

THE INFINITE POWER OF INNOVATION

$\overline{\text{UC}184\text{xA}/284\text{xA}/384\text{xA}}$

CURRENT MODE PWM CONTROLLER

PRODUCTION DATA SHEET

DESCRIPTION

The UC184xA family of control ICs provides all the necessary features to implement off-line fixed-frequency, current-mode switching power supplies with a minimum of external components. The current mode architecture demonstrates improved load regulation, pulse-by-pulse current limiting and inherent protection of the power supply output switch. The IC includes: A bandgap reference trimmed to ±1% accuracy, an error amplifier, a current sense comparator with internal clamp to 1V, a high current totem pole output stage for fast switching of power

MOSFET's, and an externally programmable oscillator to set frequency and maximum duty cycle. The undervoltage lock-out is designed to operate with 250µA typ. start-up current, allowing an efficient bootstrap supply voltage design. Available options for this family of products, such as start-up voltage hysteresis and duty cycle, are summarized below in the Available Options section. The UC184xA family of control ICs is also available in 14-pin SOIC package which makes the Power Output Stage Collector and Ground pins available.

PRODUCT HIGHLIGHT

COMPARISON OF UC384XA VS. SG384X DISCHARGE CURRENT

Discharge Current Distribution - mA

KEY FEATURES

- LOW START-UP CURRENT. (0.5mA max.)
- TRIMMED OSCILLATOR DISCHARGE CURRENT. (See Product Highlight)
- OPTIMIZED FOR OFF-LINE AND DC-TO-DC CONVERTERS.
- AUTOMATIC FEED FORWARD COMPENSATION.
- PULSE-BY-PULSE CURRENT LIMITING.
- ENHANCED LOAD RESPONSE CHARACTERISTICS.
- UNDER-VOLTAGE LOCKOUT WITH HYSTERESIS.
- DOUBLE PULSE SUPPRESSION.
- HIGH-CURRENT TOTEM POLE OUTPUT.
- INTERNALLY TRIMMED BANDGAP REFERENCE.
- 500KHz OPERATION.
- LOW R_o ERROR AMPLIFIER.

APPLICATIONS

- ECONOMICAL OFF-LINE FLYBACK OR FORWARD CONVERTERS.
- DC-DC BUCK OR BOOST CONVERTERS.
- LOW COST DC MOTOR CONTROL.

A V A	I L	••	ВІ		_	ΡΊ			N	-	
Part #	#	Sto	art-L oltaç	Jp je	Hyster	esis	Mo	ax. Cyc	Du :le	ty	
UCx842A		16V		6V		<100%					
UCx84	3A	8	3.4V	,	0.8	٧	<	10	0%	,	
UCx84	4 A	1	16V		67	,	-	<50)%		
110-201	5.4	Q	1	,	Λ 9	v		-50	10/		

	PACK	AGE ORDER IN	FORMATION	
T _A (°C)	M Plastic DIP 8-pin	DM Plastic SOIC 8-pin	D Plastic SOIC 14-pin	Y Ceramic DIP 8-pin
0 to 70	UC384xAM	UC384xADM	UC384xAD	_
-40 to 85	UC284xAM	UC284xADM	UC284xAD	UC284xAY
-55 to 125	<u></u>	_	_	UC184xAY

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. UC3842ADMT)

PRODUCTION DATA SHEET

THERMAL DATA

M PACKAGE:

95°C/W
165°C/W
120°C/W
·
130°C/W

Junction Temperature Calculation: $T_I = T_A + (P_D \times \theta_{IA})$.

numbers refer to DIL packages only.

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow

PACKAGE PIN OUTS

M & Y PACKAGE

(Top View)

DM PACKAGE

(Top View)

D PACKAGE

(Top View)

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for UC384xA with 0° C \leq $T_A \leq$ 70°C, UC284xA with -40° C \leq $T_A \leq$ 85°C, UC184xA with -55° C \leq $T_A \leq$ 125°C; V_{CC} =15V; V_{CC} =15V; V_{CC} =15V; V_{CC} =15V; V_{CC} =10K; V_{CC} =10K;

