text{k}\Omega, \text{C} \\ \text{V}_{\text{DD}} = 5 \text{V} \\ \text{V}_{\text{DD}} = 5 \text{V} \\ \text{V}_{\text{DD}} = 10 \text{V} \\ \text{V}_{\text{DD}} = 15 \text{V} \end{array} $			= 50 pF	, (Figure	<i>es 2</i> and	13)				125 60 50	ns ns ns
t _{PHZ} , t _{PI}	LZ Propagation Delay T Control Input to Sign Output Logical Level High Impedance	al $V_{DD} = 5V$ to $V_{DD} = 10V$ $V_{DD} = 15V$ $V_{C} = V_{DD} = 5V, V$		$5V_{p-p}$, f = 1 kHz, $V_{SS} = -5V$,		1 <i>3</i>)		0	4	125 60 50	ns ns ns %	

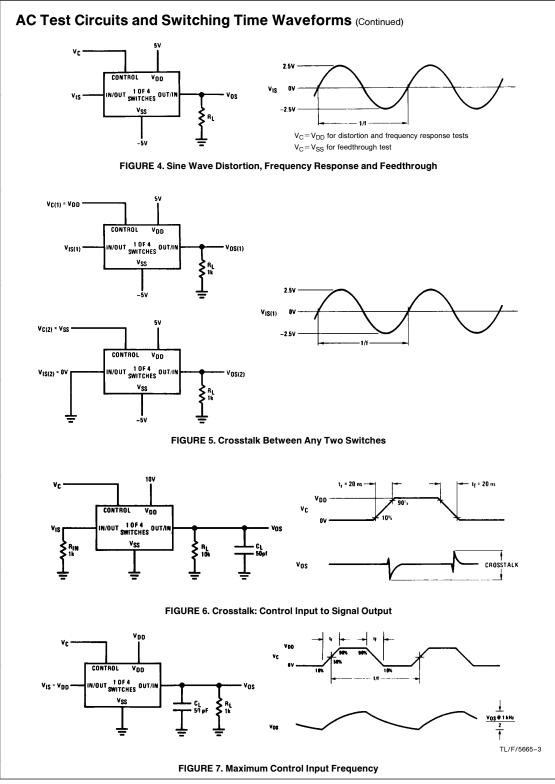
AC Electrical Characteristics [*] (Continued) $T_A = 25^{\circ}C$, $t_r = t_f = 20$ ns and $V_{SS} = 0V$ unless otherwise noted								
Symbol	Parameter	Conditions	Min	Тур	Мах	Units		
	Feedthrough — Switch "OFF" (Frequency at -50 dB)	$\begin{array}{l} V_{DD}\!=\!5.0V, V_{CC}\!=\!V_{SS}\!=\!-5.0V, \\ R_L\!=\!1k\Omega, V_{IS}\!=\!5.0V_{p\text{-}p}, 20Log_{10}, \\ V_{OS}\!/V_{IS}\!=\!-50dB, (Figure~4) \end{array}$		1.25				
	Crosstalk Between Any Two Switches (Frequency at -50 dB)	$V_{DD} = V_{C(A)} = 5.0V; V_{SS} = V_{C(B)} = 5.0V, R_{L}1 k\Omega, V_{IS(A)} = 5.0 V_{p-p}, 20 Log_{10}, V_{OS(B)}/V_{IS(A)} = -50 dB (Figure 5)$		0.9		MHz		
	Crosstalk; Control Input to Signal Output	$V_{DD}^{OD} = 10V, R_L = 10 k\Omega, R_{IN}^{OD} = 1.0 k\Omega, V_{CC} = 10V Square Wave, C_L = 50 pF$ (<i>Figure 6</i>)		150		mV _{p-p}		
	Maximum Control Input	$R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, (Figure 7)$ $V_{OS(f)} = \frac{1}{2} V_{OS}(1.0 \text{ kHz})$						
		$V_{DD} = 5.0V$ $V_{DD} = 10V$ $V_{DD} = 15V$		6.0 8.0 8.5		MHz MHz MHz		
CIS	Signal Input Capacitance			8.0		pF		
C _{OS}	Signal Output Capacitance	V _{DD} =10V		8.0		pF		
C _{IOS}	Feedthrough Capacitance	V _C =0V		0.5		pF		
C _{IN}	Control Input Capacitance			5.0	7.5	pF		

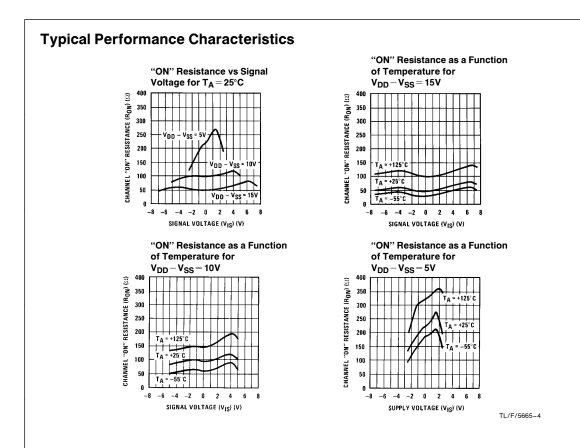
*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS}=0V unless otherwise specified.

