
GX4314 Wideband, Monolithic 4x1 Video Multiplexer

DATA SHEET

FEATURES

- low differential phase and gain
- wide bandwidth, 100 MHz at -1 dB (Flattened)
- small switching transient
- ± 4.5 to ± 11 volts supplies

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

ĊS	A1	A0	OUTPUT
0	0	0	IN 0
0	0	1	IN 1
0	1	0	IN 2
0	1	1	IN 3
1	х	x	HI - Z

X = DON'T CARE

AVAILABLE PACKAGING

14 pin PDIP

14 pin SOIC

CIRCUIT DESCRIPTION

The GX4314 is a wideband video multiplexer implemented in bipolar technology. This device is characterized by excellent differential phase and gain in the enabled state, very high off-isolation in the disabled state and fully buffered unilateral signal path. Make-before-break switching assures virtually glitch-free switching.

For use in NxM routing matrices, the GX4314 features a very high, nearly constant input impedance coupled with high output impedance in the disabled state. This allows multiple devices to be paralleled at the inputs and outputs without additional circuitry.

Logic inputs are TTL and 5V CMOS compatible, providing address and chip select functions. The operation of the devices is described in the Truth Table below.

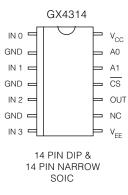
The wideband GX4314 is pin for pin compatible with the high performance GX414, extending the flat frequency response characteristics from 50 to 100 MHz.

APPLICATIONS

- HDTV
- Very high quality video switching
- Very high density video switching
- Computer graphics
- PCM / data routing

ORDERING INFORMATION

Part Number	Package Type	Temperature Range			
GX4314 - CDB	14 pin PDIP	0 to 70 [°] C			
GX4314 - CKB	14 pin SOIC	0 to 70 [°] C			


Document No. 13422 - 5

GENNUM CORPORATION P.O. Box 489, Str. A, Burlington, Ontario, Canada L7R 3Y3 tel. (905) 632-2996 fax: (905) 632-2055 Japan Branch: B-201 Miyamae Village, 2-10-42 Miyamae, Suginami-ku, Tokyo 168, Japan tel. (03) 3247-8838 fax (03) 3247-8839 Downloaded from <u>Elcodis.com</u> electronic components distributor

ABSOLUTE MAXIMUM RATINGS

Parameter	Value	
Supply Voltage	±13.5V	
Operating Temperature Range	0°C T _A 70° C	
Storage Temperature Range	-65°C T _S 150° C	
Lead Temperature (Soldering, 10 Sec)		
Analog Input Voltage (V _{EE} - 1.4) c	or -7.5 <v<sub>A< (V_{cc}+ 0.3) or (V_{EE}+ 15) V</v<sub>	
Logic Input Voltage	-0.5V V _L +5.5V	

PIN CONNECTIONS

ELECTRICAL CHARACTERISTICS ($V_s = \pm 8V \text{ DC}, 0^{\circ}\text{C}$ T_A 70°C, $R_L = 10k$, $C_L = 30 \text{ pF}$, unless otherwise shown.)

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC SUPPLY	Supply Voltage	±Vs	Operating Range	±4.5	-	±11	V
		I+	$\overline{\text{CS}} = 0$		22	25	mA
	Supply Current	1-	CS = 0		22	25	mA
		+	$\overline{CS} = 1$	_	270	350	А
		1-	$\overline{CS} = 1$	-	350	600	А
STATIC	Analog Output Voltage Swing	V _{OUT}	Extremes before clipping	occurs -2.4	_	2.6	V
	Analog Input Bias Current	I _{BIAS}			11	-	А
	Output Offset Voltage	V _{os}	$T_A = 25^{\circ}C$	7	14	21	mV
	Output Offset Voltage Drift	V _{os}		-	160	-	V/°C
LOGIC	Chip Enable Time	t _{on}	Enable input to appearan	ce of signal -	200	400	ns
	Chip Disable Time	t _{off}	Enable input to disappearance of signal at output.		1.2	-	s
	Logic Input Thresholds	V _{IH}	1	2.0	-	-	V
		V _{IL}	0	-	-	0.8	V
	Logic Input Current	I _L		-	-	4	А
DYNAMIC	Insertion Loss	I.L.	1V p-p sine or sq. wave at 100 kHz		0.038	0.050	dB
	Bandwidth (-3dB)	B.W.	small signal C _L = 0 pF		300	-	MHz
	Input Resistance	R _{IN}	\overline{CS} = 0, crosspoint on		-	-	М
	Input Capacitance	C	$\overline{CS} = 0$, crosspoint on		1.4	-	pF
	Output Resistance	R _{out}	$\overline{CS} = 0$, crosspoint on		6	-	
	Output Capacitance	C _{OUT}	\overline{CS} = 1, chip disabled		2.6	-	pF
	Differential Gain	dg	<i>f</i> = 3.58 MHz, V _{IN} = 40 IRE		-	0.03	%
	Differential Phase	dp	$f = 3.58 \text{ MHz}, \text{ V}_{IN} = 40 \text{ IRE}$		-	0.02	deg
	All Hostile Crosstalk	XTLK _{AH}	1Vp-p on 3 inputs 4 th input has 10 resistor to gnd $f=30$ MHz		70	_	dB
	Chip Disabled Crosstalk XTLK _{CD}		Enabled device on O/P $f=100$ MHz		80	-	dB
	Slew Rate	+SR	$V_{IN} = 1V \text{ p-p} (C_{L} = 10 \text{ pF})$	1000	1500	-	V/s
		-SR	$V_{IN} = 1V p-p (C_L = 10 pF)$ $V_{IN} = 1V p-p (C_L = 10 pF)$		660	-	V/ s
	Gain Spread at 30 MHz	A _v			-	±0.05	dB
	Crosspoint Scatter		$R_{\rm S} = 75$ $T_{\rm A} = 25^{\circ}$	°C - 2°	-	±0.15	deg
			f = 3.58 MHz 0°C <ta< td=""><td><70°C -</td><td>-</td><td>±0.25</td><td>deg</td></ta<>	<70°C -	-	±0.25	deg

