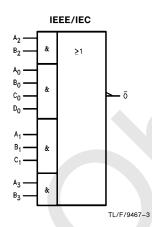
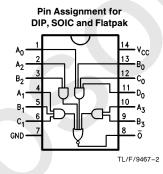


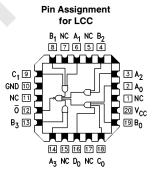
54F/74F64 4-2-3-2-Input AND-OR-Invert Gate

General Description

This device contains gates configured to perform a 4-2-3-2 input AND-OR-INVERT function.


Commercial	Military	Package Number	Package Description	
74F64PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line	
	54F64DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line	
74F64SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC	
	54F64FM (Note 2)	W14B	14-Lead Cerpack	
	54F64LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C	


Note 1: Devices also available in 13" reel. Use suffix = SCX.


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

Connection Diagrams

TL/F/9467-1

Unit Loading/Fan Out

		54F/74F					
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}				
A _n , B _n , C _n , D _n	Inputs Output	1.0/1.0 50/33.3	20 μA/ – 0.6 mA – 1 mA/20 mA				

TRI-STATE® is a registered trademark of National Semiconductor Corporation

91995 National Semiconductor Corporation TL/F/946

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V_{CC} Pin Potential to

 Ground Pin
 −0.5V to +7.0V

 Input Voltage (Note 2)
 −0.5V to +7.0V

 Input Current (Note 2)
 −30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output −0.5V to V_{CC}

TRI-STATE® Output −0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

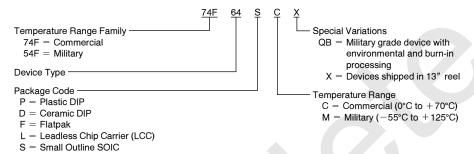
Recommended Operating Conditions

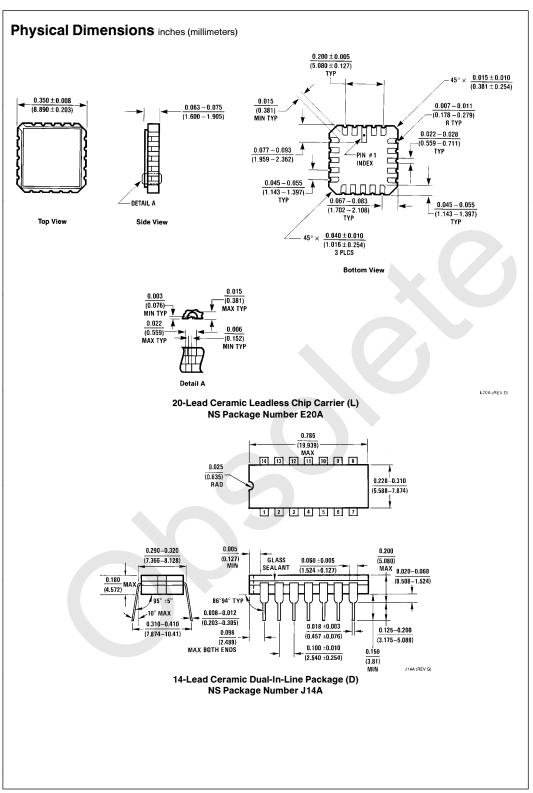
Free Air Ambient Temperature

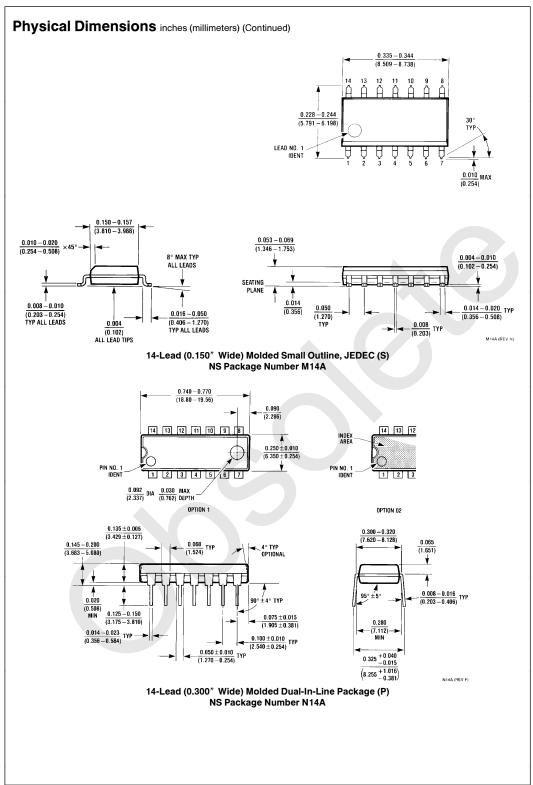
Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

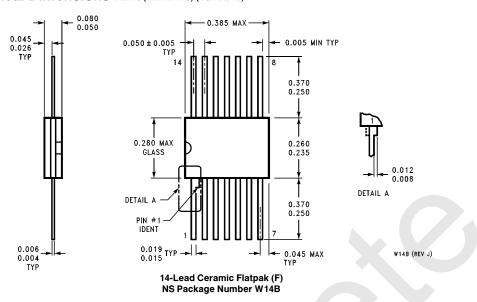
DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	v _{cc}	Conditions	
Symbol			Min	Тур	Max	Oilles	VCC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	>	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V	
I _{CEX}	Output High Leakage Current	54F 74F			250 50	μΑ	Max	V _{OUT} = V _{CC}	
V_{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
Ios	Output Short-Circuit C	Current	-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current	t		1.9	2.8	mA	Max	V _O = HIGH	
ICCL	Power Supply Current	t		3.1	4.7	mA	Max	$V_O = LOW$	


AC Electrical Characteristics


Symbol		$ \begin{array}{c} {\it T_{A}} = + 25^{\circ}{\it C} \\ {\it V_{CC}} = + 5.0{\it V} \\ {\it C_{L}} = 50 \rm pF \end{array} $			5-	4F	74F		
	Parameter				$ extsf{T}_{ extsf{A}}, extsf{V}_{ extsf{CC}} = extsf{Mil} \ extsf{C}_{ extsf{L}} = extsf{50 pF}$		T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.6	6.5	2.5	8.5	2.5	7.5	ns

Ordering Information


The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications