Monolithic
Function Generator

FEATURES

- Low-Sine Wave Distortion, 0.5\%, Typical
- Excellent Temperature Stability, $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, Typ.
- Wide Sweep Range, 2000:1, Typical
- Low-Supply Sensitivity, 0.01\%V, Typ.
- Linear Amplitude Modulation
- TTL Compatible FSK Controls
- Wide Supply Range, 10 V to 26 V
- Adjustable Duty Cycle, 1\% TO 99\%

APPLICATIONS

- Waveform Generation
- Sweep Generation
- AM/FM Generation
- V/F Conversion
- FSK Generation
- Phase-Locked Loops (VCO)

GENERAL DESCRIPTION

The XR-2206 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.01 Hz to more than 1 MHz .

The circuit is ideally suited for communications, instrumentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a typical drift specification of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The oscillator frequency can be linearly swept over a 2000:1 frequency range with an external control voltage, while maintaining low distortion.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
XR-2206M	16 Lead 300 Mil CDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
XR-2206P	16 Lead 300 Mil PDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
XR-2206CP	16 Lead 300 Mil PDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2206D	16 Lead 300 Mil JEDEC SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Figure 1. XR-2206 Block Diagram

16 Lead PDIP, CDIP (0.300")

16 Lead SOIC (Jedec, 0.300")

PIN DESCRIPTION

Pin \#	Symbol	Type	Description
1	AMSI	I	Amplitude Modulating Signal Input.
2	STO	O	Sine or Triangle Wave Output.
3	MO	O	Multiplier Output.
4	V $_{\text {CC }}$		Positive Power Supply.
5	TC1	I	Timing Capacitor Input.
6	TC2	I	Timing Capacitor Input.
7	TR1	O	Timing Resistor 1 Output.
8	TR2	O	Timing Resistor 2 Output.
9	FSKI	I	Frequency Shift Keying Input.
10	BIAS	O	Internal Voltage Reference.
11	SYNCO	O	Sync Output. This output is a open collector and needs a pull up resistor to VCC.
12	GND		Ground pin.
13	WAVEA1	I	Wave Form Adjust Input 1.
14	WAVEA2	I	Wave Form Adjust Input 2.
15	SYMA1	I	Wave Symetry Adjust 1.
16	SYMA2	I	Wave Symetry Adjust 2.

DC ELECTRICAL CHARACTERISTICS

Test Conditions: Test Circuit of Figure $2 \mathrm{Vcc}=\mathbf{1 2 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{C}=\mathbf{0} \mathbf{0} \mathbf{0 1} \mu \mathrm{F}, \mathrm{R}_{1}=\mathbf{1 0 0} \mathbf{k} \Omega, \mathrm{R}_{\mathbf{2}}=\mathbf{1 0 k} \Omega, \mathrm{R}_{\mathbf{3}}=\mathbf{2 5} \mathbf{k} \Omega$ Unless Otherwise Specified. S_{1} open for triangle, closed for sine wave.

Parameters	XR-2206M/P			XR-2206CP/D			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.		
General Characteristics								
Single Supply Voltage Split-Supply Voltage Supply Current	$\begin{array}{r} 10 \\ \pm 5 \end{array}$	12	$\begin{gathered} \hline 26 \\ \pm 13 \\ 17 \end{gathered}$	$\begin{array}{r} 10 \\ \pm 5 \end{array}$	14	$\begin{gathered} 26 \\ \pm 13 \\ 20 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$	$\mathrm{R}_{1} \geq 10 \mathrm{k} \Omega$
Oscillator Section								
Max. Operating Frequency Lowest Practical Frequency Frequency Accuracy Temperature Stability Frequency Sine Wave Amplitude Stability ${ }^{2}$ Supply Sensitivity Sweep Range	0.5 1000:1	$\begin{gathered} \hline 1 \\ 0.01 \\ \pm 1 \\ \pm 10 \\ 4800 \\ 0.01 \\ 2000: 1 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 50 \\ \\ 0.1 \end{gathered}$	0.5	$\begin{gathered} \hline 1 \\ 0.01 \\ \pm 2 \\ \pm 20 \\ 4800 \\ 0.01 \\ 2000: 1 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{~Hz} \\ \% \text { of } \mathrm{f}_{\mathrm{o}} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% / \mathrm{V} \\ \mathrm{f}_{\mathrm{H}}=\mathrm{f}_{\mathrm{L}} \end{gathered}$	$\begin{aligned} & \mathrm{C}=1000 \mathrm{pF}, \mathrm{R}_{1}=1 \mathrm{k} \Omega \\ & \mathrm{C}=50 \mu \mathrm{~F}, \mathrm{R}_{1}=2 \mathrm{M} \Omega \\ & \mathrm{f}_{\mathrm{O}}=1 / \mathrm{R}_{1} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \mathrm{R}_{1}=\mathrm{R}_{2}=20 \mathrm{k} \Omega \\ & \\ & \mathrm{~V}_{\mathrm{LOW}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{HIGH}}=20 \mathrm{~V}, \\ & \mathrm{R}_{1}=\mathrm{R}_{2}=20 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{H}} @ \mathrm{R}_{1}=1 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{L}} @ \mathrm{R}_{1}=2 \mathrm{M} \Omega \end{aligned}$
Sweep Linearity								
10:1 Sweep 1000:1 Sweep FM Distortion		$\begin{gathered} \hline 2 \\ 8 \\ 0.1 \end{gathered}$			$\begin{gathered} 2 \\ 8 \\ 0.1 \end{gathered}$		$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{L}}=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{H}}=10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{L}}=100 \mathrm{~Hz}, \mathrm{f}_{\mathrm{H}}=100 \mathrm{kHz} \\ & \pm 10 \% \text { Deviation } \end{aligned}$
Recommended Timing Components								
Timing Capacitor: C Timing Resistors: $\mathrm{R}_{1} \& \mathrm{R}_{2}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$		$\begin{gathered} 100 \\ 2000 \end{gathered}$	$\begin{gathered} 0.001 \\ 1 \end{gathered}$		$\begin{gathered} 100 \\ 2000 \end{gathered}$	$\begin{aligned} & \mu \mathrm{F} \\ & \mathrm{k} \Omega \end{aligned}$	Figure 5
Triangle Sine Wave Output ${ }^{1}$								Figure 3
Triangle Amplitude Sine Wave Amplitude Max. Output Swing Output Impedance Triangle Linearity Amplitude Stability	40	$\begin{gathered} \hline 160 \\ 60 \\ 6 \\ 600 \\ 1 \\ 0.5 \end{gathered}$	80		$\begin{gathered} \hline 160 \\ 60 \\ 6 \\ 600 \\ 1 \\ 0.5 \end{gathered}$		$\begin{gathered} \hline \mathrm{mV} / \mathrm{k} \Omega \\ \mathrm{mV} / \mathrm{k} \Omega \\ \mathrm{Vp}-\mathrm{p} \\ \Omega \\ \% \\ \mathrm{~dB} \end{gathered}$	Figure 2, S_{1} Open Figure 2, S_{1} Closed For 1000:1 Sweep
Sine Wave Distortion								
Without Adjustment With Adjustment		$\begin{aligned} & 2.5 \\ & 0.4 \end{aligned}$	1.0		$\begin{aligned} & 2.5 \\ & 0.5 \end{aligned}$	1.5	$\begin{aligned} & \text { \% } \\ & \% \end{aligned}$	$\mathrm{R}_{1}=30 \mathrm{k} \Omega$ See Figure 7 and Figure 8

Notes

${ }^{1}$ Output amplitude is directly proportional to the resistance, R_{3}, on Pin 3. See Figure 3.
${ }^{2}$ For maximum amplitude stability, R_{3} should be a positive temperature coefficient resistor.
Bold face parameters are covered by production test and guaranteed over operating temperature range.

Rev. 1.03

DC ELECTRICAL CHARACTERISTICS (CONT'D)

Parameters	XR-2206M/P			XR-2206CP/D			Units	Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.		
Amplitude Modulation								
Input Impedance	50	100		50	100		k Ω	
Modulation Range		100			100		\%	
Carrier Suppression		55			55		dB	
Linearity		2			2		\%	For 95\% modulation
Square-Wave Output								
Amplitude		12			12		Vp-p	Measured at Pin 11.
Rise Time		250			250		ns	$C_{L}=10 \mathrm{pF}$
Fall Time		50			50		ns	$C_{L}=10 \mathrm{pF}$
Saturation Voltage		0.2	0.4		0.2	0.6	V	$\mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$
Leakage Current		0.1	20		0.1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}$
FSK Keying Level (Pin 9)	0.8	1.4	2.4	0.8	1.4	2.4	V	See section on circuit controls
Reference Bypass Voltage	2.9	3.1	3.3	2.5	3	3.5	V	Measured at Pin 10.

Notes

${ }_{2}^{1}$ Output amplitude is directly proportional to the resistance, R_{3}, on Pin 3. See Figure 3.
${ }^{2}$ For maximum amplitude stability, R_{3} should be a positive temperature coefficient resistor.
Bold face parameters are covered by production test and guaranteed over operating temperature range.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Power Supply	26 V
Power Dissipation	750 mW

Derate Above $25^{\circ} \mathrm{C} \ldots5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Total Timing Current 6 mA
Storage Temperature \ldots. . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

SYSTEM DESCRIPTION

The XR-2206 is comprised of four functional blocks; a voltage-controlled oscillator (VCO), an analog multiplier and sine-shaper; a unity gain buffer amplifier; and a set of current switches.

The VCO produces an output frequency proportional to an input current, which is set by a resistor from the timing
terminals to ground. With two timing pins, two discrete output frequencies can be independently produced for FSK generation applications by using the FSK input control pin. This input controls the current switches which select one of the timing resistor currents, and routes it to the VCO.

Figure 2. Basic Test Circuit

Figure 3. Output Amplitude as a Function of the Resistor,

R3, at Pin 3

Figure 4. Supply Current vs Supply Voltage, Timing, R

Figure 5. R versus Oscillation Frequency.

Figure 7. Trimmed Distortion versus Timing Resistor.

Figure 6. Normalized Output Amplitude versus DC Bias at AM Input (Pin 1)

Figure 8. Sine Wave Distortion versus Operating Frequency with Timing Capacitors Varied.

Figure 9. Frequency Drift versus Temperature.

Figure 10. Circuit Connection for Frequency Sweep.

Figure 11. Circuit tor Sine Wave Generation without External Adjustment. (See Figure 3 for Choice of R_{3})

Figure 12. Circuit for Sine Wave Generation with Minimum Harmonic Distortion.
(R_{3} Determines Output Swing - See Figure 3)

Figure 13. Sinusoidal FSK Generator

Figure 14. Circuit for Pulse and Ramp Generation.

Frequency-Shift Keying

The XR-2206 can be operated with two separate timing resistors, R_{1} and R_{2}, connected to the timing Pin 7 and 8 , respectively, as shown in Figure 13. Depending on the polarity of the logic signal at Pin 9 , either one or the other of these timing resistors is activated. If Pin 9 is open-circuited or connected to a bias voltage $\geq 2 \mathrm{~V}$, only R_{1} is activated. Similarly, if the voltage level at Pin 9 is $\leq 1 \mathrm{~V}$, only R_{2} is activated. Thus, the output frequency can be keyed between two levels. f_{1} and f_{2}, as:
$f_{1}=1 / R_{1} C$ and $f_{2}=1 / R_{2} C$
For split-supply operation, the keying voltage at $\operatorname{Pin} 9$ is referenced to V -.

Output DC Level Control

The dc level at the output (Pin 2) is approximately the same as the dc bias at Pin 3. In Figure 11, Figure 12 and Figure 13, Pin 3 is biased midway between V_{+}and ground, to give an output dc level of $\approx \mathrm{V}^{+} / 2$.

APPLICATIONS INFORMATION

Sine Wave Generation

Without External Adjustment

Figure 11 shows the circuit connection for generating a sinusoidal output from the XR-2206. The potentiometer, R_{1} at Pin 7, provides the desired frequency tuning. The maximum output swing is greater than $\mathrm{V}^{+} / 2$, and the typical distortion (THD) is < 2.5%. If lower sine wave distortion is desired, additional adjustments can be provided as described in the following section.
The circuit of Figure 11 can be converted to split-supply operation, simply by replacing all ground connections with V^{-}. For split-supply operation, R_{3} can be directly connected to ground.

With External Adjustment:

The harmonic content of sinusoidal output can be reduced to -0.5% by additional adjustments as shown in Figure 12. The potentiometer, R_{A}, adjusts the sine-shaping resistor, and R_{B} provides the fine adjustment for the waveform symmetry. The adjustment procedure is as follows:

1. Set R_{B} at midpoint and adjust R_{A} for minimum distortion.
2. With R_{A} set as above, adjust R_{B} to further reduce distortion.

Triangle Wave Generation

The circuits of Figure 11 and Figure 12 can be converted to triangle wave generation, by simply open-circuiting Pin 13 and 14 (i.e., S_{1} open). Amplitude of the triangle is approximately twice the sine wave output.

FSK Generation

Figure 13shows the circuit connection for sinusoidal FSK signal operation. Mark and space frequencies can be independently adjusted by the choice of timing resistors, R_{1} and R_{2}; the output is phase-continuous during transitions. The keying signal is applied to Pin 9. The circuit can be converted to split-supply operation by simply replacing ground with V^{-}.

Pulse and Ramp Generation

Figure 14 shows the circuit for pulse and ramp waveform generation. In this mode of operation, the FSK keying terminal (Pin 9) is shorted to the square-wave output (Pin 11), and the circuit automatically frequency-shift keys itself between two separate frequencies during the positive-going and negative-going output waveforms. The pulse width and duty cycle can be adjusted from 1% to 99% by the choice of R_{1} and R_{2}. The values of R_{1} and R_{2} should be in the range of $1 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$.

PRINCIPLES OF OPERATION

Description of Controls

Frequency of Operation:

The frequency of oscillation, f_{0}, is determined by the external timing capacitor, C , across Pin 5 and 6, and by the timing resistor, R, connected to either Pin 7 or 8 . The frequency is given as:

$$
f_{0}=\frac{1}{R C} H z
$$

and can be adjusted by varying either R or C. The recommended values of R, for a given frequency range, as shown in Figure 5. Temperature stability is optimum for $4 \mathrm{k} \Omega<\mathrm{R}<200 \mathrm{k} \Omega$. Recommended values of C are from 1000 pF to $100 \mu \mathrm{~F}$.

Frequency Sweep and Modulation:

Frequency of oscillation is proportional to the total timing current, I_{T}, drawn from Pin 7 or 8 :

$$
f=\frac{320 I_{T}(m A)}{C(\mu F)} H z
$$

Timing terminals (Pin 7 or 8) are low-impedance points, and are internally biased at +3 V , with respect to Pin 12 . Frequency varies linearly with IT, over a wide range of current values, from $1 \mu \mathrm{~A}$ to 3 mA . The frequency can be controlled by applying a control voltage, V_{C}, to the activated timing pin as shown in Figure 10. The frequency of oscillation is related to VC as:

$$
f=\frac{1}{R C}\left(1+\frac{R}{R_{C}}\left(1-\frac{V_{C}}{3}\right)\right) H z
$$

where V_{C} is in volts. The voltage-to-frequency conversion gain, K, is given as:

$$
K=\partial f / \partial V_{C}=-\frac{0.32}{R_{C} C} \mathrm{~Hz} / V
$$

CAUTION: For safety operation of the circuit, I_{T} should be limited to $\leq 3 m A$.

Output Amplitude:

Maximum output amplitude is inversely proportional to the external resistor, R_{3}, connected to Pin 3 (see Figure 3). For sine wave output, amplitude is approximately 60 mV peak per $\mathrm{k} \Omega$ of R_{3}; for triangle, the peak amplitude is approximately 160 mV peak per $\mathrm{k} \Omega$ of R_{3}. Thus, for example, $R_{3}=50 \mathrm{k} \Omega$ would produce approximately 13 V sinusoidal output amplitude.

Amplitude Modulation:

Output amplitude can be modulated by applying a dc bias and a modulating signal to Pin 1 . The internal impedance
at Pin 1 is approximately $100 \mathrm{k} \Omega$. Output amplitude varies linearly with the applied voltage at Pin 1 , for values of dc bias at this pin, within 14 volts of $\mathrm{V}_{\mathrm{CC}} / 2$ as shown in Figure 6. As this bias level approaches $\mathrm{V}_{\mathrm{Cc}} / 2$, the phase of the output signal is reversed, and the amplitude goes through zero. This property is suitable for phase-shift keying and suppressed-carrier AM generation. Total dynamic range of amplitude modulation is approximately 55 dB .

CAUTION: AM control must be used in conjunction with a well-regulated supply, since the output amplitude now becomes a function of V_{CC}.

Figure 15. Equivalent Schematic Diagram

16 LEAD CERAMIC DUAL-IN-LINE (300 MIL CDIP)

Rev. 1.00

SYMBOL	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	0.100	0.200	2.54	5.08		
$\mathrm{~A}_{1}$	0.015	0.060	0.38	1.52		
B	0.014	0.026	0.36	0.66		
$\mathrm{~B}_{1}$	0.045	0.065	1.14	1.65		
C	0.008	0.018	0.20	0.46		
D	0.740	0.840	18.80	21.34		
E_{1}	0.250	0.310	6.35	7.87		
E	0.300 BSC		7.62 BSC			
e	0.100 BSC		2.54 BSC			
L	0.125	0.200	3.18			
α	0°		15°	0°		15°

Note: The control dimension is the inch column

16 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP)

Rev. 1.00

SYMBOL	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.145	0.210	3.68	5.33
A_{1}	0.015	0.070	0.38	1.78
A_{2}	0.115	0.195	2.92	4.95
B	0.014	0.024	0.36	0.56
B_{1}	0.030	0.070	0.76	1.78
C	0.008	0.014	0.20	0.38
D	0.745	0.840	18.92	21.34
E	0.300	0.325	7.62	8.26
E_{1}	0.240	0.280	6.10	7.11
e		BSC		BSC
e_{A}		BSC		BSC
e_{B}	0.310	0.430	7.87	10.92
L	0.115	0.160	2.92	4.06
α	0°	15°	0°	15°

Note: The control dimension is the inch column

16 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC)

Rev. 1.00

SYMBOL	INCHES		MILLIMETERS			
	MIN		MAX	MIN		MAX
A	0.093	0.104	2.35	2.65		
$\mathrm{~A}_{1}$	0.004	0.012	0.10	0.30		
B	0.013	0.020	0.33	0.51		
C	0.009	0.013	0.23	0.32		
D	0.398	0.413	10.10	10.50		
E	0.291	0.299	7.40	7.60		
e	0.050 BSC		1.27			
BSC						
L	0.394	0.419	10.00	10.65		
α	0.016	0.050	0.40			
0°		8°	0°			

Note: The control dimension is the millimeter column

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1972 EXAR Corporation
Datasheet June 1997
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

