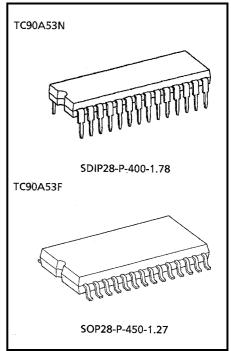
TOSHIBA

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC


TC90A53N,TC90A53F

3-LINE DIGITAL Y / C SEPARATOR IC

TC90A53N / F is a 3-line digital Y / C separator IC which separates luminance signal Y and chroma signal C from composite video signals. Toshiba's logical comb filter realizes good Y / C separation at low cost.

FEATURES

- TV format : NTSC (3.58)
- Dynamic comb filter
- Vertical edge enhancement circuit
- PLL 4 × multiplier circuit
- Internal 8-bit 4 fsc AD converter
- Internal 8-bit 4 fsc DA converter (2 ch)
- 1-line color dot interference reducer circuit
- Sync tip clamp circuit
- Internal 2H-line memory
- Color killer mode (Y / C separation off)
- Chroma signal C output wide band mode
- Package: SDIP 28-pin and SOP 28-pin
- 5 V single power supply

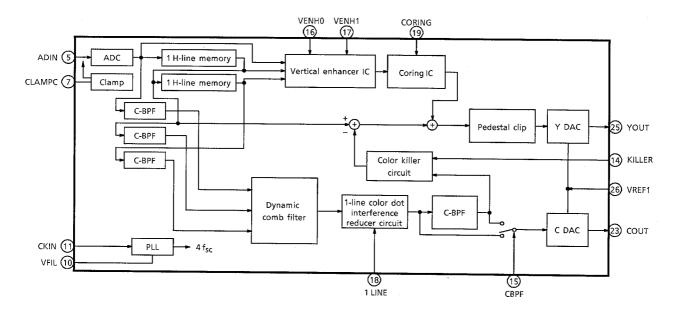
Weight:

SDIP28-P-400-1.78: 1.7 g (Typ.) SOP28-P-450-1.27: 0.8 g (Typ.)

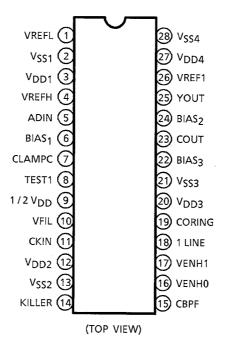
The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.


damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

BLOCK DIAGRAM

PIN CONNECTION

PIN FUNCTION

PIN No.	PIN NAME	FUNCTION	PIN No.	PIN NAME	FUNCTION
1	VREFL	ADC Bias	15	CBPF	L : C-BPF = Wide Band H : Narrow Band
2	V _{SS1}	ADC GND	16	VENH0	Sets Vertical Enhance Amount.
3	V _{DD1}	ADC Power Supply	17	VENH1	(VENH0, VENH1) = (L, L) = Small (H, L) = Small (L, H) = Medium, (H, H) = Large
4	VREFH	ADC Bias	18	1LINE	L : 1-line Color ON H : 1-line Color OFF
5	ADIN	Video Signal Input	19	CORING	L : Coring ON (2LSB) H : Coring OFF (0LSB)
6	BIAS ₁	ADC Bias	20	V_{DD3}	Digital Power Supply
7	CLAMPC	Clamp Circuit Filter	21	V _{SS3}	Digital GND
8	TEST1	Test Pin	22	BIAS ₃	DAC Bias
9	1 / 2 V _{DD}	Line Memory Bias	23	COUT	C Output
10	VFIL	VCO Filter	24	BIAS ₂	DAC Bias
11	CKIN	Clock Input	25	YOUT	Y Output
12	V _{DD2}	PLL Power Supply	26	VREF1	DAC Bias
13	V _{SS2}	PLL GND	27	V _{DD4}	DAC Power Supply
14	KILLER	L : Color Mode H : Black And White Mode	28	V _{SS4}	DAC GND

(Note): Pins 9 and 26 need external bias.

