

AMD Geode[™] CS5530A Companion Device Data Book

October 2003 Publication ID: May 2001, Revision 1.1

© 2003 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Contacts

www.amd.com pcs.support@amd.com

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, Geode, Virtual System Architecture, and XpressAUDIO are trademarks of Advanced Micro Devices, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and/ or other jurisdictions.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

List	of Fig	ures
List	of Tak	oles
1.0	AMC 1.1	O Geode [™] CS5530A Companion Device
	1.2	Features
2.0	Arch	nitecture Overview
3.0	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 Sign 3.1 3.2	Processor Support13PCI Bus Interface14ISA Bus Interface14ISA Bus Interface14AT Compatibility Logic14IDE Controllers15Power Management15XpressAUDIO™ Subsystem15Display Subsystem Extensions16Clock Generation17Universal Serial Bus17Pin Assignments20Signal Descriptions29
4.0	Fund	ctional Description
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Processor Interface48PCI Bus Interface51Resets and Clocks55Power Management60PC/AT Compatibility Logic89IDE Controller110XpressAUDIO™ Subsystem118Display Subsystem Extensions133Universal Serial Bus Support140

Α	Μ	D	Л
---	---	---	---

5.0	Regi	ister Descriptions
	5.1	PCI Configuration Space and Access Methods144
	5.2	Register Summary
	5.3	Chipset Register Space
	5.4	USB Registers
	5.5	ISA Legacy I/O Register Space
	5.6	V-ACPI I/O Register Space
6.0	Elec	trical Specifications
	6.1	Electrical Connections
	6.2	Absolute Maximum Ratings
	6.3	Operating Conditions
	6.4	DC Characteristics
	6.5	AC Characteristics
	6.6	Display Characteristics
7.0	Test	Mode Information
	7.1	NAND Tree Test Mode
	7.2	I/O Test
8.0	Phys	sical Dimensions
Appe	endix	A Support Documentation
	A.1	REVISION HISTORY

List of Figures

Figure 1-1.	Block Diagram	
Figure 2-1.	Example System Block Diagram	
Figure 2-2.	AC97 Codec Signal Connections	
Figure 2-3.	8-Bit Display Subsystem Extensions	
Figure 2-4.	CS5530A Clock Generation	
Figure 3-1.	CS5530A Signal Groups	
Figure 3-2.	352 PBGA Pin Assignment Diagram	21
Figure 4-1.	Processor Signal Connections	48
Figure 4-2.	Portable/Desktop Display Subsystem Configurations	49
Figure 4-3.	PIXEL Signal Connections	50
Figure 4-4.	Subtractive Decoding Timing	52
Figure 4-5.	CS5530A Reset	55
Figure 4-6.	System Clock Distribution	56
Figure 4-7.	General Purpose Timer and UDEF Trap SMI Tree Example	83
Figure 4-8.	Non-Posted PCI-to-ISA Access	
Figure 4-9.	PCI to ISA Cycles with Delayed Transaction Enabled	91
Figure 4-10.	Limited ISA Mode	
Figure 4-11.	ISA Master Mode	
Figure 4-12.	ISA DMA Read from PCI Memory	
Figure 4-13.	ISA DMA Write To PCI Memory	
Figure 4-14.	PIT Timer	
Figure 4-15.	PIC Interrupt Controllers	
Figure 4-16.	PCI and IRQ Interrupt Mapping	
Figure 4-17.	SMI Generation for NMI	
Figure 4-18.	External RTC Interface	
Figure 4-19.	CS5530A and IDE Channel Connections	
Figure 4-20.	PRD Table Example	
Figure 4-21.	AC97 Signal Connections	
Figure 4-22.	Audio SMI Tree Example	
Figure 4-23.	8-Bit Display Subsystem Extensions	
Figure 4-24.	Video Port Protocol	
Figure 6-1.	Test Measurements for AC Characteristics	
Figure 6-2.	Test Circuit for AC Characteristics	
Figure 6-3.	PCI Rising Edge (t _{I H}) Test Circuit	
Figure 6-4.	PCI Falling Edge (tHL) Test Circuit	
Figure 6-5.	PCI Slew Rate Test Circuit	
Figure 6-6.	3.3V PCICLK Waveform	
Figure 6-7.	CPU Interface Timing	
Figure 6-8.	Audio Interface Timing	
Figure 6-9.	USB Timing	
Figure 6-10.	USB Test Circuit	
Figure 6-11.	Display TFT/TV Outputs Delays	
Figure 6-12.	MPEG Timing	
Figure 6-12.	Typical Video Connection Diagram	
Figure 7-1.	Example: NAND Tree Output Waveform	
•	• •	
Figure 8-1.	352 PBGA Mechanical Package Outline	. 200

AMD Geode™ CS5530A Companion Device Data Book

AMD Revision 1.1

List of Tables

Table 3-1.	Pin Type Definitions	
Table 3-2.	352 PBGA Pin Assignments - Sorted by Pin Number	
Table 3-3.	352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name	
Table 4-1.	GX1 Processor Serial Packet Register	
Table 4-2.	PCI Command Register	
Table 4-3.	PCI Command Encoding	
Table 4-4.	Subtractive Decoding Related Bits	
Table 4-5.	PERR#/SERR# Associated Register Bits	
Table 4-6.	PCI Interrupt Steering Registers	
Table 4-7.	Delay Transaction Programming Bits	
Table 4-8.	ISACLK Divider Bits	
Table 4-9.	DCLK Configuration Register	
Table 4-10.	F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")	
Table 4-11.	Base Address Register (F1BAR) for SMI Status and ACPI Timer Support	
Table 4-12.	Suspend Configuration Register	
Table 4-13.	Clock Stop Control Register	
Table 4-14.	Suspend Modulation Related Registers	
Table 4-15.	Power Management Shadow Registers	
Table 4-16.	APM Support Registers	
Table 4-17.	Power Management Global Enabling Bits	
Table 4-18.	Keyboard/Mouse Idle Timer and Trap Related Registers	
Table 4-19.	Parallel/Serial Idle Timer and Trap Related Registers	
Table 4-20.	Floppy Disk Idle Timer and Trap Related Registers	
Table 4-21.	Primary Hard Disk Idle Timer and Trap Related Registers	
Table 4-22.	Secondary Hard Disk Idle Timer and Trap Related Registers	
Table 4-23.	User Defined Device 1 (UDEF1) Idle Timer and Trap Related Registers	
Table 4-24.	User Defined Device 2 (UDEF2) Idle Timer and Trap Related Registers	
Table 4-25.	User Defined Device 3 (UDEF3) Idle Timer and Trap Related Registers	
Table 4-26.	Video Idle Timer and Trap Related Registers	
Table 4-27.	VGA Timer Related Registers	
Table 4-28.	General Purpose Timers and Control Registers	
Table 4-29.	ACPI Timer Related Registers/Bits	
Table 4-30.	V-ACPI I/O Register Space Summary	
Table 4-31.	GPIO Pin Function Selection	
Table 4-32.	GPIO Pin Configuration/Control Registers	
Table 4-33.	Top Level SMI Status Register (Read to Clear)	
Table 4-34.	Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear)	
Table 4-35.	Device Power Management Programming Summary	
Table 4-36.	Cycle Configuration Bits	
Table 4-37.	Signal Assignments	
Table 4-38.	I/O Recovery Programming Register	
Table 4-39.	ROM Interface Related Bits	
Table 4-40.	DMA Shadow Register	
Table 4-41.	PIT Control and I/O Port 061h Associated Register Bits	
Table 4-42.	PIT Shadow Register	

Table 4-43.	PIC Interrupt Mapping	101
Table 4-44.	PCI INTA Cycle Disable/Enable Bit	101
Table 4-45.	PIC Shadow Register	102
Table 4-46.	PCI Interrupt Steering Registers	103
Table 4-47.	Interrupt Edge/Level Select Registers	104
Table 4-48.	I/O Ports 061h and 092h	105
Table 4-49.	I/O Port 092h Decode Enable Bit	106
Table 4-50.	Decode Control Registers	107
Table 4-51.	External Keyboard Controller Registers	107
Table 4-52.	A20 Associated Programming Bits	108
Table 4-53.	Real-Time Clock Registers	109
Table 4-54.	IDE Reset Bits	110
Table 4-55.	Base Address Register (F2BAR) for IDE Support Registers	111
Table 4-56.	PIO Programming Registers	112
Table 4-57.	IDE Bus Master PRD Table Address Registers	
Table 4-58.	IDE Bus Master Command and Status Registers	114
Table 4-59.	Physical Region Descriptor Format	
Table 4-60.	Ultra DMA/33 Signal Definitions	
Table 4-61.	MDMA/UDMA Control Registers	
Table 4-62.	Base Address Register (F3BAR) for XpressAUDIO [™] Subsystem Support Registers	
Table 4-63.	Generic Bit Formats for Audio Bus Master Configuration Registers	
Table 4-64.	Audio Bus Master Configuration Register Summary	
Table 4-65.	Physical Region Descriptor Format	
Table 4-66.	Codec Configuration/Control Registers	
Table 4-67.	Second Level SMI Status Reporting Registers	
Table 4-68.	Third Level SMI Status Reporting Registers	
Table 4-69.	Sound Card I/O Trap and Fast Path Enable Registers	
Table 4-70.	IRQ Configuration Registers	
Table 4-71.	Base Address Register (F4BAR) for Video Controller Support Registers	
Table 4-72.	Video Input Format Bits	
Table 4-73.	Video Scale Register	
Table 4-74.	Video X and Y Position Registers	
Table 4-75.	Video Color Registers	
Table 4-76.	Display Configuration Register	
Table 4-77.	USB PCI Configuration Registers	
Table 4-78.	USB Controller Registers	
Table 5-1.	PCI Configuration Address Register (0CF8h)	
Table 5-2.	Function 0: PCI Header and Bridge Configuration Registers Summary	
Table 5-3.	Function 1: PCI Header Registers for SMI Status and ACPI Timer Summary	
Table 5-4.	F1BAR: SMI Status and ACPI Timer Registers Summary	
Table 5-5.	Function 2: PCI Header Registers for IDE Controller Summary	
Table 5-6.	F2BAR: IDE Controller Configuration Registers Summary	
Table 5-7.	Function 3: PCI Header Registers for XpressAUDIO [™] Subsystem Summary	
Table 5-8.	F3BAR: XpressAUDIO [™] Subsystem Configuration Registers Summary	
Table 5-9.	Function 4: PCI Header Registers for Video Controller Summary	
Table 5-10.	F4BAR: Video Controller Configuration Registers Summary	
Table 5-11.	USB PCI Configuration Registers Summary	
Table 5-12.	USB BAR: USB Controller Registers Summary	
Table 5-12.	ISA Legacy I/O Registers Summary	
Table 5-14.	V-ACPI I/O Register Space Summary	
Table 5-14.	F0 Index xxh: PCI Header and Bridge Configuration Registers	
Table 5-16.	F1 Index xxh: PCI Header Registers for SMI Status and ACPI Timer	
Table 5-17.	F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers	
Table 5-17.	F2 Index xxh: PCI Header Registers for IDE Configuration	
Table 5-18.	F2 Index xxII. FCI header Registers for IDE Configuration	
	1 20/11/1/ 0 01361 AAT. 10L 001119010101 1069131613	100

Table 5-20.	F3 Index xxh: PCI Header Registers for XpressAUDIO [™] Subsystem	
Table 5-21.	F3BAR+Memory Offset xxh: XpressAUDIO [™] Subsystem Configuration Registers	. 189
Table 5-22.	F4 Index xxh: PCI Header Registers for Video Controller Configuration	
Table 5-23.	F4BAR+Memory Offset xxh: Video Controller Configuration Registers	. 199
Table 5-24.	F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")	. 204
Table 5-25.	USB Index xxh: USB PCI Configuration Registers	. 205
Table 5-26.	USB BAR+Memory Offset xxh: USB Controller Registers	. 208
Table 5-27.	DMA Channel Control Registers	.215
Table 5-28.	DMA Page Registers	.218
Table 5-29.	Programmable Interval Timer Registers	.219
Table 5-30.	Programmable Interrupt Controller Registers	. 220
Table 5-31.	Keyboard Controller Registers	
Table 5-32.	Real-Time Clock Registers	
Table 5-33.	Miscellaneous Registers	
Table 5-34.	V-ACPI Registers	
Table 5-35.	SETUP_IDX Values	
Table 5-36.	GPIO Mapping (0x10-0x17)	
Table 5-37.	IRQ Wakeup Status Mapping (0x30-0x3F)	
Table 5-38.	Commands (0x41-0x43, and 0x50)	
Table 5-39.	Signature/Length Block for 0x43	
Table 5-40.	I/O Block for 0x43	
Table 5-41.	Audio Soft SMI Emulation (0x60-0x63)	
Table 5-42.	Audio Power Control (0x64)	
Table 6-1.	Pins with Weak Internal Pull-Up	
Table 6-2.	Absolute Maximum Ratings	
Table 6-3.	Operating Conditions	
Table 6-4.	DC Characteristics	
Table 6-5.	System Conditions Used to Determine CS5530A's Current Used During the "On" State .	
Table 6-6.	DC Characteristics During Power States	
Table 6-7.	Drive Level and Measurement Points for AC Characteristics	
Table 6-8.	AC Characteristics	
Table 6-9.	Clock and Reset Specifications	
Table 6-10.	DCLK PLL Specifications	
Table 6-11.	CPU Interface Timing	
Table 6-12.	Audio Interface Timing	
Table 6-13.	USB Timing	
Table 6-14.	CRT Display Recommended Operating Conditions	
Table 6-15.	CRT Display Analog (DAC) Characteristics	
Table 6-16.	Display Miscellaneous Characteristics	
Table 6-17.	CRT, TFT/TV and MPEG Display Timing	
Table 7-1.	NAND Tree Test Selection	
Table 7-2.	NAND Tree Test Mode Pins	
Table 7-2. Table 7-3.	I/O Test Selection	
Table 7-3. Table 7-4.	I/O Test Sequence	
Table 7-4. Table A-1.	Revision History	
Table A-1.	Edits to Create Revision 1.1	
		. 201

AMD Revision 1.1

AMD Geode[™] CS5530A Companion Device

1.1 General Description

The AMD GeodeTM CS5530A companion device is designed to work in conjunction with an AMD GeodeTM GX1 processor. Together, the Geode GX1 processor and CS5530A companion device provide a system-level solution well suited for the high performance needs of a host of devices which include digital set-top boxes and thin client devices. Due to the low power consumption of the GX1 processor, this solution satisfies the needs of battery powered devices such as AMD's WebPAD system, and thermal design is eased allowing for fanless system design.

The CS5530A is a PCI-to-ISA bridge (South Bridge), ACPIcompliant chipset that provides AT/ISA style functionality. The device contains state-of-the-art power management that enables systems, especially battery powered systems, to significantly reduce power consumption. Audio is supported through PCI bus master engines that connect to an AC97 compatible codec. If industry standard audio is required, a combination of hardware and software called Virtual System Architecture[™] (VSA) technology is provided.

The Geode GX1 processor's graphics/video output is connected to the CS5530A. The CS5530A graphics/video support includes a PLL that generates the DOT clock for the GX1 processor (where the graphics controller is located), video acceleration hardware, gamma RAM plus three DACs for RGB output to CRT, and digital RGB that can be directly connected to TFT panels or NTSC/PAL encoders.

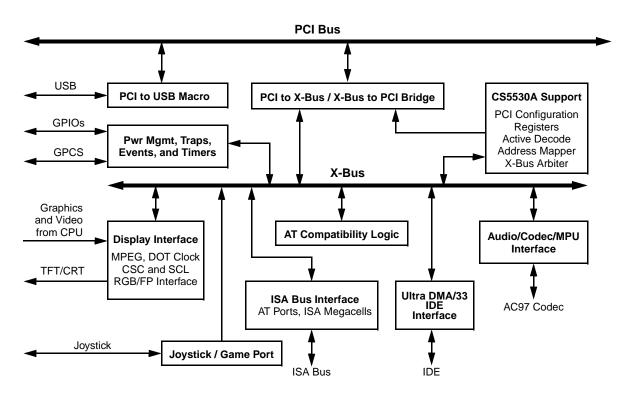


Figure 1-1. Block Diagram

AMD Geode™ CS5530A Companion Device Data Book

Two bus mastering IDE controllers are included for support of up to four ATA-compliant devices. A two-port Universal Serial Bus (USB) provides high speed, Plug & Play expansion for a variety of consumer peripheral devices such as a keyboard, mouse, printer, and digital camera. If additional functions are required like real-time clock, floppy disk, PS2 keyboard, and PS2 mouse, a SuperI/O device can be easily connected to the CS5530A.