Parameter	Symbol	Test Conditions		UC184xA/284xA					
Falallietei	Sylliooi	rest conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Section									
Output Voltage	V _{REF}	$T_J = 25$ °C, $I_L = 1$ mA	4.95	5.00	5.05	4.90	5.00	5.10	٧
Line Regulation		$12 \le V_{IN} \le 25V$		6	20		6	20	m۷
Load Regulation		$1 \le I_O \le 20 \text{mA}$		6	25		6	25	m۷
Temperature Stability (Note 2 & 7)				0.2	0.4		0.2	0.4	mV/°
Total Output Variation		Over Line, Load, and Temperature	4.9		5.1	4.82		5.18	٧
Output Noise Voltage (Note 2)	V _N	$10Hz \le f \le 10kHz$, $T_J = 25$ °C		50			50		μV
Long Term Stability (Note 2)		$T_A = 125$ °C, t = 1000hrs		5	25		5	25	m۷
Output Short Circuit Current	I _{sc}		-30	-100	-180	-30	-100	-180	mA
Oscillator Section									
Initial Accuracy (Note 6)		$T_J = 25^{\circ}C$	47	52	57	47	52	57	kHz
Voltage Stability		$12 \le V_{cc} \le 25V$		0.2	1		0.2	1	%
Temperature Stability (Note 2)		$T_{MIN} \le T_A \le T_{MAX}$		5			5		%
Amplitude (Note 2)				1.7			1.7		٧
Discharge Current		$T_J = 25^{\circ}C, V_{PIN 4} = 2V$	7.8	8.3	8.8	7.8	8.3	8.8	mA
		$V_{PIN,4} = 2V, T_{MIN} \le T_A \le T_{MAX}$	7.5		8.8	7.6		8.8	mA
Error Amp Section	•		•		•				
Input Voltage		$V_{PIN.1} = 2.5V$	2.45	2.50	2.55	2.42	2.50	2.58	٧
Input Bias Current	I _B	1111		-0.3	-1		-0.3	-2	μA
Open Loop Gain	A _{VOI}	$2 \le V_O \le 4V$	65	90		65	90		dB
Unity Gain Bandwidth (Note 2)	UGBW	T _i = 25°C	0.7	1		0.7	1		MHz
Power Supply Rejection Ratio (Note 3)	PSRR	12 ≤ V _{cc} ≤ 25V	60	70		60	70		dB
Output Sink Current	Ior	$V_{PIN 2} = 2.7V, V_{PIN 1} = 1.1V$	2	6		2	6		mA
Output Source Current	I _{OH}	$V_{PIN 2} = 2.3V, V_{PIN 1} = 5V$	-0.5	-0.8		-0.5	-0.8		mA
Output Voltage High Level	V _{OH}	$V_{PIN.9} = 2.3V, R_{L} = 15K \text{ to ground}$	5	6		5	6		٧
Output Voltage Low Level	V _{OL}	$V_{PIN 2} = 2.7V$, $R_L = 15K$ to V_{REF}		0.7	1.1		0.7	1.1	٧
Current Sense Section			-			-			
Gain (Note 3 & 4)	A _{VOL}		2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal (Note 3)		$V_{PIN 1} = 5V$	0.9	1	1.1	0.9	1	1.1	٧
Power Supply Rejection Ratio (Note 3)	PSRR	12 ≤ V _{cc} ≤ 25V		70			70		dB
Input Bias Current	I _B	C		-2	-10		-2	-10	μΑ
Delay to Output (Note 2)	T _{pd}	$V_{PIN 3} = 0 \text{ to } 2V$		150	300		150	300	ns
Output Section			•						
Output Low Level	.,	I _{SINK} = 20mA		0.1	0.4		0.1	0.4	٧
•	V _{OL}	I _{SINK} = 200mA		1.5	2.2		1.5	2.2	٧
Output High Level	.,	I _{SOURCE} = 20mA	13	13.5		13	13.5		٧
	V _{OH}	I _{SOURCE} = 200mA	12	13.5		12	13.5		٧
Rise Time (Note 2)	T _R	$T_1 = 25^{\circ}C$, $C_1 = 1nF$		50	150		50	150	ns
Fall Time (Note 2)	T _F	T ₁ = 25°C, C ₁ = 1nF		50	150		50	150	ns
UVLO Saturation	V _{SAT}	$V_{cc} = 5V$, $I_{SINK} = 10$ mA		0.7	1.2		0.7	1.2	٧

(Electrical Characteristics continue next page.)