PIN FUNCTION

PIN	PIN	FUNCTION	1/0	INTERFACE
No.	NAME	FUNCTION	1/0	INTERFACE
1	V _{REFL}	ADC bias pin. Sets lower limit of range D for ADC. Fixed internally to 1.5 V (typ.). Connect 0.01 μ F capacitor between this pin and GND.	_	27000 63000
2	V _{SS1}	ADC GND		_
3	V _{DD1}	ADC power supply (+5 V)		_
4	VREFH	ADC bias pin. Sets upper limit of range D for ADC. Fixed internally to 3.5 V (typ.). Connect 0.01 μ F capacitor between this pin and GND.		63000 27000
5	ADIN	Composite video signal input pin.	I	S CWII
6	BIAS1	ADC bias pin. Fixed internally to 1.3 V (typ.). Connect 0.01 μF capacitor between this pin and GND.		6 1.3 V
7	CLAMPC	External filter used for Sync tip clamping the input composite video signal. Connect 510 $k\Omega$ and 4700 pF between this pin and GND.	_	7 CWL
8	TEST	Test pin. Connect GND.		_
9	1/2V _{DD}	Line-memory bias. Supply 1 / 2 V _{DD} by dividing digital power supply using a resistor. Connect 0.01 µF capacitor between this pin and GND.	ı	9 200 Ω

PIN No.	PIN NAME	FUNCTION	1/0	INTERFACE
10	V _{FIL}	Connect a VCO filter.	_	(B)
11	CKIN	Inputs clock. First DC-cut f _{SC} clock in sync with color burst using a capacitor, then input the result.	I	11 20 kΩ
12	V_{DD2}	PLL power supply (+5 V)		_
13	V_{SS2}	PLL GND		_
14	KILLER	Selects color killer mode. L : Color mode H : Black and white mode (Y / C sep off)	I	14 14 14 14 14 14 14 14 14 14 14 14 14 1
15	CBPF	Selects color signal horizontal band. L: Wide band (does not pass BPF) H: Narrow band (passes BPF)	I	15 CSAOS
16 17	VENH0 VENH1	Select vertical enhance amount. VENH0 VENH1 L : Small (+0.25) H L : Small (+0.25) L H : Medium (+0.75) H H : Large (+1.25)	I	16 No Sok D
18	1 LINE	1-line color dot interference reducer ON / OFF L : 1-line color dot interference reducer ON H : 1-line color dot interference reducer OFF	I	18 C S S S S S S S S S S S S S S S S S S

PIN No.	PIN NAME	FUNCTION	1/0	INTERFACE
19	CORING	Selects coring. L: Coring ON (2LSB) H: Coring OFF (0LSB)	-	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
20	V _{DD3}	Digital power supply (+5 V)	_	_
21	V _{SS3}	Digital GND	_	_
22	BIAS3	DAC bias pin. Fixed internally to 3.5 V (typ.). Connect a 0.01 μ F capacitor between this pin and GND.	_	22 3.5 V
23	COUT	Outputs C signal.	0	(3) (3)
24	BIAS2	DAC bias pin. Fixed internally to 1.6 V (typ.). Connect a 0.01 μ F capacitor between this pin and GND.		24 1.6 V
25	YOUT	Outputs Y signal.	0	\$\frac{4000}{1}\$
26	VREF1	DAC bias pin. Sets lower limit of range D for DAC. Supply power by dividing power for DAC using a resistor. Recommended value : 3.0 V	ı	200 Ω
27	V_{DD4}	DAC power supply (+5 V)		_
28	V_{SS4}	DAC GND	_	_

DESCRIPTION OF FUNCTIONS

(1) CLAMP (Input clamp)

Circuit used to Sync tip clamp composite signal.

Apply feedback clamp so that at Y / C separation, the minimum data value after A / D conversion is the internally-fixed level.

(2) ADC (A / D converter)

High-speed series-parallel 8-bit A / D converter (Dynamic Range: 2.0V).

Input composite video signal with amplitude of 1.5 V_p-p (sync to white 100%).

(3) 1 H memory

Line memory consisting of DRAM for 1 H delay. Two line memories configure a 3-line comb filter. Because the system clock is $4 f_{\rm sc}$ (14.3 MHz), 910 clocks / 1 H is set.

(4) VENH (Vertical enhancer circuit)

After coring (2LSB) the non-correlation component among the three lines of the luminance signal, this block enhances the vertical outline. The enhance amount can be selected from three settings: large (+1.25), medium (+0.75), and small (+0.25).

The vertical enhance amount is added to the luminous signal obtained by subtracting the color signal from the composite signal, then the luminous signal is output via the D / A converter. Note that if the luminous signal is lower than the pedestal level (internally-fixed value), the vertical enhance amount is not added to.

(5) BPF (Horizontal bandpass filter)

Uses f_{sc} as the center frequency. Filters the composite signal delayed by 0 H, 1 H, or 2 H and extracts the color signal.