1.2 Features

General Features

- Designed for use with AMD's Geode GX1 processor
- 352 PBGA (Plastic Ball Grid Array) package
- 3.3V or 5.0V PCI bus compatible
- 5.0V tolerant on all inputs
- 3.3V core

PCI-to-ISA Bridge

- PCI 2.1 compliant
- Supports PCI initiator-to-ISA and ISA master-to-PCI cycle translations
- PCI master for audio I/O and IDE controllers
- Subtractive agent for unclaimed transactions
- PCI-to-ISA interrupt mapper/translator

AT Compatibility

- Two 8259A-equivalent interrupt controllers
- 8254-equivalent timer
- Two 8237-equivalent DMA controllers
- Boot ROM and keyboard chip select
- Extended ROM to 16 MB

Bus Mastering IDE Controllers

- Two controllers with support for up to four IDE devices
- Independent timing for master and slave devices for both channels
- PCI bus master burst reads and writes
- Ultra DMA/33 (ATA-4) support
- Multiword DMA support
- Programmed I/O (PIO) Modes 0-4 support

Power Management

- Intelligent system controller supports multiple power management standards:
 - Full ACPI and Legacy (APM) support
 - Directly manages all GX1 processor's power states (including automatic Suspend modulation for optimal performance/thermal balancing)
- I/O traps and idle timers for peripheral power management
- Up to eight GPIOs for system control:
 All eight are configurable as external wakeup events
- Dedicated inputs for keyboard and mouse wakeup events

XpressAUDIO[™] Subsystem

- Provides "back-end" hardware support via six buffered PCI bus masters
- AC97 codec interface:
 - Specification Revision 1.3, 2.0, and 2.1 compliant interface. Note that the codec must have SRC (sample rate conversion) support

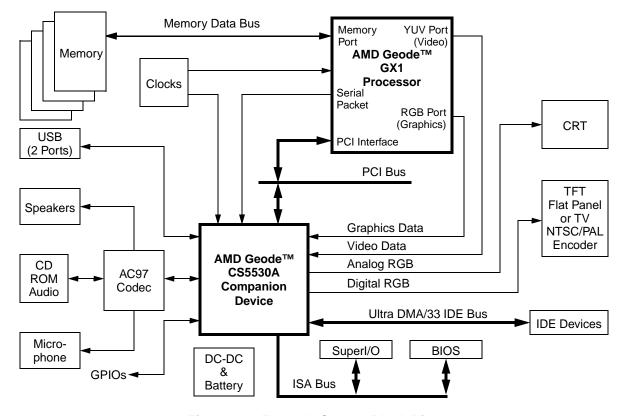
Display Subsystem Extensions

- Complements the GX1 processor's graphics and video capabilities:
 - Three independent line buffers for accelerating video data streams
 - Handles asynchronous video and graphics data streams concurrently from the processor
 - YUV to RGB conversion hardware
 - Arbitrary X & Y interpolative scaling
 - Color keying for graphics/video overlay
- VDACs / Display interface:
 - Three integrated DACs
 - Gamma RAM:
 - Provides gamma correction for graphics data streams
 - Provides brightness/contrast correction for video data streams
 - Integrated DOT clock generator
 - Digital RGB interface drives TFT panels or standard NTSC/PAL encoders
 - Up to 1280x1024 @ 85 Hz

Universal Serial Bus

- Two independent USB interfaces:
 - Open Host Controller Interface (OpenHCI) specification compliant
 - Second generation proven core design

Architecture Overview


The Geode CS5530A can be described as providing the functional blocks as shown in Figure 1-1 on page 11.

- · Processor support
- PCI bus master/slave interface
- ISA bus interface
- AT compatibility logic
- IDE controllers
- Power management:
- GPIO interfaces
- Traps, Events, Timers
- Joystick/Game port interface
- Virtual audio support hardware
- Video display, which includes MPEG accelerator, RAMDAC, and video ports
- USB controller

2.1 Processor Support

The traditional south bridge functionality included in the CS5530A companion device has been designed to support the GX1processor. When combined with a GX1 processor, the CS5530A provides a bridge which supports a standard ISA bus and system ROM. As part of the video subsystem, the CS5530A provides MPEG video acceleration and a digital RGB interface, to allow direct connection to TFT LCD panels. This chip also integrates a gamma RAM and three DACs, allowing for direct connection of a CRT monitor. Figure 2-1 shows a typical system block diagram.

For detailed information regarding processor signal connections refer to Section 4.1 "Processor Interface" on page 48.

Figure 2-1. Example System Block Diagram

AMD Geode[™] CS5530A Companion Device Data Book

2.2 PCI Bus Interface

The CS5530A provides a PCI bus interface that is both a slave for PCI cycles initiated by the CPU or other PCI master devices, and a non-preemptable master for DMA transfer cycles. The chip also is a standard PCI master for the IDE controllers and audio I/O logic. The CS5530A supports positive decode for configurable memory and I/O regions and implements a subtractive decode option for unclaimed PCI accesses. The CS5530A also generates address and data parity and performs parity checking. The CS5530A does not include the PCI bus arbiter, which is located in the processor.

Configuration registers are accessed through the PCI interface using the PCI Bus Type 1 configuration mechanism as described in the PCI 2.1 Specification.

2.3 ISA Bus Interface

The CS5530A provides an ISA bus interface for unclaimed memory and I/O cycles on PCI. The CS5530A is the default subtractive decoding agent and forwards all unclaimed memory and I/O cycles to the ISA interface; however, the CS5530A may be configured to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled).

The CS5530A supports two modes on the ISA interface. The default mode, Limited ISA Mode, supports the full memory and I/O address range without ISA mastering. The address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPIO[7:4].

The second mode, ISA Master Mode, supports ISA bus masters and requires no external circuitry. When the CS5530A is placed in ISA Master Mode, a large number of pins are redefined. In this mode, the CS5530A cannot support TFT flat panels or TV controllers since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

For further information regarding mode selection and operational details refer to Section 4.5.2.2 "Limited ISA and ISA Master Modes" on page 92.

2.4 AT Compatibility Logic

The CS5530A integrates:

- Two 8237-equivalent DMA controllers with full 32-bit addressing
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts
- An 8254-equivalent timer for refresh, timer, and speaker logic
- NMI control and generation for PCI system errors and all parity errors
- Support for standard AT keyboard controllers
- Positive decode for the AT I/O register space
- Reset control

2.4.1 DMA Controller

The CS5530A supports the industry standard DMA architecture using two 8237-compatible DMA controllers in cascaded configuration. CS5530A-supported DMA functions include:

- Standard seven-channel DMA support
- 32-bit address range support via high page registers
- IOCHRDY extended cycles for compatible timing transfers
- ISA bus master device support using cascade mode

2.4.2 Programmable Interval Timer

The CS5530A contains an 8254-equivalent programmable interval timer. This device has three timers, each with an input frequency of 1.193 MHz.

2.4.3 Programmable Interrupt Controller

The CS5530A contains two 8259-equivalent programmable interrupt controllers (PICs), with eight interrupt request lines each, for a total of 16 interrupts. The two controllers are cascaded internally, and two of the interrupt request inputs are connected to the internal circuitry. This allows a total of 13 externally available interrupt requests.

Each CS5530A IRQ signal can be individually selected as edge- or level-sensitive. The PCI interrupt signals are routed internally to the PICs IRQs.

2.5 IDE Controllers

The CS5530A integrates two PCI bus mastering, ATA-4 compatible IDE controllers. These controllers support Ultra DMA/33 (enabled in Microsoft[®] Windows 95 and Windows NT[®] by using a driver provided by AMD), Multiword DMA, and Programmed I/O (PIO) modes. Two devices are supported on each controller. The data-transfer speed for each device on each controller can be independently programmed. This allows high-speed IDE peripherals to coexist on the same channel as lower speed devices. Faster devices must be ATA-4 compatible.

2.6 Power Management

The CS5530A integrates advanced power management features including:

- Idle timers for common system peripherals
- Address trap registers for programmable address ranges for I/O or memory accesses
- Up to eight programmable GPIOs
- Clock throttling with automatic speedup for the CPU clock
- Software CPU stop clock
- Save-to-Disk/RAM with peripheral shadow registers
- Dedicated serial bus to/from the GX1 processor providing CPU power management status

The CS5530A is an ACPI (Advanced Control and Power Interface) compliant chipset. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the ACPI specification. The "Fixed Feature" and "General Purpose" registers are virtual. They are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI compliant operating system, the SMI-base virtualization is transparent; however, to eliminate unnecessary latencies, the ACPI timer exists in physical hardware.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

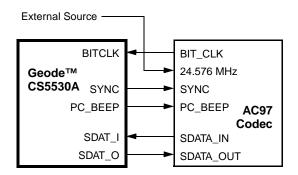
- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs.
- General Purpose Events Fully programmable GPE0
 Event Block registers.

