INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4052B MSI

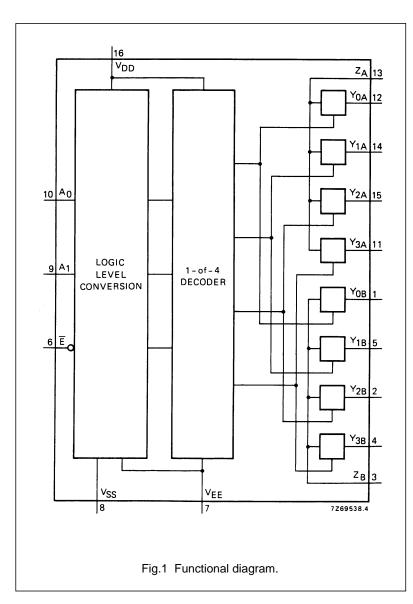
Dual 4-channel analogue multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4052B MSI

DESCRIPTION


The HEF4052B is a dual 4-channel analogue multiplexer/demultiplexer with common channel select logic. Each multiplexer/demultiplexer has four independent inputs/outputs (Y_0 to Y_3) and a common input/output (Z). The common channel select logic includes two address inputs (A_0 and A_1) and an active LOW enable input (\overline{E}).

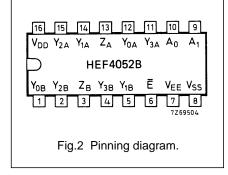
Both multiplexers/demultiplexers contain four bidirectional analogue switches, each with one side connected to an independent input/output (Y₀ to Y₃) and the other side connected to a common input/output (Z).

With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by A_0 and A_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of A_0 and A_1 .

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs $(A_0, A_1 \text{ and } \overline{E})$. The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs $(Y_0 \text{ to } Y_3, \text{ and } Z)$ can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

PINNING


 Y_{0A} to Y_{3A} independent inputs/outputs Y_{0B} to Y_{3B} independent inputs/outputs

A₀, A₁ address inputs

 $\overline{E} \hspace{1cm} \text{enable input (active LOW)} \\ Z_A, \, Z_B \hspace{1cm} \text{common inputs/outputs} \\$

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

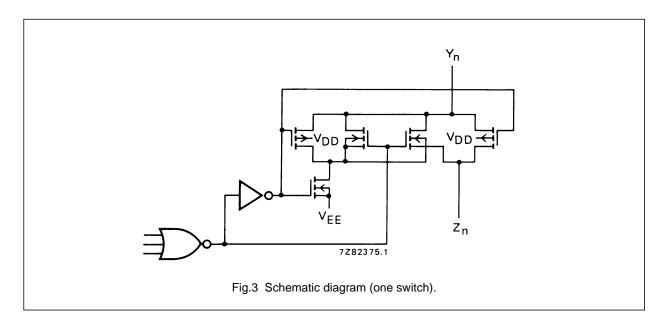
HEF4052BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4052BD(F): 16-lead DIL; ceramic

(cerdip)

(SOT74)


HEF4052BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

FUNCTION TABLE

INPUTS			CHANNEL	
Ē	A ₁	A ₀	ON	
L	L	L	$Y_{0A}-Z_A; Y_{0B}-Z_B$	
L	L	Н	$Y_{1A}-Z_A; Y_{1B}-Z_B$	
L	Н	L	$Y_{2A}-Z_A; Y_{2B}-Z_B$	
L	Н	Н	$Y_{3A}-Z_A; Y_{3B}-Z_B$	
Н	X	X	none	

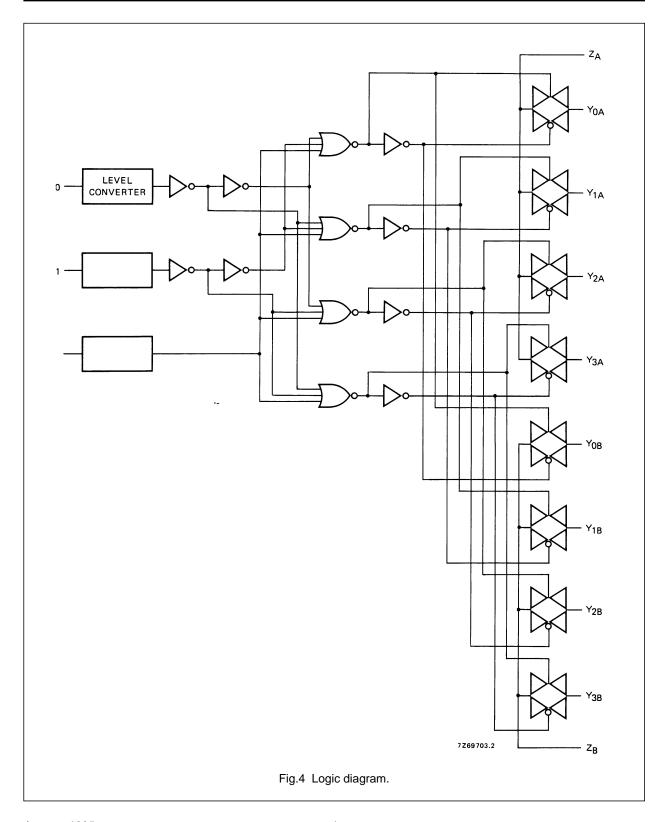
Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

RATINGS


Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (with reference to V_{DD}) V_{EE} -18 to + 0.5 V

Note

To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across
the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out
of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may
not exceed V_{DD} or V_{EE}.

HEF4052B MSI

HEF4052B MSI

DC CHARACTERISTICS

 $T_{amb} = 25 \, ^{\circ}C$

	V _{DD} -V _{EE} V	SYMBOL	TYP.	MAX.		CONDITIONS
	5	R _{ON}	350	2500	Ω	V 24 V V
ON resistance	10		80	245	Ω	$V_{is} = 0$ to $V_{DD} - V_{EE}$ see Fig.6
	15		60	175	Ω	Sec Fig.0
	5		115	340	Ω	
ON resistance	10	R _{ON}	50	160	Ω	V _{is} = 0 see Fig.6
	15		40	115	Ω	Sec Fig.0
	5	R _{ON}	120	365	Ω	, , , , , ,
ON resistance	10		65	200	Ω	$V_{is} = V_{DD} - V_{EE}$ see Fig.6
	15		50	155	Ω	Sec Fig.0
'Δ' ON resistance	5		25	_	Ω	V 04 V V
between any two	10	ΔR_{ON}	10	_	Ω	V _{is} = 0 to V _{DD} -V _{EE} see Fig.6
channels	15		5	_	Ω	Sec Fig.0
OFF-state leakage	5		_	_	nA	
current, all	10	I _{OZZ}	_	_	nA	E at V _{DD}
channels OFF	15		_	1000	nΑ	
OFF-state leakage	5		-	_	nA	
current, any	10	I _{OZY}	-	_	nA	E at V _{SS}
channel	15		-	200	nA	

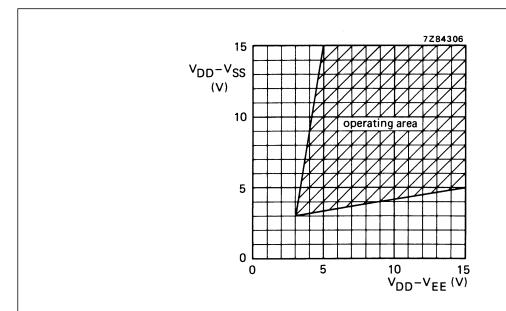
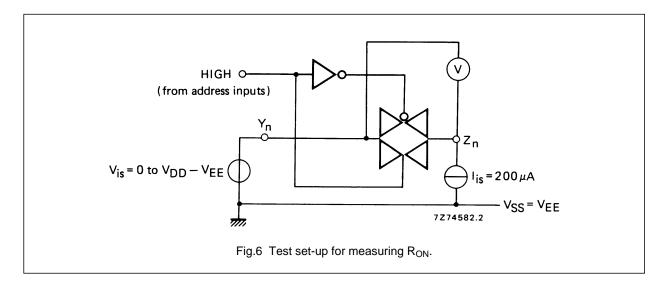
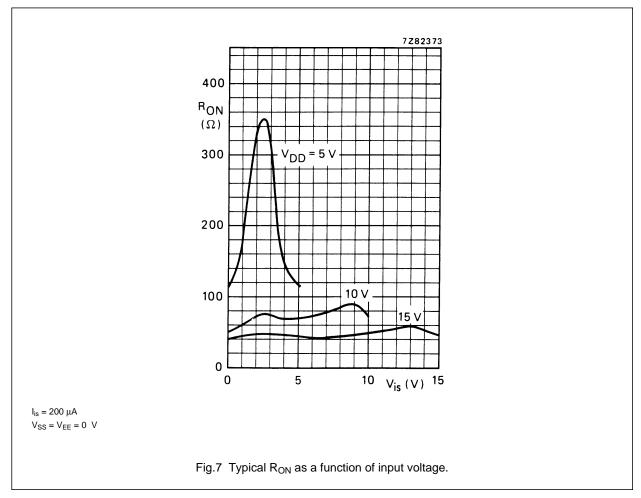




Fig.5 Operating area as a function of the supply voltages.

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

HEF4052B MSI

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	6 100 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	15 600 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 $V_{EE} = V_{SS} = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; input transition times \leq 20 \text{ ns}$

	V _{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \rightarrow V_{os}$	5		10	20	ns	
HIGH to LOW	10	t _{PHL}	5	10	ns	note 1
	15		5	10	ns	
	5		10	20	ns	
LOW to HIGH	10	t _{PLH}	5	10	ns	note 1
	15		5	10	ns	
$A_n \rightarrow V_{os}$	5		150	305	ns	
HIGH to LOW	10	t _{PHL}	65	135	ns	note 2
	15		50	100	ns	
	5		150	300	ns	
LOW to HIGH	10	t _{PLH}	75	150	ns	note 2
	15		50	100	ns	
Output disable times						
$\overline{E} \to V_{os}$	5		95	190	ns	
HIGH	10	t _{PHZ}	90	180	ns	note 3
	15		90	180	ns	
	5		100	205	ns	
LOW	10	t _{PLZ}	90	180	ns	note 3
	15		90	180	ns	
Output enable times						
$\overline{E} \to V_{os}$	5		130	260	ns	
HIGH	10	t _{PZH}	55	115	ns	note 3
	15		45	85	ns	
	5		120	240	ns	
LOW	10	t _{PZL}	50	100	ns	note 3
	15		35	75	ns	

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

	V _{DD} V	SYMBOL	TYP.	MAX.	
Distortion, sine-wave	5		0,25	%	
response	10		0,04	%	note 4
	15		0,04	%	
Crosstalk between	5		_	MHz	
any two channels	10		1	MHz	note 5
	15		_	MHz	
Crosstalk; enable	5		_	mV	
or address input	10		50	mV	note 6
to output	15		_	mV	
OFF-state	5		_	MHz	
feed-through	10		1	MHz	note 7
	15		_	MHz	
ON-state frequency	5		13	MHz	
response	10		40	MHz	note 8
	15		70	MHz	

Notes

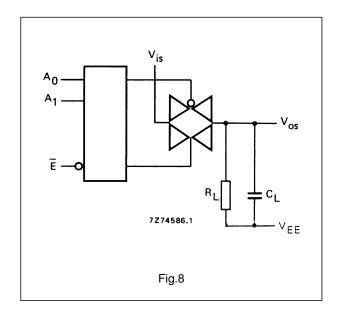
Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.

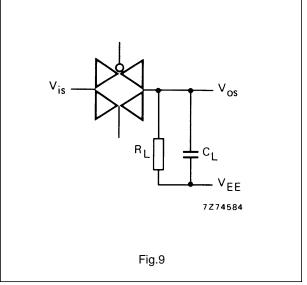
V_{os} is the output voltage at a Y or Z terminal, whichever is assigned as output.

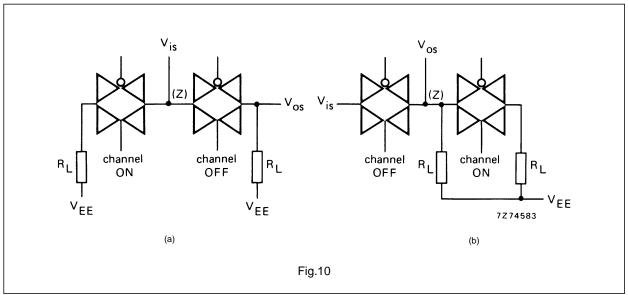
- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig.8.
- 2. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{SS}$; $A_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PLH} ; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PHL} ; see Fig.8.
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{DD}$ (square-wave);
 - $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PHZ} and t_{PZH} ;
 - V_{is} = V_{EE} and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig.8.
- 4. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig.9.
- 5. $R_L = 1 \text{ k}\Omega$; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20
$$\log \frac{V_{os}}{V_{is}} = -50 \text{ dB}$$
; see Fig. 10.

- 6. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 15 \text{ pF}$ to V_{EE} ; \overline{E} or $A_n = V_{DD}$ (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig.8.
- 7. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel OFF; $V_{is} = \frac{1}{2} V_{DD \text{ (p-p)}}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


20 log
$$\frac{V_{os}}{V_{is}} = -50$$
 dB; see Fig. 9.


8. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


$$20 \log \frac{V_{os}}{V_{is}} = -3 \text{ dB; see Fig. 9.}$$

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4052B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- · Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.

January 1995