The bandpass filter for outputting the color signal at a later stage can be switched on or off to select output of a narrow- or wide-band color signal.

(6) DCF (Vertical dynamic comb filter)

Vertical bandpass filter which extracts the color signal by detecting vertical non-correlation. Using Toshiba logic, determines the correlation among three lines. If no correlation, determines as the luminous signal and suppresses output of the color signal.

(7) 1-line color dot interference reducer circuit

Improves color dot interference on a screen where only 1 line has color so that the C signal is processed as the Y signal.

Extracts 1-line color dot component and the result is added to the output from the dynamic comb filter.

(8) RTIM (Clock / memory timing generator)

This block supplies \times 4 f_{sc} (14.3 MHz) obtained using the VCO via a buffer to the blocks and generates the timing signal necessary for memory.

(9) PLL (× 4 clock generator)

Multiplies f_{sc} (3.58 MHz) by 4 and generates system clock 4 f_{sc} (14.3 MHz).

(10) DAC (D / A converter)

High-speed 8-bit D / A converter. The output amplitudes are : Y output of 1.5 V $_{p-p}$ (typ.) and C output at burst level of 572 mV $_{p-p}$ (typ.).

(11) Color killer circuit

When the input video signal is a monochrome image, this circuit enables effective use of the luminance signal information regardless of whether there is a burst signal. It does this by preventing the chroma signal output from the comb filter from being subtracted from the luminance signal.

While the VBI signal is active it is better not to use the comb function. Setting the KILLER pin to High at this time enables the use of character multiplex and other signals from the Y output unchanged. But since Vertical edge enhancement does not become OFF, be careful when using with Vertical edge enhancement.

TC90A53N/F

MODE LIST

TOSHIBA

PIN14 KILLE R	PIN15 CBPF	PIN16 VENH0	PIN17 VENH1	PIN18 1 LINE	PIN19 CORING	MODE	OPERATION
L	_	_	_	_	_	Y / C separation ON	Color mode
Н	_	_	_	_	_	Y / C separation OFF	Black and white mode (killer)
_	L	_	_	_	_	Color signal horizontal band, wide	Does not pass BPF for color signal output.
	Н	_	_	_	_	Color signal horizontal band, narrow	Passes BPF for color signal output.
	_	L	L	_	_	Vertical enhance small	Enhance amount : (+0.25)
	_	Н	L	_	_	Vertical enhance small	Enhance amount : (+0.25)
_	_	L	Н	_	_	Vertical enhance medium	Enhance amount : (+0.75)
	_	Н	Н	_	_	Vertical enhance large	Enhance amount : (+1.25)
_	_	_	_	L	_	1-line color ON	1-line color dot interference reducer circuit ON
_				Н		1-line color OFF	1-line color dot interference reducer circuit OFF
	_				L	Coring ON	Coring circuit ON (2LSB)
_	_	_	_	_	Н	Coring OFF	Coring circuit OFF (0LSB)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT
Power Supply Voltage		V _{DD}	V _{SS} ~V _{SS} + 6.0	V
Input Voltage		V _{IN}	-0.3~V _{DD} + 0.3	V
Power Dissipation	TC90A53N	P _D	900	mW
Fower Dissipation	TC90A53F	(Note)	600	IIIVV
Storage Temperature		T _{stg}	-55~125	°C

(Note): Ta = 75°C

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Power Supply Voltage	V_{DD}	_	4.75	5.0	5.25	V
Input Voltage	V _{IN}	_	0	_	V_{DD}	V
Operating Temperature	T _{opr}	_	- 10	_	75	°C

ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS (Ta = 25°C, $V_{DD} = 5$ V)