2.6.1 GPIO Interface

Eight GPIO pins are provided for general usage in the system. GPIO[3:0] are dedicated pins and can be configured as inputs or outputs. GPIO[7:4] can be configured as the upper addresses of the ISA bus, SA[23:20]. All GPIOs can also be configured to generate an SMI on input edge transitions.

2.7 XpressAUDIO[™] Subsystem

XpressAUDIO[™] architecture in the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. XpressAUDIO architecture uses VSA technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.


The hardware portion of the XpressAUDIO subsystem can broadly be divided into two categories. Hardware for:

- Transporting streaming audio data to/from the system memory and an AC97 codec.
- VSA technology support.

2.7.1 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec which supports an independent input and output sample rate conversion interface can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation. Figure 2-2 shows the codec and CS5530A signal connections. For specifics on the serial interface, refer to the appropriate codec manufacturer's data sheet.

Low latency audio I/O is accomplished by a buffered PCI bus mastering controller.

2.7.2 VSA Technology Support Hardware

The CS5530A companion device incorporates the required hardware in order to support VSA technology for the capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

AMD Geode™ CS5530A Companion Device Data Book

2.8 Display Subsystem Extensions

The CS5530A incorporates extensions to the GX1 processor's display subsystem. These include:

- Video Accelerator
 - Buffers and formats input YUV video data from the processor
 - 8-bit interface to the processor
 - X & Y scaler with bilinear filter
 - Color space converter (YUV to RGB)
- Video Overlay Logic
 - Color key
 - Data switch for graphics and video data

- Gamma RAM
 - Brightness and contrast control
- Display Interface
 - Integrated RGB Video DACs
 - VESA DDC2B/DPMS support
 - Flat panel interface

Figure 2-3 shows the data path of the display subsystem extensions.

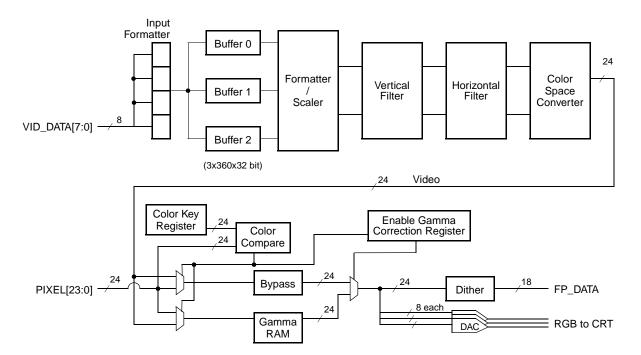


Figure 2-3. 8-Bit Display Subsystem Extensions

2.9 Clock Generation

In a CS5530A/GX1 processor based system, the CS5530A generates only the video DOT clock (DCLK) for the CPU and the ISA clock. All other clocks are generated by an external clock chip.

The ISACLK is created by dividing the PCICLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0].

DCLK is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DCLK. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

Figure 2-4 shows a block diagram for clock generation within the CS5530A.

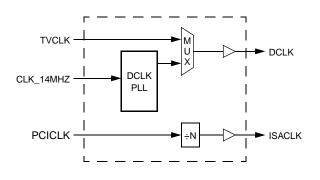


Figure 2-4. CS5530A Clock Generation

2.10 Universal Serial Bus

The CS5530A provides two complete, independent USB ports. Each port has a Data "--" and a Data "+" pin.

The USB controller is a compliant Open Host Controller Interface (OpenHCI). The OpenHCI specification provides a register-level description for a host controller, as well as a common industry hardware/software interface and drivers (see OpenHCI Specification, Revision 1.0, for description).

AMD Revision 1.1

Signal Definitions

This section defines the signals and describes the external interface of the Geode CS5530A. Figure 3-1 shows the pins organized by their functional groupings (internal test and electrical pins are not shown).

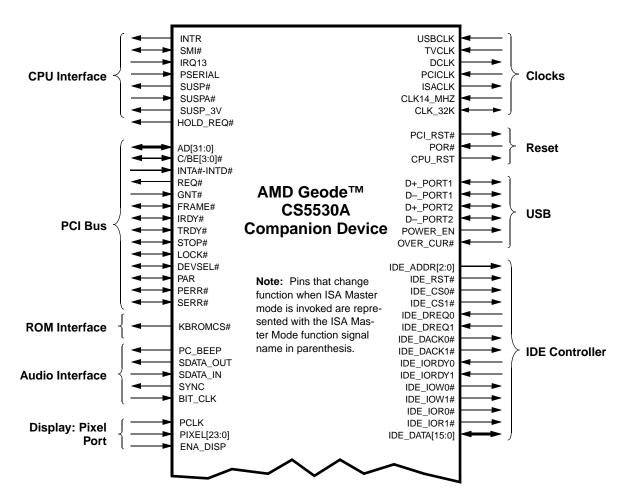


Figure 3-1. CS5530A Signal Groups

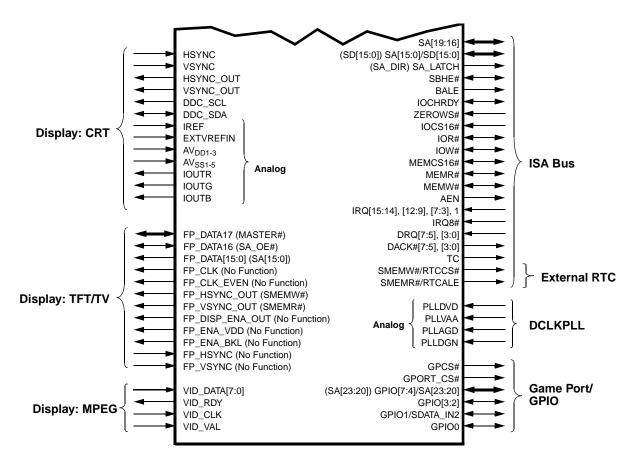


Figure 3-1. CS5530A Signal Groups (Continued)

3.1 Pin Assignments

The tables in this section use several common abbreviations. Table 3-1 lists the mnemonics and their meanings.

Figure 3-2 shows the pin assignment for the CS5530A with Tables 3-2 and 3-3 listing the pin assignments sorted by pin number and alphabetically by signal name, respectively.

In Section 3.2 "Signal Descriptions" on page 29 a description of each signal within its associated functional group is provided.

In the signal definitions, references to F0-F4, F1BAR, F2BAR, F3BAR, F4BAR, and PCIUSB are made. These terms relate to designated register spaces. Refer to Table 5-1 "PCI Configuration Address Register (0CF8h)" on page 144 for details regarding these register spaces and their access mechanisms.

Table 3-1. Pin Type Definitions

Mnemonic	Definition
1	Input pin ¹
I/O	Bidirectional pin ¹ , ²
0	Output pin ¹ , ²
OD	Open-drain output structure that allows multiple devices to share the pin in a wired-OR configura- tion
PU	Pull-up resistor
SMT	Schmitt Trigger
VDD (PWR)	Power pin
VSS (GND)	Ground pin
#	The "#" symbol at the end of a signal name indi- cates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name, the sig- nal is asserted when at a high voltage level.

