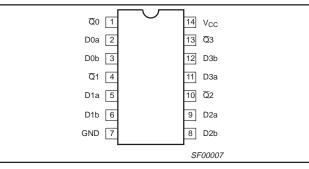
INTEGRATED CIRCUITS

Product specification

1990 Oct 04

IC15 Data Handbook


74F02

FEATURE

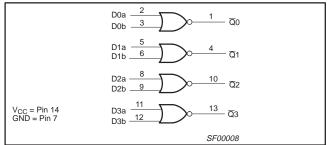
Industrial temperature range available (-40°C to +85°C)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F02	3.4ns	4.4mA

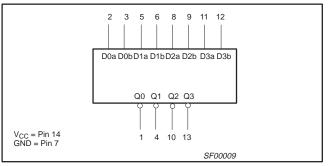
PIN CONFIGURATION

ORDERING INFORMATION

	C	RDER CODE		
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V ±10%, T _{amb} = 0°C to +70°C	INDUSTRIAL RANGE V _{CC} = 5V ±10%, T _{amb} = −40°C to +85°C	PKG DWG #	
14-pin plastic DIP	N74F02N	174F02N	SOT27-1	
14-pin plastic SO	N74F02D	I74F02D	SOT108-1	


INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Dna, Dnb	Data inputs	1.0/1.0	20µA/0.6mA
Qn	Data output	50/33	1.0mA/20mA

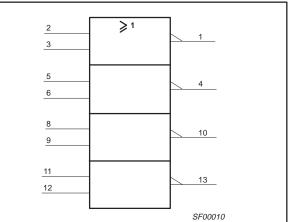

NOTE:

One (1.0) FAST unit load is defined as: $20\mu A$ in the high state and 0.6mA in the low state.

LOGIC DIAGRAM

LOGIC SYMBOL

FUNCTION TABLE


INP	JTS	OUTPUT
Dna	Dnb	Qn
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

NOTES:

1 H = High voltage level

2 L = Low voltage level

IEC/IEEE SYMBOL

74F02

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.

Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage		-0.5 to +7.0	V
I _{IN}	Input current		-30 to +5	mA
V _{OUT}	Voltage applied to output in high output state		–0.5 to V _{CC}	V
I _{OUT}	Current applied to output in low output state		40	mA
T _{amb}	Operating free air temperature range	Commercial range	0 to +70	°C
		Industrial range	-40 to +85	°C
T _{stg}	Storage temperature range		-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UNIT			
			MIN	NOM	MAX	1
V _{CC}	Supply voltage		4.5	5.0	5.5	V
V _{IH}	High-level input voltage		2.0			V
VIL	Low-level input voltage				0.8	V
I _{lk}	Input clamp current				-18	mA
I _{OH}	High-level output current				-1	mA
I _{OL}	Low-level output current				20	mA
T _{amb}	Operating free air temperature range	Commercial range	0		+70	°C
		Industrial range	-40		+85	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIO	NS ¹			UNIT	
				MIN	TYP ²	MAX	1	
V _{OH}	High-level output voltage		$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}	2.5			V
			$V_{IH} = MIN, I_{OH} = MAX$	±5%V _{CC}	2.7	3.4		V
V _{OL}	Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX$	±10%V _{CC}		0.30	0.50	V
			$V_{IH} = MIN, I_{OI} = MAX$	±5%V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$	$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V
l	Input current at maximum voltage	input	$V_{CC} = MAX, V_I = 7.0V$				100	μA
I _{IH}	High-level input current		$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
IIL	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$				-0.6	mA
I _{OS}	Short-circuit output curren	ıt ³	V _{CC} = MAX	V _{CC} = MAX			-150	mA
I _{CC}	Supply current (total) ⁴	I _{CCH}	V _{CC} = MAX			3.0	5.6	mA
		I _{CCL}	V _{CC} = MAX		7.0	13.0	mA	

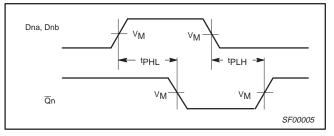
NOTES:

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

2

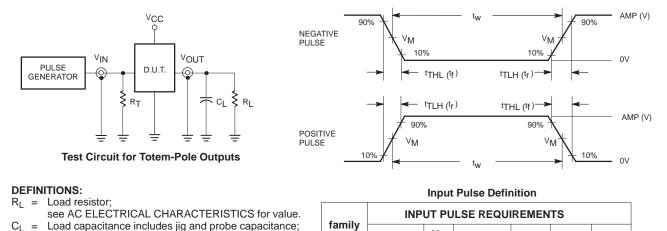
All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold 3 techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

4 I_{CC} is measured with outputs open.


74F02

AC ELECTRICAL CHARACTERISTICS

						LIM	ITS			
SYMBOL	PARAMETER	TEST CONDITION	Tai	$V_{CC} = +5.0V$ $T_{amb} = +25^{\circ}C$ $C_{L} = 50pF, R_{L} = 500\Omega$			0V ± 10% C to +70°C R _L = 500Ω	V _{CC} = +5. T _{amb} = -40° C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Dna, Dnb to Qn	Waveform 1	2.5 2.0	4.4 3.2	5.5 4.3	2.5 2.0	6.5 5.3	2.5 1.5	7.0 6.0	ns


AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

Waveform 1. Propagation delay for inverting outputs

TEST CIRCUIT AND WAVEFORM

74F

 V_{M}

1.5V

rep. rate

1MHz

tw

500ns

t_{TLH}

2.5ns

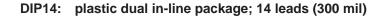
t_{THL}

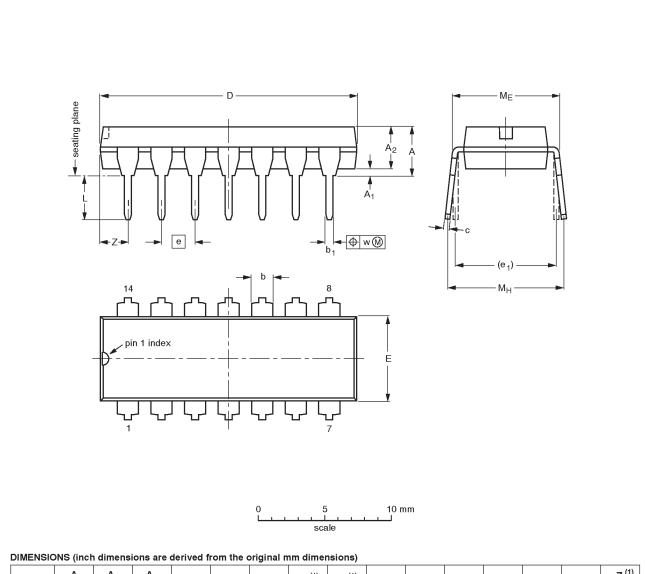
2.5ns

amplitude

3.0V

		See AC ELECTRICAL CHARACTERISTICS IOF value.
L	=	Load capacitance includes jig and probe capacitance;
		see AC ELECTRICAL CHARACTERISTICS for value.
		To provide the providence of a standard by a provide to 7 of

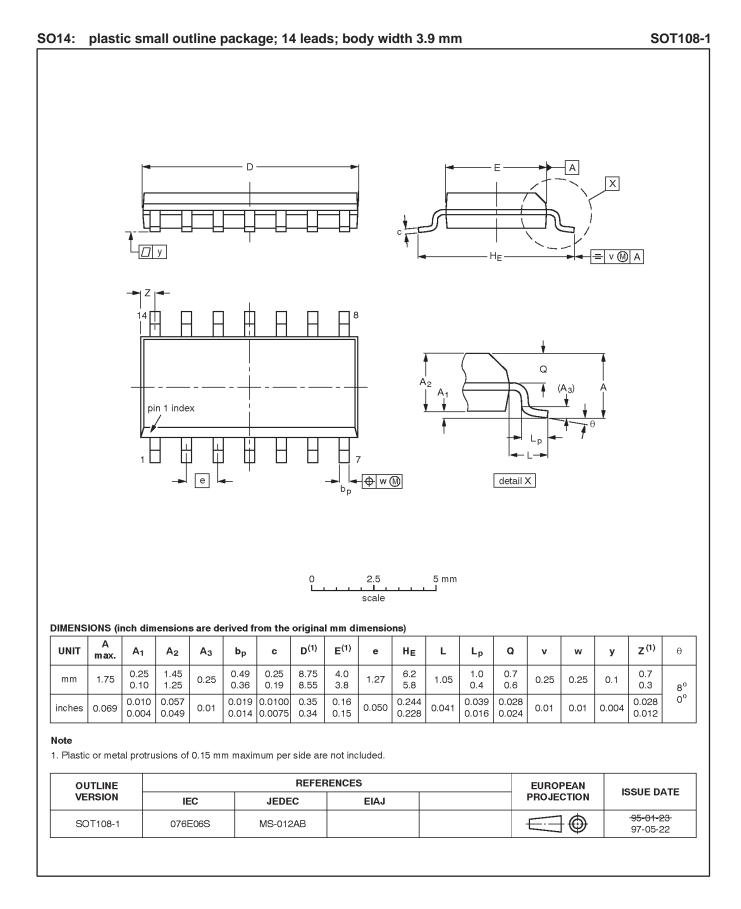

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.


