🗙 National Semiconductor

MM54HC123A/MM74HC123A **Dual Retriggerable Monostable Multivibrator**

General Description

The MM54/74HC123A high speed monostable multivibrators (one shots) utilize advanced silicon-gate CMOS technology. They feature speeds comparable to low power Schottky TTL circuitry while retaining the low power and high noise immunity characteristic of CMOS circuits.

Each multivibrator features both a negative, A, and a positive, B, transition triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken low resets the one shot. The 'HC123 can be triggered on the positive transition of the clear while A is held low and B is held high.

The 'HC123A is retriggerable. That is it may be triggered repeatedly while their outputs are generating a pulse and the pulse will be extended.

Pulse width stability over a wide range of temperature and supply is achieved using linear CMOS techniques. The out-

Dual-In-Line Package

01

13

CLR

Connection Diagram

C_{EXT1}

14

CLR ñ

CIR 1

Х

Х

L

↑

н

н

Ō١

Top View

Q

L

L

L

Л

П

П

02

CEXT2

Outputs

BEXT2

CEXT

REXT1

CEXT

R1

Truth Table

Clear

L

Х

Х

н

н

↑

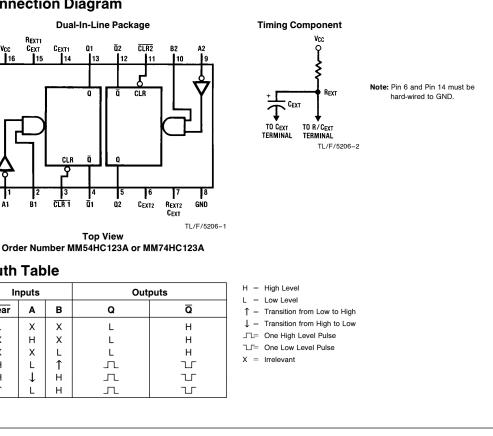
Inputs

Δ в

Х

Н

Х


L

↓

put pulse equation is simply: $PW = (R_{EXT})$ (C_{EXT}); where PW is in seconds, R is in ohms, and C is in farads. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 25 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- Simple pulse width formula T = RC
- Wide pulse range: 400 ns to ∞ (typ)
- Part to part variation: $\pm 5\%$ (typ)
- Schmitt Trigger A & B inputs enable infinite signal input rise and fall times.

©1995 National Semiconductor Corporation TL/F/5206 RRD-B30M105/Printed in U. S. A.

MM54HC123A/MM74HC123A Dual Retriggerable Monostable Multivibrator

Downloaded from Elcodis.com electronic components distributor

January 1988

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC})

DC Input Voltage (VIN)

Power Dissipation (P_D) (Note 3)

S.O. Package only

Lead Temperature (T_L)

(Soldering 10 seconds)

DC Output Voltage (V_{OUT})

Clamp Diode Current (I_{IK}, I_{OK})

DC Output Current, per pin (I_{OUT})

DC V_{CC} or GND Current, per pin (I_{CC})

Storage Temperature Range (T_{STG})

-0.5V to +7.0V

 \pm 20 mA

 $\pm 25 \text{ mA}$

 \pm 50 mA

600 mW

500 mW

260°C

-1.5V to $V_{CC}\!+\!1.5V$

-0.5V to V_{CC}+0.5V

 -65°C to $+150^\circ\text{C}$

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times (Clear Input)			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{\rm CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A =-40 to 85°C	54HC T _A = - 55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage		2.0V 4.5V 6.0V		0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu \text{A}$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$\label{eq:VIN} \begin{split} V_{IN} \! = \! V_{IH} \text{ or } V_{IL} \\ I_{OUT} \! \leq \! 4.0 \text{ mA} \\ I_{OUT} \! \leq \! 5.2 \text{ mA} \end{split}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V V
I _{IN}	Maximum Input Current (Pins 7, 15)	$V_{IN} = V_{CC}$ or GND	6.0V		±0.5	±5.0	±5.0	μA
I _{IN}	Maximum Input Current (all other pins)	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
ICC	Maximum Quiescent Supply Current (standby)	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μA
ICC	Maximum Active Supply Current (per monostable)	$V_{IN} = V_{CC} \text{ or GND}$ R/C _{EXT} = 0.5V _{CC}	2.0V 4.5V 6.0V	36 0.33 0.7	80 1.0 2.0	110 1.3 2.6	130 1.6 3.2	μA mA mA