1. All buffers are 5 volt tolerant.

 All digital bidirectional and output pins can be TRI-STATE signals unless a weak pull-up is enabled.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
А	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	А
в		PIX1	PIX2	PIX7	PIX10		PIX12	PIX16	PIX19	DCLK	0	VDAT5		INTA#	AD0	AD7	AD9	AD12	AD10	AD15		SERR#	0	C/BE2#	AD17	AD16	в
с		P TVCLK	PIX4					PIX15	PIX18		PIX22		VDAT2	INTD#	AD3	AD5	AD6	C/BE0#	AD11	AD14	C/BE1#	PERR#	TRDY#	IRDY#	AD18	AD19	с
	FPVSY	FPHSY	V _{DD}	PIX3	PIX11	HSYN	PIX14	PIX17	PIX21	PIX23	VDAT3	VDAT7	VDAT1	PRST#	INTC#	AD2	AD4	V _{SS}	V _{DD}	AD13	V _{SS}	LOCK#		V_{DD}	AD21	AD22	
D	O FPD11	-	O TEST	V _{SS}	O PIX6	O PIX9	O PIX13	V _{SS}	O PIX20	● V _{DD}	O VDAT4	V _{SS}	V _{SS}	O AD1	O INTB#	V _{SS}	● V _{DD}	O AD8	V _{SS}	V _{SS}	V _{DD}	V _{SS}	V _{SS}	O GNT#	O AD26	O C/BE3#	D
E	O FPHSYC	O FPD10	O FPVSY0	● V _{SS}																			• V _{SS}	O AD20	O AD23	O STOP#	E
F	O FPD9	O	O NO FPD1	\bigcirc		•																	• V _{SS}	● V _{DD}	O AD24	O AD27	F
G	0	0	0	Ö																			•	0	\circ	0	G
н	FPD8	FPD5	0	FPD6		Ind	ex Mai	ĸ															V _{SS}	AD25	AD28	AD29	н
J	FPD4	FPD15	FPD16	V _{SS}																			V _{SS}		AD31	HDRQ#	J
К	FPD3	FPD1	FPD2	FPENBK	L																		V _{SS}	AD30	REQ#		к
ĸ	FPD14	FPD13	B FPD0	V _{SS}																			V _{SS}	POR#	CPURST	SUSP#	
L	O FPD12	O FPEVDI	O D FPCKE	v v _{DD}									Ç	7									● V _{DD}	O SUSP3V) PSERL	L
Μ	O	O	E V _{SS}	O DDCSD/	4									n										• V _{SS}	O PLVAA	O NC	М
Ν	0	0	ě	\bigcirc									C	Л									0	0	0	0	Ν
Ρ		0	Õ										Ç	ת									PLLTEST			PLDGN	Р
R	AV _{SS4}	AV _{SS5}		IOUTG									C	2									V _{ss}	14MHZ	SMI#		R
	IOUTB	AV _{SS1}	IREF	AV _{SS2}									S											DIOW0#			
т	NC	XVREF	AV _{DD2}	AV _{SS3}									J										V_{DD}	DDCK1#	DIOW1#	# DDCK0#	Т
U	AV _{DD1}	V _{DD} _US	O B SYNC	O SDATI																			O IDED7	O IDED6		O IDEA1	U
V) SDATO	0			J																		• v _{ss}	O IDED8	O IDED10	O DCS0#	V
w	0	0	0	٠																			•	0	0	0	w
Y			OVRCUF	₩ V _{SS}																			V _{SS}	IDEA2	DRST#	IDED5	Y
AA	D-PT1	D+PT1		V _{SS}				(Top	View	: Ma	rkin	a ori	enta	tion	is as	s sha	own)					V _{DD}	IDED11	IDED9	DCS1#	AA
	D-PT2	D+PT2	NC	AV _{SS_} US	в			(3 511	20									V _{SS}	IDED1	IDED12	IDED4	
AB		O NC		AV _{DD_} US	в	-														~	-		O IDED15	-		O IDED3	AB
AC	O NC	O NC	O NC	• V _{SS}	• V _{SS}	⊕ SA3	O DCK7#	O DCK1#	• V _{SS}	● V _{DD}	O IOW#	• V _{SS}	• V _{SS}	O IRQ3	O MCS16#	● V _{SS}	O IRQ14	• V _{SS}	● V _{DD}		GPI05	O GPIO0	• V _{SS}	O DREQ1	O IDED14	O IDED0	AC
AD	O NC	O NC	O NC		Ð			O DCK0#	G SA2) SA19	O SA16	O DRQ1	O DRQ3		SLTCH	● V _{DD}	O IRQ15	O DRQ5	⊕ SA9	• V _{SS}	O GPTCS	G # GPIO4	O V _{DD}	G SA14			AD
AE	0	0	0	0	\bigcirc	Ð	0	0	⊕	0	0	0	0	0	0	\bigcirc	0	\circ	\circ	Õ	Ð	Ð	Ð	\oplus	Ð	0	AE
AF	NC		з2К ⊕		[♯] IRQ9	SA1	DCK5#	AEN	SA0	DRQ2	SA18	IOR#	IRQ5	IRQ8#	IRQ4	IRQ10	SBHE#		MEMR#	0	SA12	SA13	GPIO6	GPIO1	0	IORDY1	AF
		NC 2	SMEMW		SA6	SA4	DCK3#			0WS#	CHRDY	SA17	IRQ1	IRQ6	TC	CS16#	IRQ12	IRQ11		MEMW#		DRQ7	GPI07			GPCS#	J
	-		3 nal n	4 2mes	5 : hav	6 9 he	7 2n 2h	8 hrev	9 hatei	10 in th	11 is fiai	12 12	13 Iue to	14 503	15	16 nstra	17 ainte	18	19	20	21	22	23	24	25	26	
	 Note: Signal names have been abbreviated in this figure due to space constraints. ● = GND terminal ⊕ = Multiplexed signal 																										

		able 3-2.
	Signal Na	me
Pin No.	Limited ISA Mode	ISA Master Mode
A1	PIXEL0	
A2	PIXEL1	
A3	PIXEL2	
A4	PIXEL7	
A5	PIXEL10	
A6	VID_CLK	
A7	PIXEL12	
A8	PIXEL16	
A9	PIXEL19	
A10	DCLK	
A11	VID_DATA0	
A12	VID_DATA5	
A13	PCLK	
A14	INTA#	
A15	AD0	
A16	AD7	
A17	AD9	
A18	AD12	
A19	AD10	
A20	AD15	
A21	PAR	
A21	SERR#	
A22	DEVSEL#	
A23	C/BE2#	
A24	AD17	
A25	AD16	
B1	ENA_DISP	
B2	TVCLK	
B3	PIXEL4	
B4	PIXEL5	
B5	VSYNC	
B6	PIXEL8	
B7	VID_VAL	
B8	PIXEL15	
B9	PIXEL18	
B10	VID_RDY	
B11	PIXEL22	
B12	VID_DATA6	
B13	VID_DATA2	
B14	INTD#	
B15	AD3	
B16	AD5	
B17	AD6	
B18	C/BE0#	
B19	AD11	
B20	AD14	
B21	C/BE1#	
B22	PERR#	
B23	TRDY#	
B24	IRDY#	
B25	AD18	

	Signal Name						
Pin No.	Limited ISA Mode	ISA Master Mode					
B26	AD19						
C1	FP_VSYNC	No Function					
C2	FP_HSYNC	No Function					
C3	V _{DD}						
C4	PIXEL3						
C5	PIXEL11						
C6	HSYNC						
C7	PIXEL14						
C8	PIXEL17						
C9	PIXEL21						
C10	PIXEL23						
C11	VID_DATA3						
C12	VID_DATA7						
C13	VID_DATA1						
C14	PCI_RST#						
C15	INTC#						
C16	AD2						
C17	AD4						
C18	V _{SS}						
C19	V _{DD}						
C20	AD13						
C21	V _{SS}						
C22	LOCK#						
C23	FRAME#						
C24	V _{DD}						
C25	AD21						
C26	AD22						
D1	FP_DATA11	SA11					
D2	NC	•					
D3	TEST						
D4	V _{SS}						
D5	PIXEL6						
D6	PIXEL9						
D7	PIXEL13						
D8	V _{SS}						
D9	PIXEL20						
D10	V _{DD}						
D11	VID_DATA4						
D12	V _{SS}						
D13	V _{SS}						
D14	AD1						
D15	INTB#						
D16	V _{SS}						
D17	V _{DD}						
D18	AD8						
D19	V _{SS}						
D20	V _{SS}						
D21	V _{DD}						
D22	V _{SS}						
522							
D22	V _{SS}						