SF	000	06

1990 Oct 04

Downloaded from <u>Elcodis.com</u> electronic components distributor

Quad 2-input NOR gate

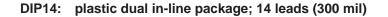

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	ME	м _н	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

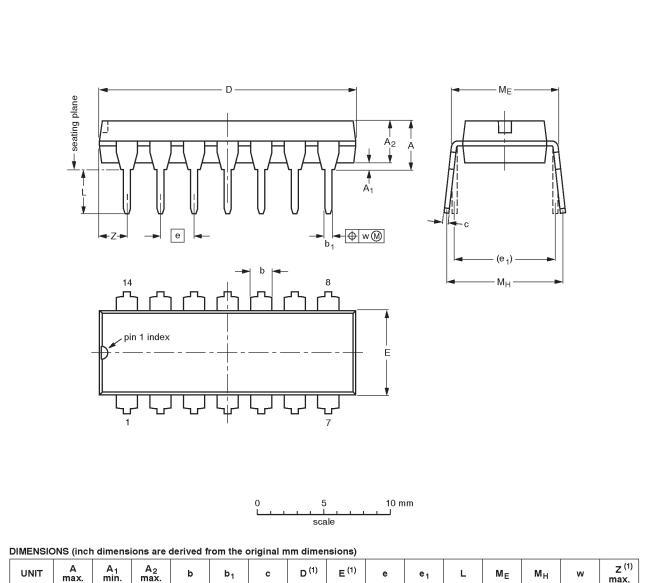
Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11	

Product specification

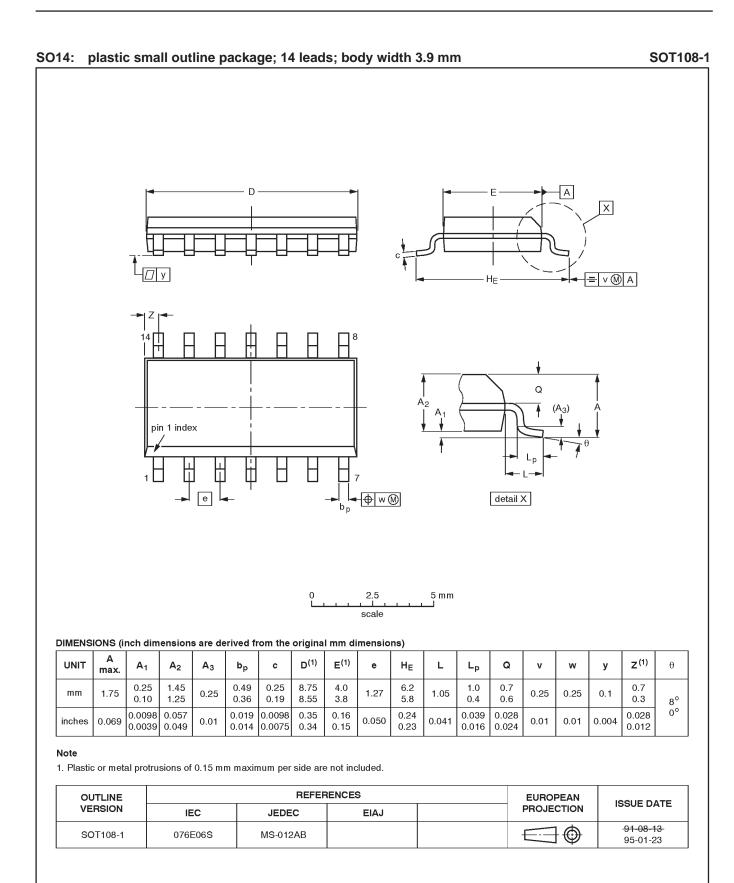

74F02


NOTES

1990 Oct 04

Downloaded from <u>Elcodis.com</u> electronic components distributor

Quad 2-input NOR gate


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11	

Product specification

74F02

NOTES

74F02

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

Semiconductors

Philips