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

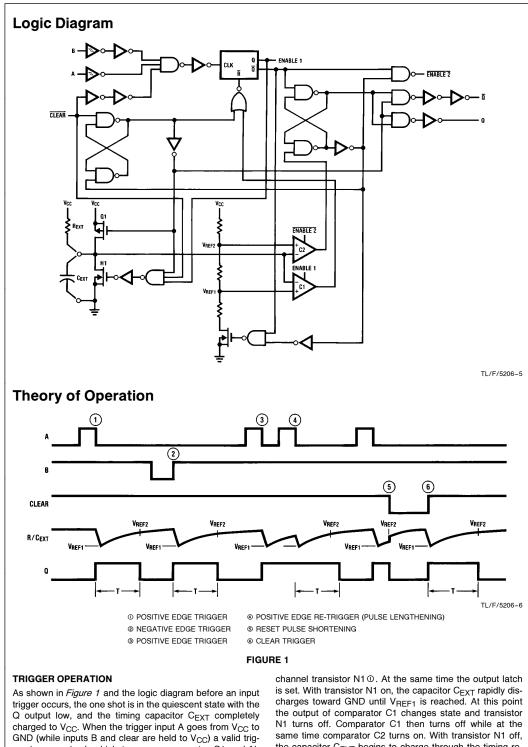
Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation Temperature Derating:

Plastic "N" Package: -12mW/°C from 65°C to 85°C

Ceramic "J" Package: -12mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst-case output voltages (V_{DH}, V_{DL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and $I_{\mbox{\scriptsize OZ}}$ occur for CMOS at the higher voltage and so the 6.0V values should be used.


2

Symbol	Parameter	Conditions	Тур	Limit	Units
t _{PLH}	Maximum Trigger Propagation Delay A, B or Clear to Q		22	33	ns
t _{PHL}	Maximum Trigger Propagation Delay A, B or Clear to \overline{Q}		25	42	ns
t _{PHL}	Maximum Propagation Delay, Clear to Q		20	27	ns
t _{PLH}	Maximum Propagation Delay, Clear to \overline{Q}		22	33	ns
t _W	Minimum Pulse Width, A, B or Clear		14	26	ns
t _{REM}	Minimum Clear Removal Time			0	ns
t _{WQ(MIN)}	Minimum Output Pulse Width	C _{EXT} =28 pF R _{EXT} =2 kΩ	400		ns
t _{WQ}	Output Pulse Width	C _{EXT} =1000 pF R _{EXT} =10 kΩ	10		μs

AC Electrical Characteristics $C_L = 50 \text{ pF } t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions		v _{cc}	T _A =25°C		74HC T _A = - 40 to 85°C	54HC T _A = - 55 to 125°C	Units
					Тур		Guaranteed Limits		
t _{PLH}	Maximum Trigger Propagation			2.0V	77	169	194	210	ns
	Delay, A, B or Clear to Q			4.5V	26	42	51	57	ns
				6.0V	21	32	39	44	ns
t _{PHL}	Maximum Trigger Propagation			2.0V	88	197	229	250	ns
	Delay, A, B or Clear to \overline{Q}			4.5V	29	48	60	67	ns
				6.0V	24	38	46	51	ns
t _{PHL}	Maximum Propagation Delay			2.0V	54	114	132	143	ns
	Clear to Q			4.5V	23	34	41	45	ns
				6.0V	19	28	33	36	ns
t _{PLH}	Maximum Propagation Delay			2.0V	56	116	135	147	ns
	Clear to Q			4.5V	25	36	42	46	ns
				6.0V	20	29	34	37	ns
tw	Minimum Pulse Width			2.0V	57	123	144	157	ns
	A, B, Clear			4.5V	17	30	37	42	ns
				6.0V	12	21	27	30	ns
t _{REM}	Minimum Clear			2.0V		0	0	0	ns
	Removal Time			4.5V		0	0	0	ns
				6.0V		0	0	0	ns
t _{TLH} , t _{THL}	Maximum Output			2.0V	30	75	95	110	ns
	Rise and Fall Time			4.5V	8	15	19	22	ns
				6.0V	7	13	16	19	ns
twq(MIN)	Minimum Output	C _{EXT} =28 pF		2.0V	1.5				μs
	Pulse Width	$R_{EXT} = 2 k\Omega$		4.5V	450				ns
		$R_{EXT} = 6 k\Omega (V_{C})$	_C =2V)	6.0V	380				ns
two	Output Pulse Width	C _{EXT} =0.1 μF	Min	5.0V	1	0.9	0.86	0.85	ms
Πα		$R_{EXT} = 10 k\Omega$	Max	5.0V	1	1.1	1.14	1.15	ms
C _{IN}	Maximum Input Capacitance (Pins 7 & 15)				12	20	20	20	pF
C _{IN}	Maximum Input Capacitance (other inputs)				6	10	10	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 5)			70				pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

same time comparator C2 turns on. With transistor N1 off, the capacitor C_{EXT} begins to charge through the timing re-

ger is recognized, which turns on comparator C1 and N-

sistor, R_{EXT}, toward V_{CC}. When the voltage across C_{EXT} equals V_{REF2}, comparator C2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C2. This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

A valid trigger is also recognized when trigger input B goes from GND to V_{CC} (while input A is at GND and input clear is at V_{CC} ©). The 'HC123A can also be triggered when clear goes from GND to V_{CC} (while A is at GND and B is at V_{CC} ©).