13422 - 5

TYPICAL PERFORMANCE CURVES FOR GX4314

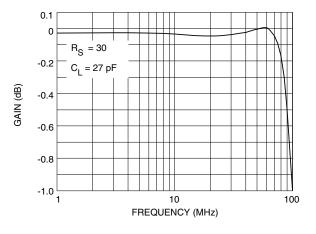
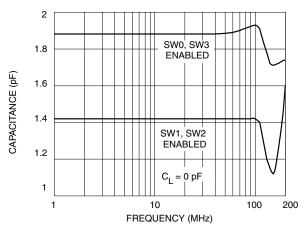
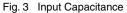




Fig. 1 Flattened Frequency Response

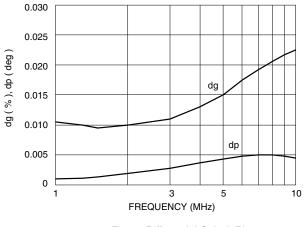


Fig. 5 Differential Gain & Phase

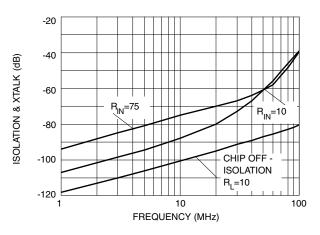


Fig. 2 All Hostile Crosstalk & Isolation

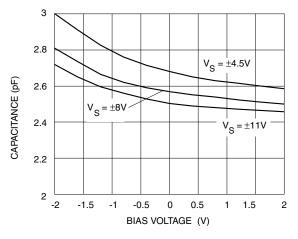
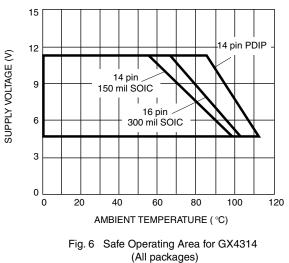



Fig. 4 Output Capacitance

NOTE: Curves are based on 25 mA max. supply current and 130°C max. junction temperature.

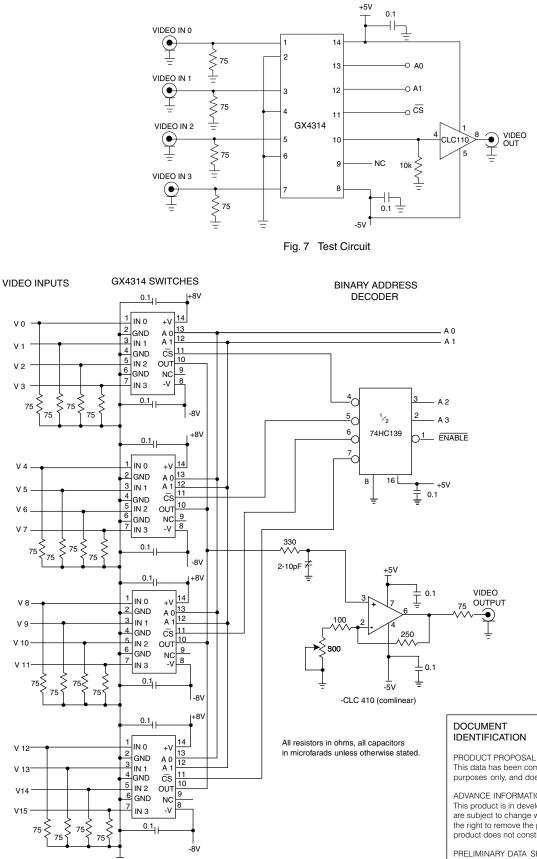


Fig. 8 16 x 1 Video Multiplexer Circuit

Gennum Corporation assumes no responsibility for the use of any circuits described berein and makes no representations that they are free from patent infringement.
© Copyright July 1991 Gennum Corporation. Revision Date: December 1993. All rights reserved.

This data has been compiled for market investigation purposes only, and does not constitute an offer for sale.

ADVANCE INFORMATION NOTE

This product is in development phase and specifications are subject to change without notice. Gennum reserves the right to remove the product at any time. Listing the product does not constitute an offer for sale.

PRELIMINARY DATA SHEET

The product is in a preproduction phase and specifications are subject to change without notice.

DATA SHEFT

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.