	Signal Name				
Pin No.	Limited ISA Mode	ISA Master Mode			
D25	AD26				
D26	C/BE3#				
E1	FP_HSYNC_OUT	SMEMW#			
E2	FP_DATA10	SA10			
E3	FP_VSYNC_OUT	SMEMR#			
E4	V _{SS}	•			
E23	V _{SS}				
E24	AD20				
E25	AD23				
E26	STOP#				
F1	FP_DATA9	SA9			
F2	FP_DISP_ENA_OUT	No Function			
F3	FP_DATA17	MASTER#			
F4	V _{DD}				
F23	V _{SS}				
F24	V _{DD}				
F25	AD24				
F26	AD27				
G1	FP_DATA8	SA8			
G2	FP DATA5	SA5			
G3	FP DATA7	SA7			
G4	FP DATA6	SA6			
G23	V _{SS}	0,10			
G24	AD25				
G25	AD28				
G26	AD29				
H1	FP DATA4	SA4			
H2	FP DATA15	SA15			
H3	FP_DATA16	SA OE#			
H4	V _{ss}	5A_0L#			
H23	V _{SS}				
H24					
H25	V _{DD} AD31				
 J1	HOLD_REQ# FP_DATA3	SA3			
J1 J2	FP_DATA3 FP_DATA1	SA3 SA1			
	FP_DATA1 FP_DATA2				
J3	FP_DATA2 FP_ENA_BKL	SA2			
J4		No Function			
J23	V _{SS}				
J24	AD30				
J25	REQ#				
J26	PCICLK	0.4.4			
K1	FP_DATA14	SA14			
K2	FP_DATA13	SA13			
K3	FP_DATA0	SA0			
K4	V _{SS}				
K23	V _{SS}				
K24	POR#				
K25	CPU_RST				
K26	SUSP#				
L1	FP_DATA12	SA12			

Table 3-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
L2	FP_ENA_VDD	No Function		
L3	FP_CLK_EVEN	No Function		
L4	V _{DD}			
L23	V _{DD}			
L24	SUSP_3V			
L25	SUSPA#			
L26	PSERIAL			
M1	FP_CLK	No Function		
M2	DDC_SCL			
М3	V _{SS}			
M4	DDC_SDA			
M23	PLLDVD			
M24	V _{SS}			
M25	PLLVAA			
M26	NC			
N1	HSYNC_OUT			
N2	VSYNC_OUT			
N3	V _{SS}			
N4	AV _{DD3} (DAC)			
N23	PLLTEST			
N24	NC			
N25	PLLAGD			
N26	PLLDGN			
P1	AV _{SS4} (ICAP)			
P2	AV _{SS5} (DAC)			
P3	IOUTR			
P4	IOUTG			
P23				
	V _{SS}			
P24	CLK_14MHZ			
P25	SMI#			
P26	INTR			
R1	IOUTB			
R2	AV _{SS1} (DAC)			
	IREF			
R4	002 ()			
R23				
R24	IDE_IOW0#			
R25	IDE_IOR1#			
R26	IDE_IOR0#			
T1	NC			
T2	EXTVREFIN			
Т3	AV _{DD2} (VREF)			
T4	AV _{SS3} (VREF)			
T23	V _{DD}			
T24	IDE_DACK1#			
T25	IDE_IOW1#			
T26	IDE_DACK0#			
U1	AV _{DD1} (DAC)			
U2	V _{DD} _USB			
U3	SYNC			
U4	SDATA_IN			

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
U23	IDE_DATA7			
U24	IDE_DATA6			
U25	IDE_ADDR0			
U26	IDE_ADDR1			
V1	SDATA_OUT			
V2	BIT_CLK			
V3	PC_BEEP			
V4	POWER_EN			
V23	V _{SS}			
V24	IDE_DATA8			
V25	IDE_DATA10			
V26	IDE_CS0#			
W1	USBCLK			
W2	NC			
W3	OVER CUR#			
W4	V _{SS}			
W23	V _{SS}			
W24	IDE_ADDR2			
W24	IDE_RST#			
W25	IDE_DATA5			
Y1	DPORT1			
Y2	D+_PORT1			
Y3	NC			
Y4	V _{SS}			
Y23	V _{DD}			
Y24	IDE_DATA11			
Y25	IDE_DATA9			
Y26	IDE_CS1#			
AA1	DPORT2			
AA2	D+_PORT2			
AA3	NC			
AA4	AV _{SS} USB			
AA23	V _{SS}			
AA24	IDE_DATA1			
AA25	IDE_DATA12			
AA26	IDE_DATA4			
AB1	NC			
AB2	NC			
AB3	NC			
AB4	AV _{DD} USB			
AB23	IDE_DATA15			
AB24	IDE_DATA2			
AB25	IDE_DATA13			
AB26	IDE_DATA3			
AC1	NC			
AC2	NC			
AC3	NC			
AC4	V _{SS}			
AC5	V _{SS}			
AC6	SA3/SD3	SD3		

	Signal Name				
Pin No.	Limited ISA Master ISA Mode Mode				
AC8	DACK1#				
AC9	V _{SS}				
AC10	V _{DD}				
AC11	IOW#				
AC12	V _{SS}				
AC13	V _{SS}				
AC14	IRQ3				
AC15	MEMCS16#				
AC16	V _{SS}				
AC17	IRQ14				
AC18	V _{SS}				
AC19	V _{DD}				
AC20	SA10/SD10	SD10			
AC21	GPIO5/SA21	SA21			
AC22	GPIO0	1			
AC23	V _{SS}				
AC24	IDE DREQ1				
AC25	IDE_DATA14				
AC26	IDE_DATA0				
AD1	NC				
AD2	NC				
AD2	NC				
AD3 AD4	SMEMR#/RTCALE				
AD4 AD5	SA5/SD5	SD5			
AD5 AD6	ISACLK	303			
AD0 AD7	DACK6#				
AD7	DACK0#				
AD0 AD9	SA2/SD2	SD2			
AD3	SA19	302			
AD10	SA16				
AD112	DRQ1				
AD13 AD14	DRQ3 IRQ7				
AD15	SA_LATCH	SA_DIR			
AD16	V _{DD} IRQ15				
AD17					
AD18	DRQ5	SD9			
AD19	SA9/SD9	303			
AD20	V _{SS}				
AD21	GPORT_CS#	SA20			
AD22	GPIO4/SA20	3A2U			
AD23		SD14			
AD24	SA14/SD14	SD14			
AD25	IDE_IORDY0				
AD26	IDE_DREQ0				
AE1	NC				
AE2	NC				
AE3	CLK_32K				
AE4	KBROMCS#				
AE5	IRQ9	0.04			
AE6	SA1/SD1	SD1			

AMD Geode[™] CS5530A Companion Device Data Book

_

Table 3-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AE7	DACK5#			
AE8	AEN			
AE9	SA0/SD0	SD0		
AE10	DRQ2			
AE11	SA18			
AE12	IOR#			
AE13	IRQ5			
AE14	IRQ8#			
AE15	IRQ4			
AE16	IRQ10			
AE17	SBHE#			
AE18	DRQ0			
AE19	MEMR#			
AE20	DRQ6			
AE21	SA12/SD12	SD12		
AE22	SA13/SD13	SD13		

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AE23	GPIO6/SA22	SD22		
AE24	GPIO1/SDATA_IN2			
AE25	SA15/SD15	SD15		
AE26	IDE_IORDY1			
AF1	NC			
AF2	NC			
AF3	SMEMW#/RTCCS#			
AF4	SA7/SD7	SD7		
AF5	SA6/SD6	SD6		
AF6	SA4/SD4	SD4		
AF7	DACK3#			
AF8	DACK2#			
AF9	BALE			
AF10	ZEROWS#			
AF11	IOCHRDY			
AF12	SA17			

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AF13	IRQ1			
AF14	IRQ6			
AF15	TC			
AF16	IOCS16#			
AF17	IRQ12			
AF18	IRQ11			
AF19	SA8/SD8	SD8		
AF20	MEMW#			
AF21	SA11/SD11	SD11		
AF22	DRQ7			
AF23	GPIO7/SA23	SA23		
AF24	GPIO3			
AF25	GPIO2			
AF26	GPCS#			

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name

Signal Name					
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.	Lin
AD0		I/O	PCI	A15	DACK0#
AD1		I/O	PCI	D14	DACK1
AD2		I/O	PCI	C16	DACK2
AD3		I/O	PCI	B15	DACK3
AD4		I/O	PCI	C17	DACK5
AD5		I/O	PCI	B16	DACK6
AD6		I/O	PCI	B17	DACK7
AD7		I/O	PCI	A16	DCLK
AD8		I/O	PCI	D18	DDC_S
AD9		I/O	PCI	A17	DDC_S
AD10		I/O	PCI	A19	DEVSE
AD11		I/O	PCI	B19	DPOI
AD12		I/O	PCI	A18	D+_PO
AD13		I/O	PCI	C20	DPOI
AD14		I/O	PCI	B20	D+_PO
AD15		I/O	PCI	A20	DRQ0
AD16		I/O	PCI	A26	DRQ1
AD17		I/O	PCI	A25	
AD18		I/O	PCI	B25	DRQ2
AD19		I/O	PCI	B26	DRQ3
AD20		I/O	PCI	E24	DDOS
AD21		I/O	PCI	C25	DRQ5
AD22		I/O	PCI	C26	DRQ6
AD23		I/O	PCI	E25	DRQ7
AD24		I/O	PCI	F25	ENA_D
AD25		I/O	PCI	G24	EXTVR
AD26		I/O	PCI	D25	FP_CL
AD27		I/O	PCI	F26	FP_CL
AD28		I/O	PCI	G25	FP_DAT
AD29		I/O	PCI	G26	 FP_DAT
AD30		I/O	PCI	J24	 FP_DAT
AD31		I/O	PCI	H25	FP DAT
AEN		0	8 mA	AE8	 FP_DAT
AV _{DD1} (DAC)		I, Analog		U1	 FP_DAT
AV _{DD2} (VREF)		I, Analog		T3	 FP_DAT
AV _{DD3} (DAC)		I, Analog		N4	FP_DAT
AV _{DD} USB		PWR		AB4	 FP_DAT
AV _{SS1} (DAC)		I, Analog		R2	 FP_DAT
AV _{SS2} (ICAP)		I, Analog		R4	FP_DAT
AV _{SS3} (VREF)		I, Analog		T4	FP_DAT
AV _{SS4} (ICAP)		I, Analog		P1	 FP_DAT
AV _{SS5} (DAC)		I, Analog		P2	FP_DAT
AV _{SS} _USB		GND		AA4	FP_DAT
BALE		0	8 mA	AF9	FP_DAT
BIT_CLK		С 	8 mA	V2	FP_DAT
C/BE0#		I/O	PCI	B18	FP_DAT
C/BE1#		I/O	PCI	B10 B21	FP_DIS
C/BE2#		I/O	PCI	A24	FP_EN/
C/BE3#		1/O	PCI	D26	FP_EN/
		I/O	CLK	P24	FP_HS
CLK_14MHZ				1 27	111_113
CLK_32K		I/O	8 mA	AE3	FP_HS

Signal Na	me			
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
DACK0#		0	8 mA	AD8
DACK1#		0	8 mA	AC8
DACK2#		0	8 mA	AF8
DACK3#		0	8 mA	AF7
DACK5#		0	8 mA	AE7
DACK6#		0	8 mA	AD7
DACK7#		0	8 mA	AC7
DCLK		0	DOTCLK	A10
DDC_SCL		0	8 mA	M2
DDC_SDA		I/O	8 mA	M4
DEVSEL#		I/O	PCI	A23
DPORT1		I/O	USB	Y1
D+_PORT1		I/O	USB	Y2
DPORT2		I/O	USB	AA1
D+_PORT2		I/O	USB	AA2
DRQ0		I	8 mA	AE18
DRQ1		I	8 mA	AD1 2
DRQ2		I	8 mA	AE10
DRQ3		I	8 mA	AD1 3
DRQ5		I	8 mA	AD1 8
DRQ6		I	8 mA	AE20
DRQ7		I	8 mA	AF22
ENA_DISP		I	8 mA	B1
EXTVREFIN		I, Analog		T2
FP_CLK	No Function	0	FP_CLK	M1
FP_CLK_EVEN	No Function	0	8 mA	L3
FP_DATA0	SA0	I/O	8 mA	K3
FP_DATA1	SA1	I/O	8 mA	J2
FP_DATA2	SA2	I/O	8 mA	J3
FP_DATA3	SA3	I/O	8 mA	J1
FP_DATA4	SA4	I/O	8 mA	H1
FP_DATA5	SA5	I/O	8 mA	G2
FP_DATA6	SA6	I/O	8 mA	G4
FP_DATA7	SA7	I/O	8 mA	G3
FP_DATA8	SA8	I/O	8 mA	G1
FP_DATA9	SA9	I/O	8 mA	F1
FP_DATA10	SA10	I/O	8 mA	E2
FP_DATA11	SA11	I/O	8 mA	D1
FP_DATA12	SA12	I/O	8 mA	L1
FP_DATA13	SA13	I/O	8 mA	K2
FP_DATA14	SA14	I/O	8 mA	K1
FP_DATA15	SA15	I/O	8 mA	H2
FP_DATA16	SA_OE#	0	8 mA	H3
FP_DATA17	MASTER#	I/O	8 mA	F3
FP_DISP_ENA_OUT	No Function	0	8 mA	F2
FP_ENA_BKL	No Function	0	8 mA	J4
FP_ENA_VDD	No Function	0	8 mA	L2
FP_HSYNC	No Function	I	8 mA	C2
FP_HSYNC_OUT	SMEMW#	0	8 mA	E1
FP_VSYNC	No Function	1	8 mA	C1

AMD Geode™ CS5530A Companion Device Data Book

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
FP_VSYNC_OUT	SMEMR#	0	8 mA	E3
FRAME#		I/O	PCI	C23
GNT#		I	PCI	D24
GPCS#		0	8 mA	AF26
GPIO0		I/O	8 mA	AC2 2
GPIO1/SDATA_IN2		I/O	8 mA	AE24
GPIO2		I/O	8 mA	AF25
GPIO3		I/O	8 mA	AF24
GPIO4/SA20	SA20	I/O	8 mA	AD2 2
GPIO5/SA21	SA21	I/O	8 mA	AC2 1
GPIO6/SA22	SA22	I/O	8 mA	AE23
GPIO7/SA23	SA23	I/O	8 mA	AF23
GPORT_CS#		0	8 mA	AD2 1
HOLD_REQ# (strap pi	n)	I/O	PCI	H26
HSYNC		I	8 mA	C6
HSYNC_OUT		0	8 mA	N1
IDE_ADDR0		0	IDE	U25
IDE_ADDR1		0	IDE	U26
IDE_ADDR2		0	IDE	W24
IDE_CS0#		0	IDE	V26
IDE_CS1#		0	IDE	Y26
IDE_DACK0#		0	IDE	T26
IDE_DACK1#		0	IDE	T24
IDE_DATA0		I/O	IDE	AC2 6
IDE_DATA1		I/O	IDE	AA24
IDE_DATA2		I/O	IDE	AB24
IDE_DATA3		I/O	IDE	AB26
IDE_DATA4		I/O	IDE	AA26
IDE_DATA5		I/O	IDE	W26
IDE_DATA6		I/O	IDE	U24
IDE_DATA7		I/O	IDE	U23
IDE_DATA8		I/O	IDE	V24
IDE_DATA9		I/O	IDE	Y25
IDE_DATA10		I/O	IDE	V25
IDE_DATA11		I/O	IDE	Y24
IDE_DATA12		I/O	IDE	AA25
IDE_DATA13		I/O	IDE	AB25
IDE_DATA14		I/O	IDE	AC2 5
IDE_DATA15		I/O	IDE	AB23
IDE_DREQ0		I	IDE	AD2 6
IDE_DREQ1		I	IDE	AC2 4
IDE_IOR0#		0	IDE	R26
IDE_IOR1#		0	IDE	R25
IDE_IORDY0		I	IDE	AD2 5
IDE_IORDY1		I	IDE	AE26

			Cintinueu	,
Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
IDE_IOW0#		0	IDE	R24
IDE_IOW1#		0	IDE	T25
IDE_RST#		0	IDE	W25
INTA#		I	PCI	A14
INTB#		I	PCI	D15
INTC#		I	PCI	C15
INTD#		I	PCI	B14
INTR (strap pin)		I/O	8 mA	P26
IOCHRDY		I/O, OD	8 mA	AF11
IOCS16#			8 mA	AF16
IOR#		I/O (PU)	8 mA	AE12
IOUTB		O, Ana- log		R1
IOUTR		O, Ana- log		P3
IOUTG		O, Ana- log		P4
IOW#		I/O (PU)	8 mA	AC1 1
IRDY#		I/O	PCI	B24
IREF		I, Analog		R3
IRQ1		I	8 mA	AF13
IRQ3		I	8 mA	AC1 4
IRQ4		I	8 mA	AE15
IRQ5		I	8 mA	AE13
IRQ6 IRQ7			8 mA 8 mA	AF14 AD1
IRQ8#		1	8 mA	4 AE14
IRQ9			8 mA	AE5
IRQ10			8 mA	AE16
IRQ11			8 mA	AF18
IRQ12		I	8 mA	AF17
IRQ13		I	8 mA	R23
IRQ14		I	8 mA	AC1 7
IRQ15		I	8 mA	AD1 7
ISACLK		0	8 mA	AD6
KBROMCS#		0	8 mA	AE4
LOCK#		I/O	PCI	C22
MEMCS16#		I/O, OD	8 mA	AC1 5
MEMR#		I/O (PU)	8 mA	AE19
MEMW#		I/O (PU)	8 mA	AF20
NC				AA3
NC				AB1
NC				AB2
NC				AB3
NC				AC1
NC				AC2
NC				AC3
NC				AD1