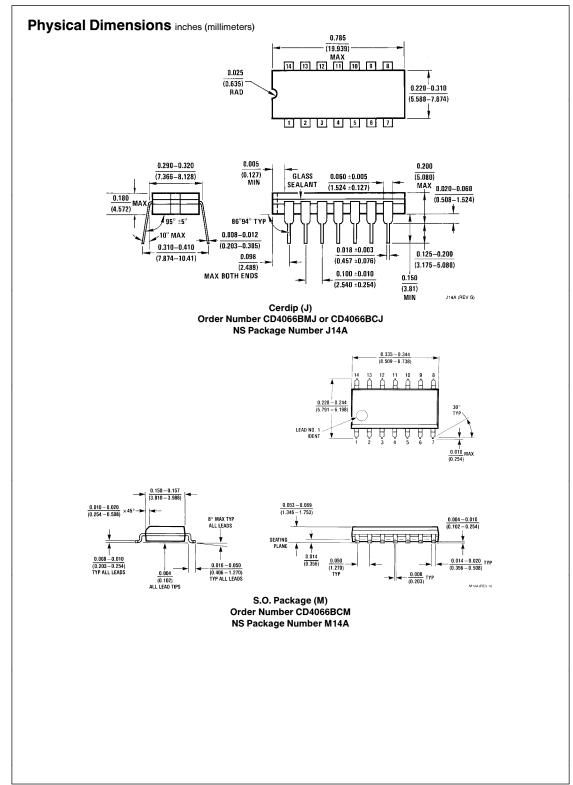

Note 3: These devices should not be connected to circuits with the power "ON".


Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in CL wherever it is specified.

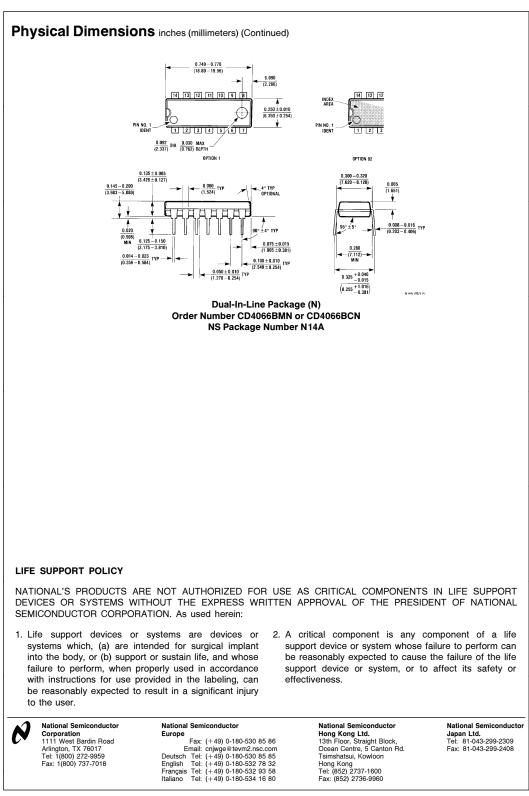

Note 5: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

Note 6: Conditions for V_{IHC} : a) $V_{IS} = V_{DD}$, $I_{OS} =$ standard B series I_{OH} b) $V_{IS} = 0V$, $I_{OL} =$ standard B series I_{OL} .

AC Test Circuits and Switching Time Waveforms


Special Considerations

In applications where separate power sources are used to drive V_{DD} and the signal input, the V_{DD} current capability should exceed $V_{DD}/R_{\rm L}$ ($R_{\rm L}$ = effective external load of the 4 CD4066BM/CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BM/CD4066BC.


In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid

drawing V_{DD} current when switch current flows into terminals 1, 4, 8 or 11, the voltage drop across the bidirectional switch must not exceed 0.6V at $T_A{\leq}25^\circ\text{C}$, or 0.4V at $T_A{>}25^\circ\text{C}$ (calculated from R_{ON} values shown).

No V_{DD} current will flow through ${\rm R}_{\rm L}$ if the switch current flows into terminals 2, 3, 9 or 10.

7

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications