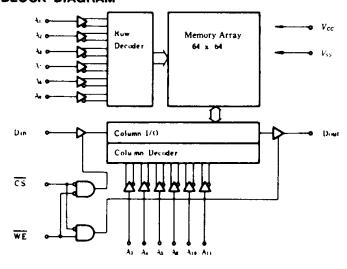
4096-word x 1-bit High Speed CMOS Static RAM

FEATURES

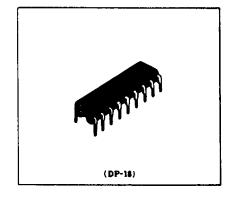
- High Speed: Fast Access Time 35ns/45ns/55ns (max.)
- Low Power Standby and Low Power Operation, Standby: 100µW (typ.)/5µW (typ.) (L-version),

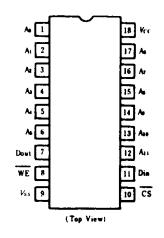

Operation: 150mW typ.

- Single 5V Supply and High Density 18 Pin Package
- Completely Static Memory No Clock nor Timing Strobe Required
- No Peak Power—On Current
- No Change of t_{ACS} with Short Chip Deselect Time
- Equal Access and Cycle Time
- Directly TTL Compatible All Input and Output
- Separate Data Input and Output: Three State Output
- Plug-In Replacement with Intel 2147H NMOS STATIC RAM
- Capability of Battery Back Up Operation (L-version)

BORDERING INFORMATION

Type No.	Access Time	Package
HM6147HP-35 HM6147HP-45 HM6147HP-55	35ns 45ns 55ns	300mil 18pin
HM6147HLP-35 HM6147HLP-45 HM6147HLP-55	35ns 45ns 55ns	Plastic DÎP


BBLOCK DIAGRAM


BABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin relative to Vss	V r	-0.5^{*1} to +7.0	V
DC Output Current	1.	20	m A
Power Dissipation	P_{τ}	1.0	W
Operating Temperature	T.,.	0 to +70	.c
Storage Temperature under bias	Talgitas;	-10 to +85	·c
Storage Temperature	Tere	55 to +125	•c

Note) #1 =3.5V for pulse width ≤20ns

PIN ARRANGEMENT

TRECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le Ta \le 70^{\circ}C)$

Parameter	Symbol	min	typ	max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
	$V_{\rm SS}$	0	0	0	V
Input High (logic 1) Voltage	V _{I H}	2.0	3.0	6.0	V
Input Low (logic 0) Voltage	V ₁ L	-0.5^{*1}	_	0.8	V

Note) +1. -3.0V for pulse width≤20ns

EDC AND OPERATING CHARACTERISTICS (0°C $\leq Ta \leq 70$ °C, $V_{cc} = 5V \pm 10\%$, $V_{SS} = 0V$)

Parameter	Symbol	Test Condition	min	typ*2	max	Unit
Input Leakage Current	ILI	Vcc-5.5V, Vss to Vcc			10	μΑ
Output Leakage Current	ILO	$\overline{CS} - V_{IH}$, $V_{out} - V_{SS}$ to V_{CC}	_	_	10	μĀ
Operating Power Supply Current(1)	Icc	CS-Vil., Output open	_	30	80	mA
Operating Power Supply Current(2)	Icci	CS-V14. Minimum Cycle	_	40	80	mA
Standby Power Supply Current (1)		$\overline{\mathrm{CS}} = V_{IH}, \ V_{CC} = \mathrm{Min} \ \mathrm{to} \ \mathrm{Max}$	_	8	20	mA
	I_{SB}		_	5*3	15*3	
	_	$\overline{\text{CS}} \ge Vcc - 0.2\text{V},$		20	800	
Standby Power Supply Current (2) Is	I_{SB1}	$V_{IN} \ge 0.2 \text{V}$ or $V_{IN} \ge V_{CC} - 0.2 \text{V}$	_	1*3	100*3	μA
Output Low Voltage	VoL	Io1 - 8mA		_	0.40	V
Output High Voltage	Von	I _{OH} — — 4 m A	2.4	-	_	V

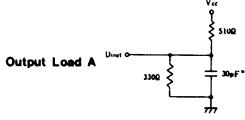
Notes) * 1. The operating ambient temperature range is guaranteed with transverse air flow exceeding 400 linear feet minute. * 2. Typical limits are at Vcc = 5.0V. Ta = 25°C and Specified loading.

*3. This characteristics are guaranteed only for L-version.

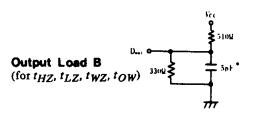
ECAPACITANCE ($Ta-25^{\circ}C$, f-1.0 MHz)

ltem	Symbol	Conditions	max	Unit
Input Capacitance	c.,	V.,-0V	5	pF
Output Capacitance	Cmr	V _{m1} -0V	6	рF

Note) This parameter is sampled and not 100% tested.

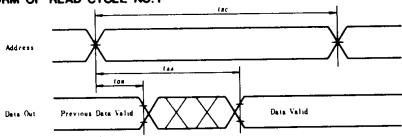

a AC CHARACTERISTICS (Ta = 0 to $+70^{\circ}$ C, $V_{CC} = 5$ V ± 10%)

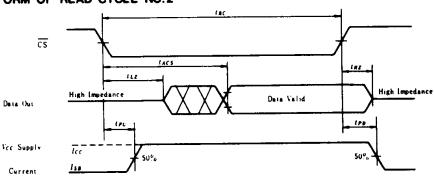
• AC TEST CONDITIONS


Input pulse levels: V_{SS} to 3.0V Input rise and fall times: 5 ns Input timing reference levels: 1.5V

Output load: See Figure

Output timing reference levels: 1.5V (HM6147H-35) 0.8 to 2.0V (HM6147H-45/55)

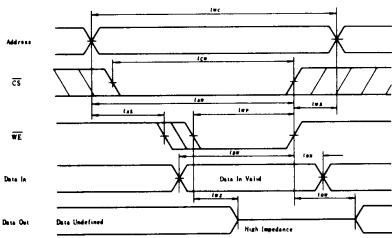

* Including scope & jig capacitance


• READ CYCLE

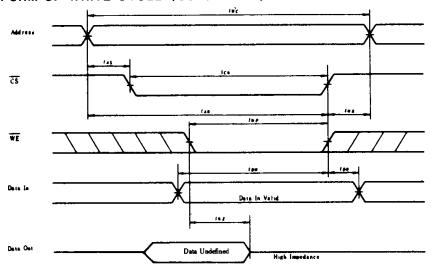
Parameter		HM6147H-35		HM6147H-45		HM6147H-55] <u>.,</u>	
	Symbol	min	max	min	max	min	max	Unit	Notes
Read Cycle Time	tac	35	_	45	_	55		กร	(1)
Address Access Time	t _{AA}	-	35		45	_	55	n s	
Chip Select Access Time	tacs	_	35	_	45		55	ns	
Output Hold from Address Change	t on	5		5	_	5] -	ns.	
Chip Selection to Output in Low Z	tız	5	-	5		5	I	n\$	(2), (3), (7)
Chip Deselection to Output in High Z	ŧ HZ	0	30	0	30	0	30	n\$	(2), (3), (7)
Chip Selection to Power Up Time	t pu	0	-	0	_	0		ns	
Chip Deselection to Power Down Time	t PD	_	20		20] –	20	ns	

TIMING WAVEFORM OF READ CYCLE NO.1(4)(5)

TIMING WAVEFORM OF READ CYCLE NO.2 (4) (4)


- Notes: 1. All Read Cycle timings are referenced from last valid address to the first transitioning address.
 - 2. At any given temperature and voltage condition, IHZ max. is less than t_{LZ} min. both for a given device and from device to device.
 - 3. Transition is measured ±500mV from steady state voltage with specified loading in Load B.
 4. WE is high for READ Cycle.

 - 5. Device is continuously selected, $\overline{CS} = V_{IL}$.
 - 6. Addresses valid prior to or coincident with CS transition low.
 - 7. This parameter is sampled and not 100% tested.

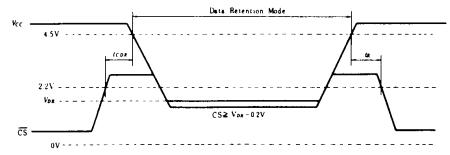

• WRITE CYCLE

		HM61	47H-35	HM61	47H-45	HM61	47H-55	1,,_:,	Notes
Parameter	Symbol	min	max	min	max	min	max	Unit	Notes
Write Cycle Time	lwc	35	_	45	_	55	_	ns	(2)
Chip Selection to End of Write	tew	35	_	45	_	45	I -	ns	
Address Valid to End of Write	taw	35	_	45	_	45		ns	
Address Setup Time	tas	0	_	0		0		ns	
Write Pulse Width	lwp	20	T -	25		30		ns	
Write Recovery Time	twa	0	_	0	_	0		ns	
Data Valid to End of Write	t pw	20	-	25	_	25	_	ns	
Data Hold Time	t DH	10	_	10	_	10	_	ns	
Write Enabled to Output in High Z	twz	0	20	0	25	0	30	ns	(3), (4)
Output Active from End of Write	tow	0	-	0	_	0	-	ns	(3), (4)

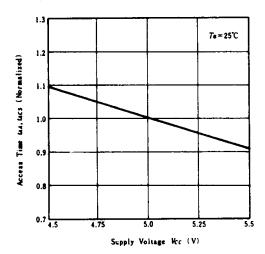
TIMING WAVEFORM OF WRITE CYCLE (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE (CS Controlled)

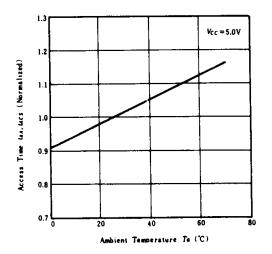
- Notes: 1. If CS goes high simultaneously with WE high, the output remains in a high impedance states.
 - 2. All Write Cycle timings are referenced from the last valid address to the first transitioning address.
 - 3. Transition is measured ±500mV from steady state voltage with specified loading in Load B.
 - 4. This parameter is sampled and not 100% tested.
 - 5. CS or WE is high for address transition.

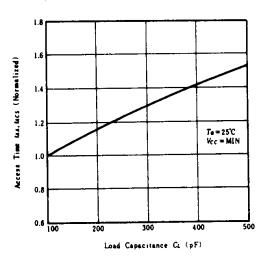

■LOW Vcc DATA RETENTION CHARACTERISTICS (Ta-0℃ to +70℃)

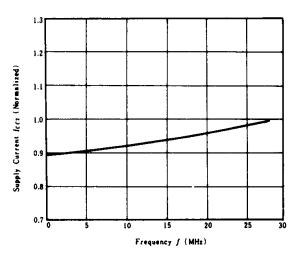
This characteristics are guaranteed only for L-version.

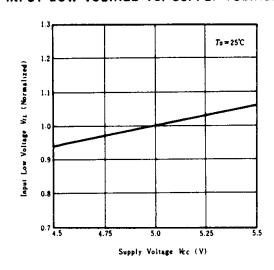

ltem .	Symbol	Test Condition	min	typ	max	Unit
Vcc for Data Retention	Von	$\overline{CS} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	2.0	-	_	ν
Data Retention Current	Iccor	$V_{cc} = 3.0 \text{V}, \ \overline{\text{CS}} \ge 2.8 \text{V}$ $V_{iN} \ge 2.8 \text{V} \text{ or } V_{iN} \le 0.2 \text{V}$	_	-	50	μΑ
Chip Deselect to Data Retention Time	lcon	C D W (0	-		ns
Operation Recovery Time	l _R	See Retention Waveform	tac*1	_	_	ns

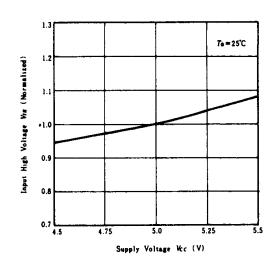
Note) *1. t_{RC} = Red Cycle Time.

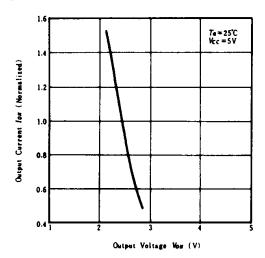

●LOW V CC DATA RETENTION WAVEFORM

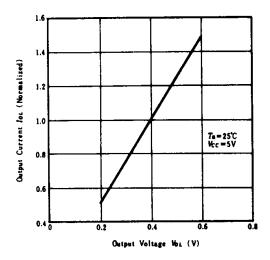

ACCESS TIME VS. SUPPLY VOLTAGE

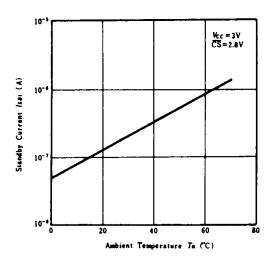

ACCESS TIME VS. AMBIENT TEMPERATURE

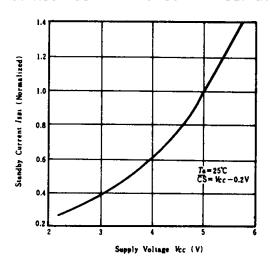

ACCESS TIME VS. LOAD CAPACITANCE

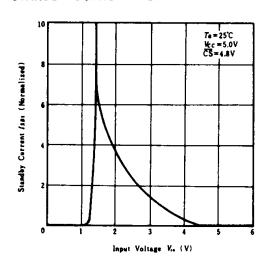

SUPPLY CURRENT VS. FREQUENCY


INPUT LOW VOLTAGE VS. SUPPLY VOLTAGE


INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE


OUTPUT CURRENT VS. OUTPUT VOLTAGE


OUTPUT CURRENT VS. OUTPUT VOLTAGE


STANDBY CURRENT VS. AMBIENT TEMPERATURE

STANDBY CURRENT VS. SUPPLY VOLTAGE

STANDBY CURRENT VS. INPUT VOLTAGE

