

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4028B

File under Integrated Circuits, IC04

1-of-10 decoder

DESCRIPTION

The HEF4028B is a 4-bit BCD to 1 -of-10 active HIGH decoder. A 1-2-4-8 BCD code applied to inputs A_{0} to A_{3} causes the selected output to be HIGH, the other nine will be LOW. If desired, the device may be used as a 1-of-8 decoder with enable; 3-bit octal inputs are applied to inputs A_{0}, A_{1} and A_{2} selecting an output O_{0} to O_{7}. Input A_{3} then becomes an active LOW enable, forcing the selected output LOW when A_{3} is HIGH. The HEF4028B may also be used as an 8-output (O_{0} to O_{7}) demultiplexer with A_{0} to A_{2} as address inputs and A_{3} as an active LOW data input. The outputs are fully buffered for best performance.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF4028BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4028BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4028BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

PINNING
A_{0} to $A_{3} \quad$ address inputs, 1-2-4-8 $B C D$
O_{0} to $\mathrm{O}_{9} \quad$ outputs (active HIGH)

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

1-of-10 decoder	HEF4028B

Fig. 3 Logic diagram.

-of-10 decoder	HEF4028B

TRUTH TABLE

INPUTS				OUTPUTS										
A_{3}	A_{2}	A_{1}	A_{0}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	
L	L	L	L	H	L	L	L	L	L	L	L	L	L	
L	L	L	H	L	H	L	L	L	L	L	L	L	L	
L	L	H	L	L	L	H	L	L	L	L	L	L	L	
L	L	H	H	L	L	L	H	L	L	L	L	L	L	
L	H	L	L	L	L	L	L	H	L	L	L	L	L	
L	H	L	H	L	L	L	L	L	H	L	L	L	L	
L	H	H	L	L	L	L	L	L	L	H	L	L	L	
L	H	H	H	L	L	L	L	L	L	L	H	L	L	
H	L	L	L	L	L	L	L	L	L	L	L	H	L	
H	L	L	H	L	L	L	L	L	L	L	L	L	H	
H	L	H	L	L	L	L	L	L	L	L	L	L	L	
H	L	H	H	L	L	L	L	L	L	L	L	L	L	
H	H	L	L	L	L	L	L	L	L	L	L	L	L	(2)
H	H	L	H	L	L	L	L	L	L	L	L	L	L	
H	H	H	L	L	L	L	L	L	L	L	L	L	L	
H	H	H	H	L	L	L	L	L	L	L	L	L	L	

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
2. Extraordinary states.

-of-10 decoder	HEF4028B
	MSI

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

| | V
 $\mathbf{V D}$ | SYMBOL | TYP. | MAX. | TYPICAL EXTRAPOLATION |
| :---: | ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| FORMULA | | | | | |

	\mathbf{V}_{DD} \mathbf{V}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$350 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{CL}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$2200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{CL}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$7350 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{CL}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ total load cap. (pF)	
			$\sum_{\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=\text { sum of outputs }}$
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