CHARACT	ERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Operating Voltage		V _{DD}	1		4.75	5 5.0 5.25 V 0 60 80 mA 0 3.15 3.3 V 4.0 4.1 4 1.5 1.6 4 3.5 3.6 5 1.6 1.8 3 1.4 2.4 3 1.6 2.6 V 1.9 2.9 2.9 5 2.2 3.0 V 1.9 2.9 5 1.0 V	V	
Operating Current			1		40	60	80	mA
Output Voltage Lev	vol	Y _{OUT}	1		3.0	3.15	3.3	W
Output Voltage Lev	CI	C _{OUT}	'		3.9	4.0	4.1	v
		VREFL			1.4	1.5	1.6	
				CLOCK = 3.579545 MHz 500 mV _{p-p}	3.4	3.5	3.6	
		ADIN			1.5	1.6	1.8	
		BIAS ₁	1	$VREF1 = 3.0 V$ $1 / 2 V_{DD} = 2.5 V$ $V_{IN} = No input (Note 1)$	0.8	1.4	2.4	
Pin Voltage Level		BIAS ₂			0.8	1.6	2.6	V
		BIAS ₃			2.4	3.4	4.4	
		CLAMPC			2.0	3.0	4.0	
		VFIL			0.9	1.9	2.9	
		CKIN			1.5	2.2	3.0	
Input Voltage	High Level	V _{IH}	1		4	_		V
input voitage	Low Level	V _{IL}	1		_	_	1	V
ADIN Pin Input Cap	pacitance	C _{IN}	1		_	50		pF
Pull-Down Resistar	nce	R _{PD}	1		25	50	100	kΩ

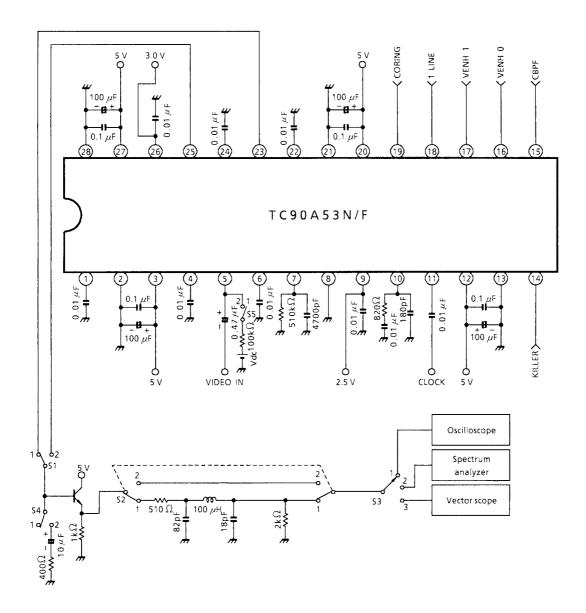
(Note 1): Pins 9 and 26 need external bias.

AC CHARACTERISTICS Y output (Ta = 25°C, V_{DD} = 5 V, clock frequency = 3.579545 MHz, 0.5 Vp-p, S1 = 2, VREF1 = 3.0 V)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION		MIN	TYP.	MAX	UNIT
Input Level	V _{IN}	1	0~140 IRE (Figure 2)		_	1.5	1.6	V _{p-p}
Low-Frequency Gain	GV	1	S2 = 2, S3 = 2, S4 = 1, S5 = 2 V _{IN} = 15.734 kHz, 1.5 V _{p-p} Vdc = 2.5 V	!	-0.5	0.0	0.5	dB
	MTF1	1	S2 = 2, S3 = 2,	f2 / f1	- 2.0	- 1.2	-0.5	
Frequency Characteristics	MTF2	1	S4 = 1, S5 = 2 $V_{IN} = 1.5 V_{p-p}$ Vdc = 2.5 V	f4 / f1	-3.0	-2.0	- 1.5	dB
Comb Characteristics	Comb	1	S2 = 2, $S3 = 2$, S4 = 1, $S5 = 2V_{IN} = 1.5 V_{p-p}Vdc = 2.5 V$	f2 / f3	40	45		dB
	L _s	1	S2 = 1, S3 = 1, S4 = 1, S5 = 2	Y1 / Y2	35	40	43	
Linearity (Figure 1)	Ly	1	V _{IN} = 5-stage staircase waveform, 1.5V _{p-p} (Figure 2)	S / Y2	57	60	63	%
Output Impedance	Z _o	1	$S2 = 1, S3 = 1, S5 = 2$ $V_{IN} = 15.734 \text{ kHz}, 1.5 V_{p-p}$ $Vdc = 2.5 V$ $Zo = \frac{V1 - V2}{V2} \times 400$ $V1 : S4 = 1, V2 : S4 = 2$		250	400	700	Ω
Clock Leakage (4 f _{SC} component)	L _{ck}	1	S2 = 2, S3 = 2, S4 = 1, S5 = 1 V _{IN} = No input		_	5.0	20	mV _{rms}
Clock Dominant Wave Leakag (f _{SC} component)	L _{sc}	1	S2 = 2, S3 = 2, S4 = 1, S5 = 1 V _{IN} = No input			1.0	2.0	mV _{rms}