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS (Con't.)									
Parameter	Symbol	Test Conditions		84xA/2		_	C384x	Max.	Units
Under-Voltage Lockout Section	•								
Start Threshold		x842A/4A	15	16	17	14.5	16	17.5	٧
		x843A/5A	7.8	8.4	9.0	7.8	8.4	9.0	٧
Min. Operation Voltage After Turn-On		x842A/4A	9	10	11	8.5	10	11.5	٧
		x843A/5A	7.0	7.6	8.2	7.0	7.6	8.2	٧
PWM Section			•		•		•		
Maximum Duty Cycle		x842A/3A	94	96	100	94	96	100	%
		x844A/5A	47	48	50	47	48	50	%
Minimum Duty Cycle					0			0	%
Total Standby Section									
Start-Up Current				0.3	0.5		0.3	0.5	mA
Operating Supply Current	I _{cc}			11	17		11	17	mA
Zener Voltage	V _z	$I_{cc} = 25mA$	30	35		30	35		٧

Notes: 2. These parameters, although guaranteed, are not 100% tested in production.

- 3. Parameter measured at trip point of latch with $V_{VFB} = 0$.
- $\mbox{4. Gain defined as: } \mbox{A_{VOL}} = \frac{\Delta \mbox{V_{COMP}}}{\Delta \mbox{V_{ISENSE}}} \ \, ; \ \, 0 \leq \mbox{V_{ISENSE}} \leq 0.8 \mbox{V}. \label{eq:action}$
- 5. Adjust $\boldsymbol{V}_{\scriptscriptstyle CC}$ above the start threshold before setting at 15V.
- Output frequency equals oscillator frequency for the UC1842A and UC1843A. Output frequency is one half oscillator frequency for the UC1844A and UC1845A.
- 7. "Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

$$Temp \ Stability = \frac{V_{REF} \ (max.) - V_{REF} \ (min.)}{T_{J} \ (max.) - T_{J} \ (min.)}$$

 $\rm V_{\rm REF}$ (max.) & $\rm V_{\rm REF}$ (min.) are the maximum & minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature."

- \ast $\,{\rm V_{cc}}$ and ${\rm V_{c}}$ are internally connected for 8 pin packages.
- ** POWER GROUND and GROUND are internally connected for 8 pin packages.
- *** Toggle flip flop used only in x844A and x845A series.

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES

FIGURE 1. — OSCILLATOR FREQUENCY vs. TIMING RESISTOR

Note: Output drive frequency is half the oscillator frequency for the UCx844A/5A devices.

FIGURE 2. — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR

PRODUCTION DATA SHEET

TYPICAL APPLICATION CIRCUITS

FIGURE 3. — CURRENT SENSE SPIKE SUPPRESSION

The RC low pass filter will eliminate the leading edge current spike caused by parasitics of Power MOSFET.

FIGURE 4. — MOSFET PARASITIC OSCILLATIONS

A resistor (R_1) in series with the MOSFET gate will reduce overshoot & ringing caused by the MOSFET input capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths as short and as wide as possible.)

FIGURE 5. — EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYNCHRONIZATION

 $E = \frac{R_B}{R_A + 2R_B}$ Precision duty cycle limiting as well as synchronizing several parts is possible with the above circuitry.

PRODUCTION DATA

TYPICAL APPLICATION CIRCUITS (continued)

Due to inherent instability of current mode converters running above 50% duty cycle, slope compensation should be added to either the current sense pin or the error amplifier. Figure 6 shows a typical slope compensation technique.

FIGURE 7. — OPEN LOOP LABORATORY FIXTURE

UCx84xA

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

PRODUCTION DATA SHEET

TYPICAL APPLICATION CIRCUITS (continued)

FIGURE 8. — OFF-LINE FLYBACK REGULATOR

SPECIFICATIONS

Input line voltage: 90VAC to 130VAC Input frequency: 50 or 60Hz
Switching frequency: 40KHz ±10%
Output power: 25W maximum
Output voltage: 5V +5%

Output voltage: 5V +5%
Output current: 2 to 5A
Line regulation: 0.01%/V
Load regulation: 8%/A*

Efficiency @ 25 Watts,

 $V_{IN} = 90VAC:$ 70% $V_{IN} = 130VAC:$ 65%

Output short-circuit current: 2.5Amp average

* This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side control winding is sensed by the UC3844A error amplifier. Load regulation is therefore dependent on the coupling between secondary and control windings, and on transformer leakage inductance.