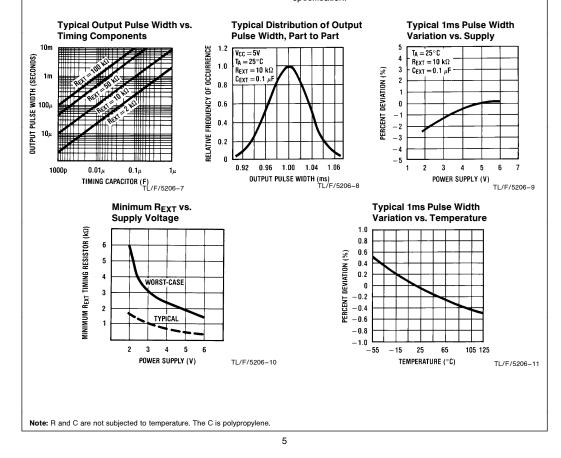
It should be noted that in the quiescent state C_{EXT} is fully charged to V_{CC} causing the current through resistor R_{EXT} to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the 'HC123A is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_{EXT} , R_{EXT} , or the duty cycle of the input waveform.

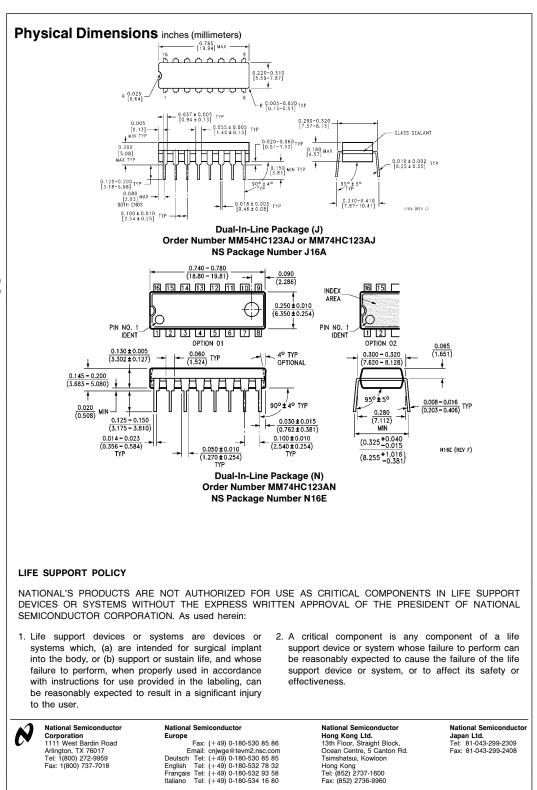
RETRIGGER OPERATION

The 'HC123A is retriggered if a valid trigger occurs (a) followed by another trigger (c) before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at the R/C_{EXT} pin has begun to rise from V_{REF1}, but has not yet reached V_{REF2}, will cause an increase in output pulse width T. When a valid retrigger is initiated (a), the voltage at the R/C_{EXT} pin will again drop to V_{REF1} before progressing along the RC charging curve

toward $V_{CC}.$ The Q output will remain high until time T, after the last valid retrigger.

Because the trigger-control circuit flip-flop resets shortly after C_X has discharged to the reference voltage of the lower reference circuit, the minimum retrigger time, t_{rr} is a function of internal propagation delays and the discharge time of C_X:


$$t_{rr} \approx 20 + \frac{187}{V_{CC} - 0.7} + \frac{565 + (0.256 \, V_{CC}) \, C_X}{[V_{CC} - 0.7]^2}$$


Another removal/retrigger time occurs when a short clear pulse is used. Upon receipt of a clear, the one shot must charge the capacitor up to the upper trip point before the one shot is ready to receive the next trigger. This time is dependent on the capacitor used and is approximately:

$$t_{rr} = 196 + \frac{640}{V_{CC} - 0.7} + \frac{522 + (0.3 V_{CC}) C_X}{(V_{CC} - 0.7)^2} ns$$

RESET OPERATION

These one shots may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on clear sets the reset latch and causes the capacitor to be fast charged to V_{CC} by turning on transistor Q1 ⁽⁶⁾. When the voltage on the capacitor reaches V_{REF2}, the reset latch will clear and then be ready to accept another pulse. If the clear input is held low, any trigger inputs that occur will be inhibited and the Q and \overline{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the Clear input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.