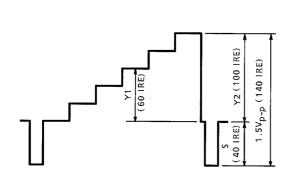
C output (Ta = 25°C, V_{DD} = 5 V, clock frequency = 3.579545 MHz, 0.5 $V_{p\text{-}p}$, S1 = 1, VREF1 = 3.0 V)

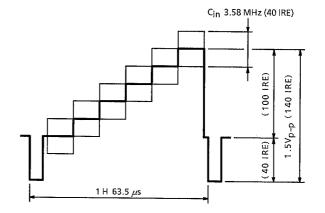
CHARACTER	STIC	SYMBOL	TEST CIR- CUIT	TEST CONDITIC)N	MIN	TYP.	MAX	UNIT
BPF	Wide Band	BWCW	1	$\label{eq:solution} \begin{array}{l} \text{Amplitude difference between } f_{SC} \\ \text{where } S2=2, S3=2, S4=1, S5=2 \\ \text{and } f_{SC}=503496 \text{Hz} \\ \text{V}_{IN}=1.5 \text{V}_{p-p}, \text{Vdc}=2.5 \text{V} \\ \\ \text{Amplitude difference between } f_{SC} \\ \text{where } S2=2, S3=2, S4=1, S5=2 \\ \text{and } f_{SC}=503496 \text{Hz} \\ \text{VIN}=1.5 \text{V}_{p-p}, \text{Vdc}=2.5 \text{V} \\ \end{array}$		-0.5	-0.2	_	dB
Characteristics	Narrow Band	BWCN	1			-1.0	-0.5	_	ив
Gain		CV	1	S2 = 2, $S3 = 2$, $S4 = 1$, $S5 = 1$, $V_{IN} = f_{SC}$, 430 mV_{p-p}		-2	-0.9	-0.6	dB
Comb Characteristics		Comb	1	$S2 = 2, S3 = 2, \\ S4 = 1, S5 = 2 \\ V_{IN} = 430 \text{ mV}_{p-p}, \\ Vdc = 2.5 \text{ V}$	f3 / f2	30	35	_	dB
Differential Gain		DG	1	S2 = 2, S3 = 3, S4 = 1,		0	2	5	%
Differential Phase		DP	1	$S5 = 1$, $V_{IN} = 5$ -stage staird waveform, $Y = 140$ IRE = 1.5 V_{p-p} C = 40 IRE (Figure 2) DG = (Comax-Comin) / Cotorion (Figure 3)		0	2	5	o
Output Impedance		Z _o	1	S2 = 2, $S3 = 2$, $S5 = 2V_{IN} = 15.734 kHz, 1.5 V_{p-p}Vdc = 2.5$ $VZo = \frac{V1 - V2}{V2} \times 400V1:S4 = 1$, $V2:S4 = 2$		250	400	700	Ω
Clock Leakage (4 f _{sc} Con	nponent)	L _{ck}	1	S2 = 2, S3 = 2, S4 = 1, S5 = 1, V _{IN} = No input		_	5.0	20	mV _{rms}
Clock Dominant Wave	Ü	L _{sc}	1	S2 = 2, S3 = 2, S4 = 1, S5 = 1, V _{IN} = No input		_	0.3	1.0	mV _{rms}

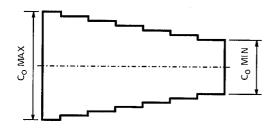

f1 = 15.734 kHz f2 = 3.587412 MHz f3 = 3.595279 MHz f4 = 4.783216 MHz

CLOCK PLL CIRCUIT CHARACTERISTICS

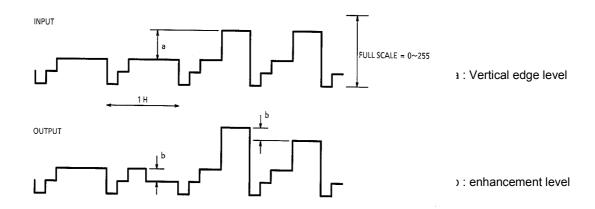
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Pull-in Frequency Range (4 f _{SC} Component)	f _{ck}	1	_	3.57	3.58	3.59	MHz
Input Amplitude (f _{SC} Component)	V _{ck}	1	_	0.4			V _{p-p}


TC90A53N/F

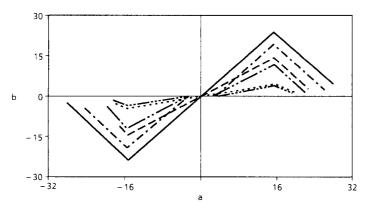

TEST CIRCUIT 1


LINEARITY TEST (Figure 1)

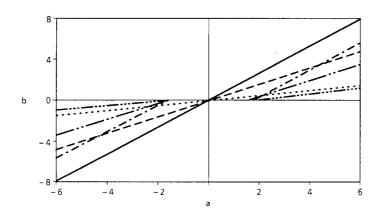
5-STAGE STAIRCASE SIGNAL (Figure 2)



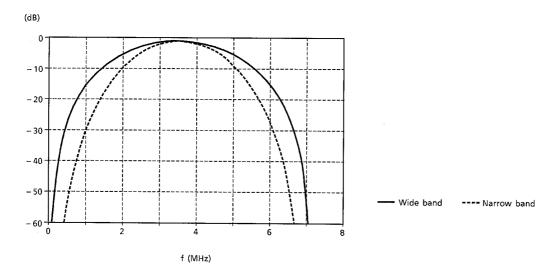
CHROMA DIFFERENTIAL GAIN (Figure 3)

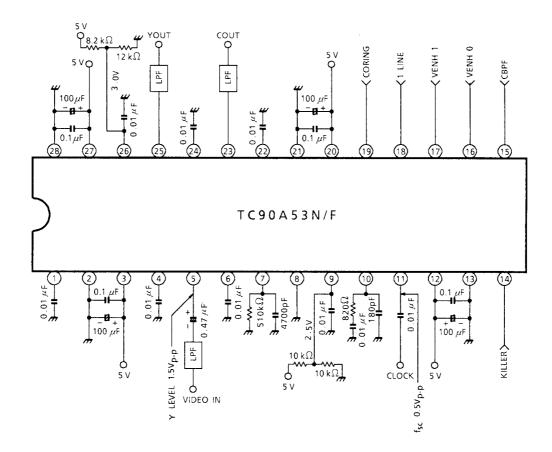

REFERENCE DATA

(Figure 4-a) DEFINITION OF VERTICAL ENHANCE

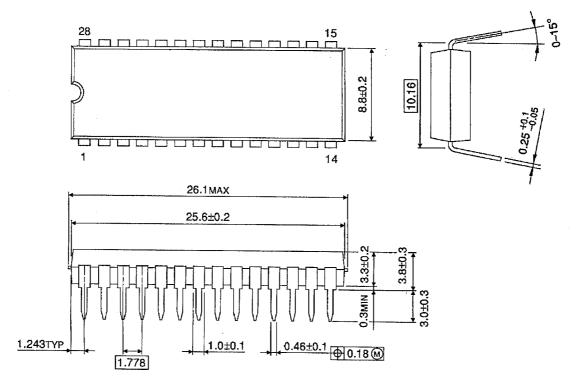


Note that output does not drop below the pedestal level (64 / 256) due to vertical outline enhance.


(Figure 4-b) VERTICAL ENHANCE CHARACTERISTICS


(Figure 4-c) VERTICAL ENHANCE CHARACTERISTICS(ENLARGED)

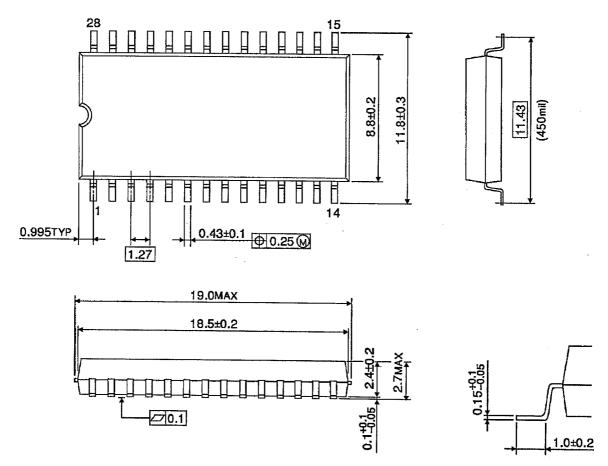
(Figure 5) FREQUENCY CHARACTERISTICS OF COLOR SIGNAL OUTPUT



APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP28-P-400-1.78 Unit: mm



Weight: 1.7 g (Typ.)

PACKAGE DIMENSIONS

SOP28-P-450-1.27

Unit: mm

Weight: 0.8 g (Typ.)