HM53461 Series

65,536-word x 4-bit Multiport CMOS Video RAM

■ DESCRIPTION

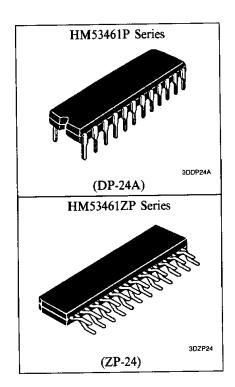
The HM53461 is a 262,144-bit multiport memory equipped with a 64k-word x 4-bit Dynamic RAM port and a 256-word x 4-bit Serial Access Memory (SAM) port. The SAM port is connected to an internal 1,024-bit data register through a 256-word x 4-bit serial read or write access control. In the read transfer cycle, the memory cell data is transferred from a selected word line of the RAM port to the data register. The RAM port has a write mask capability in addition to the conventional operation mode. Write bit selection out of 4 data bit can be achieved.

Utilizing the Hitachi 2 μm CMOS process, fast serial access operation and low power dissipation are realized. All inputs and outputs, including clocks, are TTL compatible.

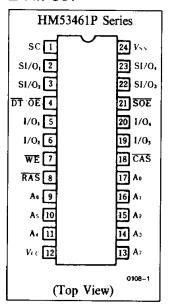
■ FEATURES

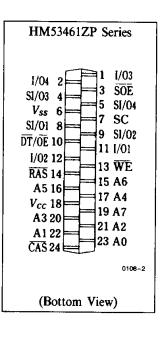
- Multiport Organization (RAM; 64k-word x 4-bit and SAM; 256 word x 4-bit) • Double Layer Polysilicon/Polyicide n-Well CMOS Process Single 5V (±10%) Low Power Active RAM380 mW (max) SAM220 mW (max) Standby40 mW (max) Access Time SAM40 ns/40 ns/60 ns
- Cycle Time Random Read or Write Cycle Time (RAM)190 ns/220 ns/260 ns Serial Read or Write Cycle Time (SAM)40 ns/40 ns/60 ns TTL Compatible

- · Refresh Function


RAS Only Refresh CAS Before RAS Refresh

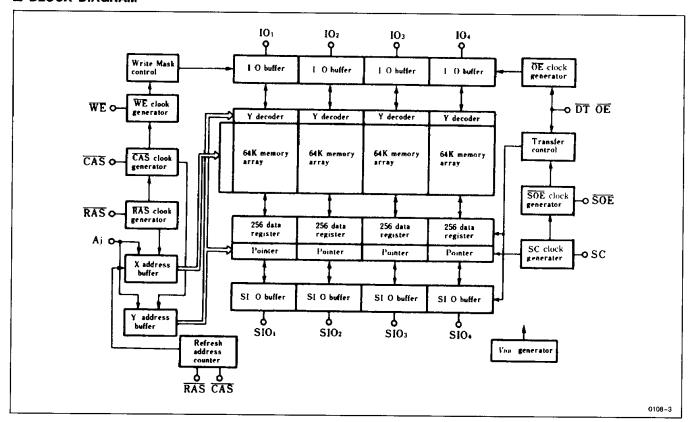
Hidden Refresh


- Data Transfer Operation (RAM ←→ SAM)
- Fast Serial Access Operation Asynchronized with RAM Port Except Data Transfer Cycle
- Real Time Read Transfer Capability
- Write Mask Mode Capability


■ ORDERING INFORMATION

Part No.	Access Time	Package
HM53461P-10	100 ns	400 mil 24-pin
HM53461P-12	120 ns	Plastic DIP
HM53461P-15	150 ns	(DP-24A)
HM53461ZP-10	100 ns	24-pin
HM53461ZP-12	120 ns	Plastic ZIP
HM53461ZP-15	150 ns	(ZP-24)

■ PIN OUT



■ PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₇	Address Inputs
I/O ₁ -I/O ₄	RAM Port Data Input/Output
SI/O ₁ -SI/O ₄	SAM Port Data Input/Output
RAS	Row Address Strobe
CAS	Column Address Strobe
SC	Serial Clock
WE	Write Enable
DT/OE	Data Transfer/Output Enable
SOE	SAM Port Enable
v_{cc}	Power Supply
V _{SS}	Ground

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	
Voltage on Any Pin Relative to VSS	v_{T}	-1.0 to +7.0	v	
Power Supply Voltage Relative to V _{SS}	v _{cc}	-0.5 to $+7.0$	v	
Operating Temperature, T _A (Ambient)	Topr	0 to + 70	°C	
Storage Temperature	T _{stg}	- 55 to + 125	°C	
Short Circuit Output Current	I _{out}	50	mA	
Power Dissipation	P _T	1.0	w	

■ ELECTRICAL CHARACTERISTICS

ullet Recommended DC Operating Conditions (T_A = 0 to $\pm 70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	v _{CC}	4.5	5.0	5.5	V	
Input High Voltage	V _{IH}	2.4	_	6.5	v	
Input Low Voltage	V _{IL}	- 0.5	_	0.8	V	2

Notes: 1. All voltages referenced to V_{SS} .

2. -3.0V for pulse width ≤ 10 ns.

• DC Electrical Characteristics ($T_A = 0$ to $+70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$)

		SAM I	PORT			HM53461-15	17-34	RAM PORT	Note
Parameter	Symbol	Standby			HM53461-10 HM53461-12 H1		Unit	Test Conditions	Note
Operating Current	I _{CC1}	_	×	70	60	50	mA	RAS, CAS Cycling	
	I _{CC7}	×		110	100	80	mA	t _{RC} = Min	
	I _{CC2}	_	×	7	7	7	$\overline{\text{MA}}$ $\overline{\text{RAS}}$, $\overline{\text{CAS}} = V_{\text{IH}}$		
Standby Current	I _{CC8}	×		40	40	30	mA	KAS, CAS — VIH	
RAS Only Refresh Current	I _{CC3}		×	60	50	40	mA	$\overline{\text{CAS}} = V_{\text{IH}},$	
	I _{CC9}	×	-	100	90	70	mA	RAS Cycling t _{RC} = Min	
	I _{CC4}	_	×	50	40	35	mA	$\overline{RAS} = V_{IL},$	
Page Mode Current	I _{CC10}	×	_	90	80	65	mA	CAS Cycling t _{PC} = Min	
	I _{CC5}	_	×	60	50	40	mA	RAS Cycling	
CBR Refresh Current	I _{CC11}	×	_	100	90	70	mA	$t_{RC} = Min$	ļ
Data Transfer Current	I _{CC6}	_	×	75	65	55	mA	RAS, CAS Cycling	
	I _{CC12}	×		115	105	85	mA	$t_{RC} = Min$	

Parameter	Symbol	Min	Max	Unit	Test Conditions	Note
Input Leakage	I _{LI}	- 10	10	μA		
Output Leakage	I _{LO}	- 10	10	μА		
Output High Voltage	v _{oh}	2.4		v	$I_{OH} = -2 \text{ mA}$	
Output Low Voltage	v_{OL}		0.4	V	$I_{OL} = 4.2 \text{ mA}$	

■ INPUT/OUTPUT CAPACITANCE

Parameter	Symbol	Тур	Max	Unit	Note
Address	CII	_	5	pF	
Clocks	C ₁₂	-	5	pF	
I/O, SI/O	C _{I/O}		7	pF	

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

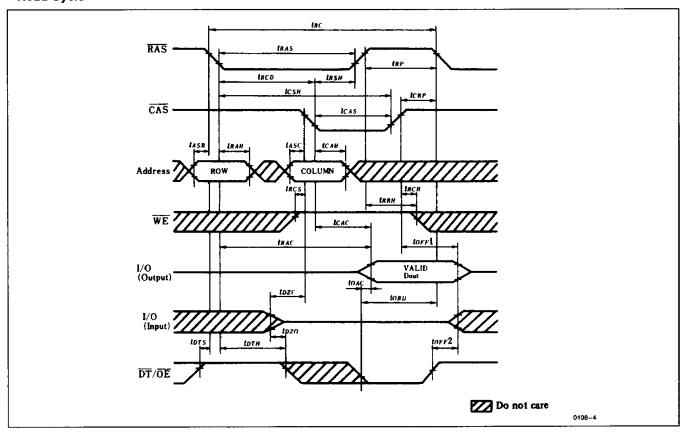
 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, V_{SS} = 0\text{V})^{1, 10, 11}$

Parameter	Symbol		461-10	HM53461-12		HM53461-15		Unit	Note
T drameter	by incor	Min	Max	Min	Max	Min	Max	Cint	11010
Random Read or Write Cycle Time	t _{RC}	190	_	220	_	260	_	ns	
Read-Modify-Write Cycle Time	t _{RWC}	260	_	300		355	-	ns	
Page Mode Cycle Time	t _{PC}	70	_	85		105	_	ns	
Access Time from RAS	t _{RAC}	_	100	_	120		150	ns	2, 3
Access Time from CAS	t _{CAC}	_	50	_	60		75	ns	3, 4
Output Buffer Turn-off Delay Referenced to CAS	t _{OFF1}	0	25	0	30	0	40	ns	5
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	50	ns	6
RAS Precharge Time	t _{RP}	80		90	_	100		ns	
RAS Pulse Width	tRAS	100	10000	120	10000	150	10000	ns	
CAS Pulse Width	t _{CAS}	50	10000	60	10000	75	10000	ns	
RAS to CAS Delay Time	t _{RCD}	25	50	25	60	30	75	ns	7
RAS Hold Time	tRSH	50	_	60	_	75	l _	ns	
CAS Hold Time	tCSH	100	_	120		150	<u> </u>	ns	
CAS to RAS Precharge Time	tCRP	10	_	10	_	10	<u> </u>	ns	<u> </u>
Row Address Setup Time	tASR	0		0	_	0		ns	
Row Address Hold Time		15	_	15		20	_	ns	
Column Address Setup Time	tage.	0		0		0		ns	
Column Address Hold Time	tasc	20	_	20		25		ns	
Write Command Setup Time	t-can	0		0		0	 	ns	8
Write Command Hold Time	twcs	25		25		30			⊢ °
Write Command Pulse Width	twch	15	_	20		25		ns	
Write Command to RAS Lead Time	twp	35	_		_		<u> </u>	ns	
	tRWL		_	40		45	_	ns	-
Write Command to CAS Lead Time	t _{CWL}	35		40		45	-	ns	
Data-in Setup Time	t _{DS}	0	_	0		0	-	ns	9
Data-in Hold Time	t _{DH}	25	_	25		30	<u> </u>	ns	8, 9
Read Command Setup Time	tRCS	0		0		0	_	ns	ļ <u>.</u>
Read Command Hold Time	t _{RCH}	0		0		0	ļ. -	ns	
Read Command Hold Time Referenced to RAS	trrh	10		10	-	10	_	ns	
Refresh Period	tREF	<u> </u>	4		4	_	4	ms	
RAS Pulse Width (Read-Modify-Write Cycle)	t _{RWS}	170	10000	200	10000	245	10000	ns	
CAS to WE Delay	tCWD	85		100		125	 -	ns	8
CAS Setup Time (CAS Before RAS Refresh)	tCSR	10	_	10		10	_	ns	
CAS Hold Time (CAS Before RAS Refresh)	^t CHR	20	_	25		30		ns	
RAS Precharge to CAS Hold Time	tRPC	10	_	10		10		ns	
CAS Precharge Time	t _{CP}	10		15	_	20		ns	
Access Time from OE	toac		30		35	-	40	ns	
Output Buffer Turn-off Delay referenced to OE	t _{OFF2}	0	25	0	30	0	40	ns	
OE to Data-in Delay Time	t _{ODD}	25	_	30		40		ns	<u> </u>
OE Hold Time referenced to WE	t _{OEH}	10		15		20		ns	
Data-in to CAS Delay Time	t _{DZC}	0	_	0	_	0	_	ns	
Data-in to OE Delay Time	t _{DZO}	0		0		0		ns	
OE to RAS Delay Time	tord	35		40		45		ns	
Serial Clock Cycle Time	t _{SCC}	40	_	40		60	<u> </u>	ns	
Access Time from SC	t _{SCA}	_	40	_	40	_	60	ns	10
Access Time from SOE	t _{SEA}	_	25	_	30	_	40	ns	10

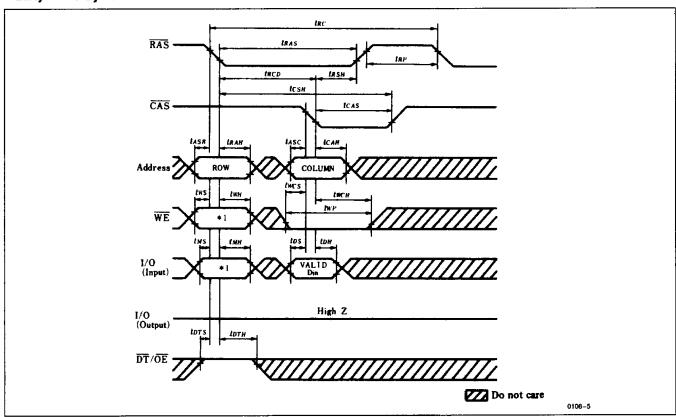
■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, V_{SS} = 0\text{V})1, 10, 11 \text{ (continued)}$

Parameter	Symbol	HM5	3461-10	HM:	3461-12	HM	53461-15		
	Symoon	Min	Max	Min	Max	Min	Max	Unit	Note
SC Pulse Width	t _{SC}	10	_	10	_	10		ns	<u> </u>
SC Precharge Width	tSCP	10	_	10	†	10		ns	
Serial Data-out Hold Time after SC High	tsoh	10	_	10		10	 	пs	
Serial Output Buffer Turn-off Delay from SOE	t _{SEZ}	0	25	0	25	0	30	ns	
Serial Data-in Setup TIme	tSIS	0	T	0	—	0		ns	
Serial Data-in Hold Time	tSIH	15	_	20	1	25	<u> </u>	ns	
DT to RAS Setup Time	t _{DTS}	0		0	<u> </u>	0	 	ns	
DT to RAS Hold Time (Read Transfer Cycle)	tRDH	80		90		110		ns	
DT to RAS Hold Time	tDTH	15		15	 	20		 	
DT to CAS Hold Time	t _{CDH}	20	 	30	<u> </u>	45	 -	ns	
Last SC to DT Delay Time	tSDD	5		5		10	 _	ns	
First SC to DT Hold Time	tSDH	25		25	 -	30		ns	
DT to RAS Delay Time	tDTR	10		10	<u> </u>	10		ns	
WE to RAS Setup Time	tws	0		0		0		ns	
WE to RAS Hold Time	twH	15		15				ns	
I/O to RAS Setup Time	t _{MS}	0		0		20		ms	
I/O to RAS Hold Time	t _{MH}	15		15		0		ns	
Serial Output Buffer Turn-off Delay from RAS	tSRZ	10	50	10	60	20		ns	
SC to RAS Setup Time	tSRS	30		40		10	75	115	
RAS to SC Delay Time	tSRD	25		30		45		ns	
Serial Data Input Delay Time from RAS	tSID	50				35		ns	
Serial Data Input to DT Delay Time	tSZD	0		60		75		ns	
SOE to RAS Setup Time	tES	0		0		0		ns	
SOE to RAS Hold Time		15				0		ns	
Serial Write Enable Setup Time	terre	0		15		20		ns	
Serial Write Enable Hold Time	tsws	35		0		0		ns	
Serial Write Disable Setup Time	tswH	0		35		55		ns	
Serial Write Disable Hold Time	tswis	-		0		0		ns	
DT to Sout in Low-Z Delay Time	t _{SWIH}	35		35		55		ns	
Notes: 1 AC measurements assume t = 5	^t DLZ	5		10		10		ns	

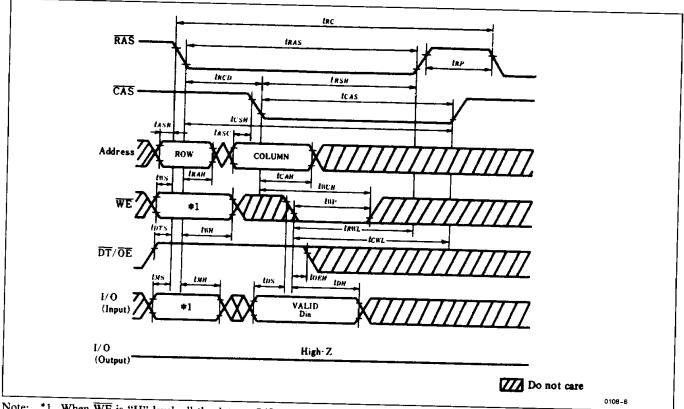

Notes: 1. AC measurements assume $t_T = 5$ ns.

- 2. Assumes that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 5. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 6. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 8. twcs and tcwd are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twcs ≥ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tcwd ≥ tcwd (min), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- These parameters are referenced to CAS leading edge in an early write cycle and to WE leading edge in a delayed write or a read-modify-write cycle.
- 10. Measured with a load circuit equivalent to 2 TTL and 50 pF.
- 11. An initial pause of 100 µs is required after power-up. Then execute at least 8 initialization cycles.

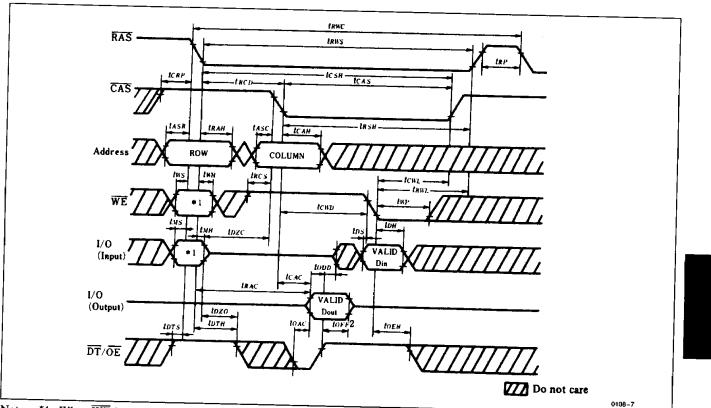


III TIMING WAVEFORMS

• Read Cycle

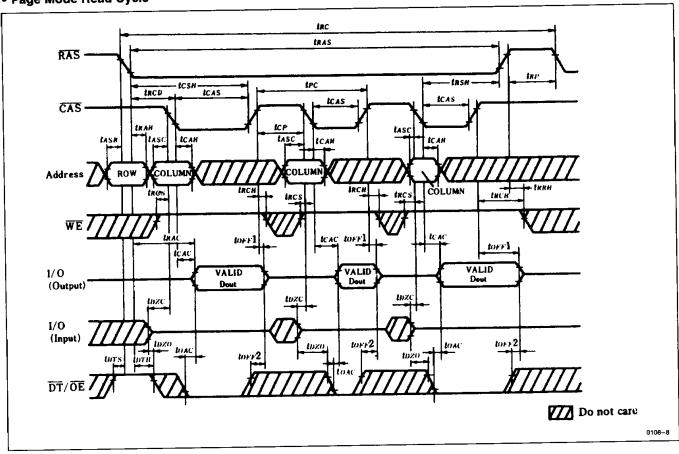


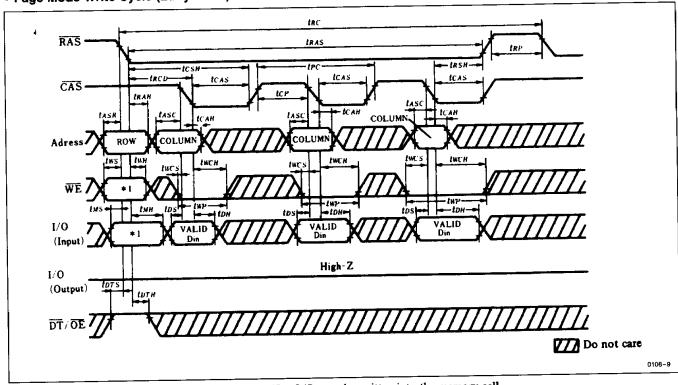
• Early Write Cycle


Note: *1. When \overline{WE} is "H" level, all the data on the I/O can be written into the cell. When \overline{WE} is "L" level, the data on the I/O are not written except for when I/O is "high" at the falling edge of \overline{RAS} .

Delayed Write Cycle

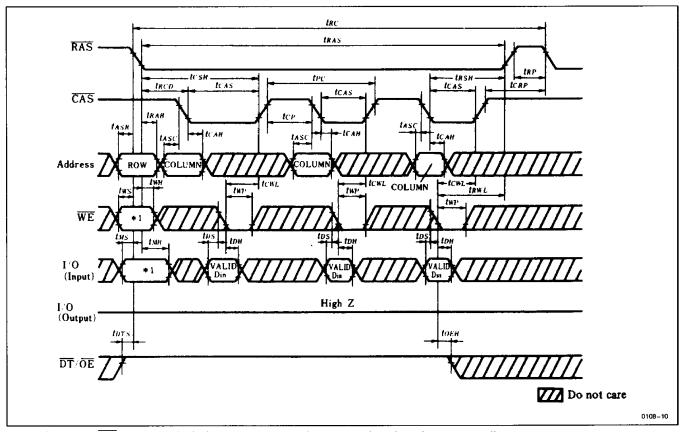
Note: *1. When \overline{WE} is "H" level, all the data on $I/O_1-I/O_4$ can be written into the memory cell. When \overline{WE} is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of \overline{RAS} .


Read-Modify-Write Cycle

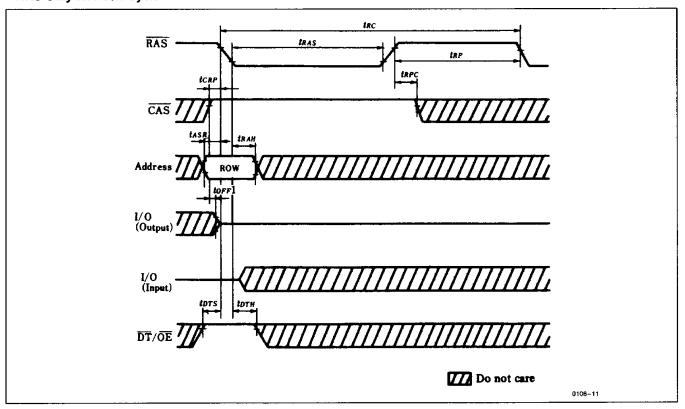

Note: *1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell.

When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.

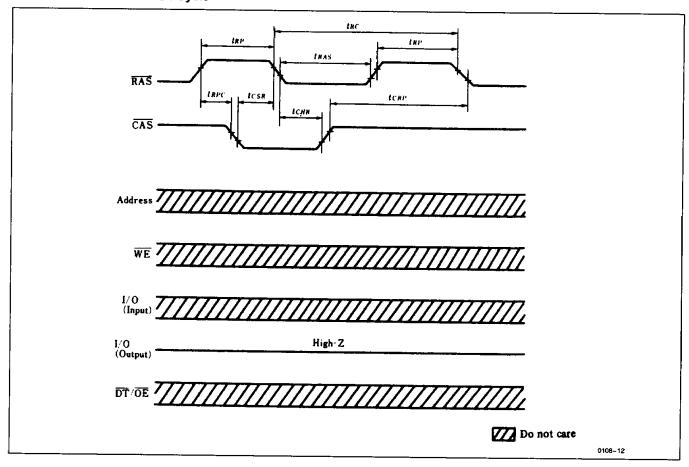
Page Mode Read Cycle


• Page Mode Write Cycle (Early Write)

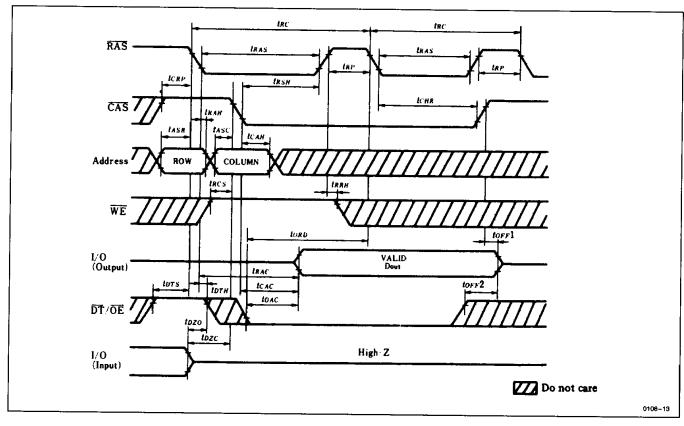
Note: *1. When \overline{WE} is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell.

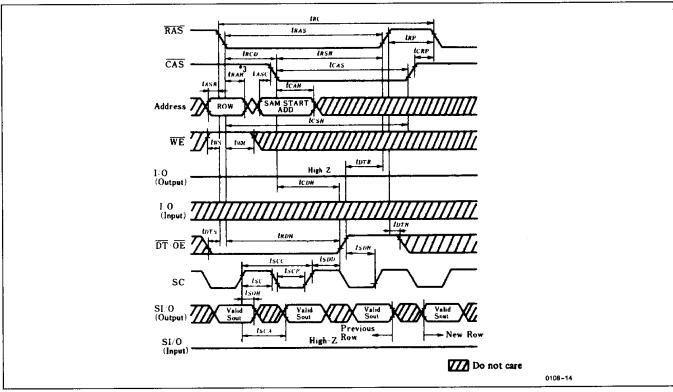

When \overline{WE} is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of \overline{RAS} .

• Page Mode Write Cycle (Delayed Write)



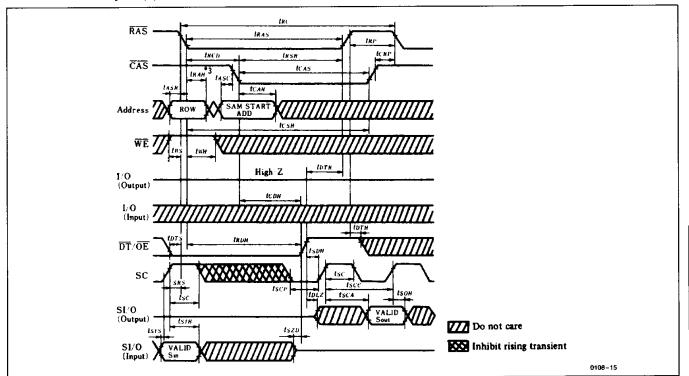
Note: *1. When \overline{WE} is "H" level, all the data on $I/O_1-I/O_4$ can be written into the memory cell. When \overline{WE} is "L" level, the data on I/O_5 are not written except for when I/O = "H" at the falling edge of \overline{RAS} .


• RAS Only Refresh Cycle


• CAS Before RAS Refresh Cycle

• Hidden Refresh Cycle

• Read Transfer Cycle (1)*1,*2

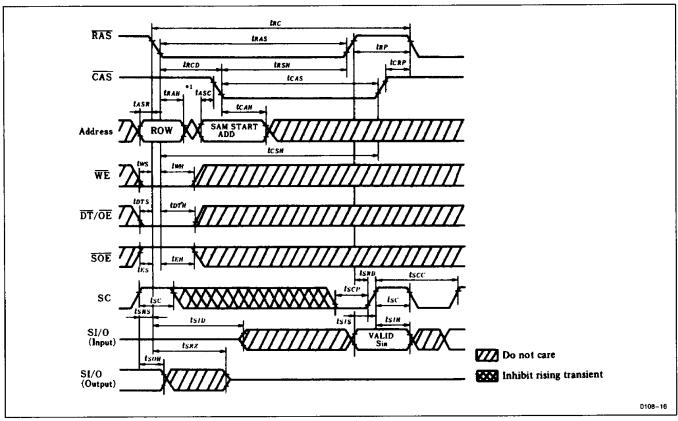


Notes: *1. In the case that the previous data transfer cycle was read transfer.

*2. Assume that SOE is "L" level.

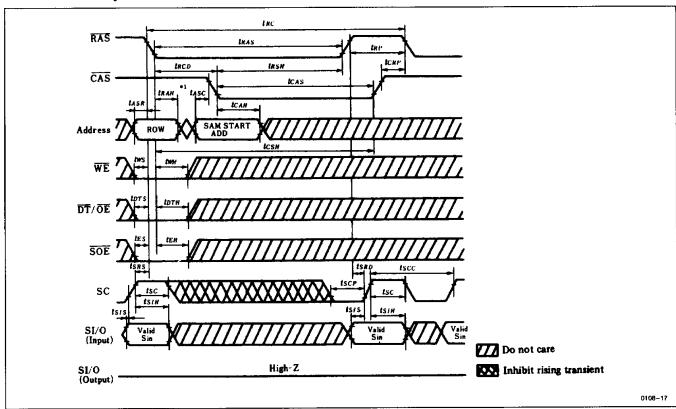
*3. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Read Transfer Cycle (2)*1, *2


otes: *1. In the case that the previous data transfer cycle was write transfer or pseudo transfer.

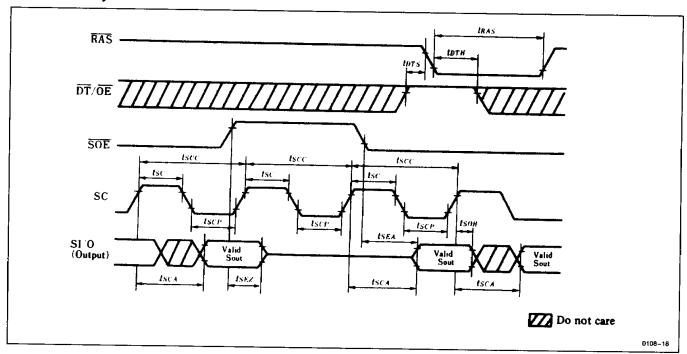
*2. Assume that \overline{SOE} is "L" level.

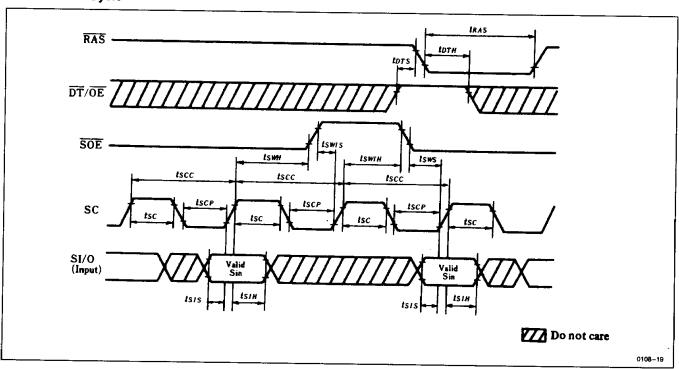
*3. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.



• Pseudo Transfer Cycle

Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.


• Write Transfer Cycle


Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Serial Read Cycle

Serial Write Cycle