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name					:
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.	Limited Mod
IC				AD2	REQ#
NC				AD3	SA0/SD0
IC				AE1	SA1/SD1
IC				AE2	SA2/SD2
IC				AF1	SA3/SD3
IC				AF2	SA4/SD4
IC				D2	SA5/SD5
IC				M26	SA6/SD6
IC				N24	SA7/SD7
IC				T1	SA8/SD8
IC				W2	SA9/SD9
IC				Y3	
VER_CUR#		I	8 mA	W3	SA10/SD10
AR		I/O	PCI	A21	SA11/SD11
C_BEEP		0	8 mA	V3	SA11/SD11
		I (SMT)	CLK	J26	SA12/SD12
CI RST#		0	8 mA	C14	SA13/SD13
PCLK		1	8 mA	A13	SA14/SD14
PERR#		I/O	PCI	B22	SA15/SD15
IXEL0		1	8 mA	A1	SA16
PIXEL1		-	8 mA	A2	
PIXEL2		-	8 mA	A3	SA17
PIXEL3			8 mA	C4	SA18
PIXEL4		-	8 mA	B3	SA19
PIXEL5			8 mA	B4	
PIXEL6			8 mA	D5	SA_LATCH
PIXEL7		-	8 mA	A4	SBHE#
PIXEL8			8 mA	B6	SDATA_IN
PIXEL9			8 mA	D6	SDATA OU
IXEL10			8 mA	A5	SERR#
PIXEL11			8 mA	C5	SMEMR#/R
IXEL12			8 mA	A7	SMEMW#/R
IXEL12			8 mA	D7	SMI#
PIXEL14			8 mA	C7	STOP#
IXEL15			8 mA	B8	SUSP#
PIXEL16			8 mA	A8	SUSPA#
IXEL17			8 mA	C8	SUSP 3V
IXEL18			8 mA	B9	SYNC
IXEL19			8 mA	A9	тс
IXEL20		1	8 mA	D9	TEST
IXEL20		ı I	8 mA	C9	TRDY#
IXEL22		ı I	8 mA	B11	TVCLK
		1	8 mA		
PIXEL23				C10 N25	USBCLK
		I, Analog			V _{DD}
		I, Analog		N26	V _{DD}
		I, Analog		M23	V _{DD}
				N23	V _{DD}
		I, Analog		M25	
POR#			8 mA	K24	V _{DD}
POWER_EN		0	8 mA	V4	
SERIAL		I	8 mA	L26	V _{DD}

Alphabetically			ontinueu	,
Signal Nan	ne			
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
REQ#		0	PCI	J25
SA0/SD0	SD0	I/O (PU)	8 mA	AE9
SA1/SD1	SD1	I/O (PU)	8 mA	AE6
SA2/SD2	SD2	I/O (PU)	8 mA	AD9
SA3/SD3	SD3	I/O (PU)	8 mA	AC6
SA4/SD4	SD4	I/O (PU)	8 mA	AF6
SA5/SD5	SD5	I/O (PU)	8 mA	AD5
SA6/SD6	SD6	I/O (PU)	8 mA	AF5
SA7/SD7	SD7	I/O (PU)	8 mA	AF4
SA8/SD8	SD8	I/O (PU)	8 mA	AF19
SA9/SD9	SD9	I/O (PU)	8 mA	AD1 9
SA10/SD10	SD10	I/O (PU)	8 mA	AC2 0
SA11/SD11	SD11	I/O (PU)	8 mA	AF21
SA12/SD12	SD12	I/O (PU)	8 mA	AE21
SA13/SD13	SD13	I/O (PU)	8 mA	AE22
SA14/SD14	SD14	I/O (PU)	8 mA	AD2 4
SA15/SD15	SD15	I/O (PU)	8 mA	AE25
SA16		I/O (PU)	8 mA	AD1 1
SA17		I/O (PU)	8 mA	AF12
SA18		I/O (PU)	8 mA	AE11
SA19		I/O (PU)	8 mA	AD1 0
SA_LATCH	SA_DIR	0	8 mA	AD1 5
SBHE#		I/O (PU)	8 mA	AE17
SDATA_IN		I	8 mA	U4
SDATA_OUT		0	8 mA	V1
SERR#		I/O, OD	PCI	A22
SMEMR#/RTCALE		0	8 mA	AD4
SMEMW#/RTCCS#		0	8 mA	AF3
SMI#		I/O	8 mA	P25
STOP#		I/O	PCI	E26
SUSP#		0	8 mA	K26
SUSPA#		I	8 mA	L25
SUSP_3V		I/O	8 mA	L24
SYNC		0	8 mA	U3
ТС		0	8 mA	AF15
TEST		I	8 mA	D3
TRDY#		I/O	PCI	B23
TVCLK		I	8 mA	B2
USBCLK		I (SMT)	CLK	W1
V _{DD}		PWR		D10
V _{DD}		PWR		D17
V _{DD}		PWR		AC1 0
V _{DD}		PWR		AC1 9
V _{DD}		PWR		AD1 6
V _{DD}		PWR		AD2 3

AMD Geode™ CS5530A Companion Device Data Book

Table 3-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Na	ame		Joiginiton	
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
V _{DD}		PWR		C19
V _{DD}		PWR		C24
V _{DD}		PWR		C3
V _{DD}		PWR		D21
V _{DD}		PWR		F24
V _{DD}		PWR		F4
V _{DD}		PWR		H24
V _{DD}		PWR		L23
V _{DD}		PWR		L4
V _{DD}		PWR		T23
V _{DD}		PWR		Y23
V _{DD} _USB		PWR		U2
VID CLK		I	8 mA	A6
VID_DATA0		I	8 mA	A11
VID_DATA1		I	8 mA	C13
VID DATA2		-	8 mA	B13
VID DATA3		-	8 mA	C11
VID DATA4			8 mA	D11
VID DATA5			8 mA	A12
VID DATA6			8 mA	B12
VID_DATA7		1	8 mA	C12
VID_DAIA/		0	8 mA	B10
VID_KD1		1	8 mA	BTU B7
-		GND	0 IIIA 	D12
V _{SS}				D12
V _{SS}		GND		-
V _{SS}		GND		D16
V _{SS}		GND		AA23
V _{SS}		GND		AC1 2
V _{SS}		GND		AC1 3
V _{SS}		GND		AC1 6
V _{SS}		GND		AC1 8
V _{SS}		GND		AC2 3
V _{SS}		GND		AC4
V _{SS}		GND		AC5
V _{SS}		GND		AC9
V _{SS}		GND		AD2 0
V _{SS}		GND		C18
V _{SS}		GND		C21
V _{SS}		GND		D19
V _{SS}		GND		D20
V _{SS}		GND		D22
V _{SS}		GND		D23
V _{SS}		GND		D4
V _{SS}		GND		D8
V _{SS}		GND		E23
V _{SS}		GND		E4
		GND		F23
V _{SS}		GND		F23

Signal N	ame			
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
V _{SS}	·	GND		G23
V _{SS}		GND		H23
V _{SS}		GND		H4
V _{SS}		GND		J23
V _{SS}		GND		K23
V _{SS}		GND		K4
V _{SS}		GND		M24
V _{SS}		GND		М3
V _{SS}		GND		N3
V _{SS}		GND		P23
V _{SS}		GND		V23
V _{SS}		GND		W23
V _{SS}		GND		W4
V _{SS}		GND		Y4
VSYNC		I	8 mA	B5
VSYNC_OUT		0	8 mA	N2
ZEROWS#		I	8 mA	AF1

1. See Table 3-1 "Pin Type Definitions" on page 20 for pin type definitions.

2. See Table 6-4 "DC Characteristics" on page 235 and Table 6-8 "AC Characteristics" on page 239 for more information on buffer types. Note that some bidirectional buffers are used as input only, indicated by an "I" in the Pin Type column.

3.2 Signal Descriptions

3.2.1 Reset Interface

Signal Name	Pin No.	Pin Type	Description
PCI_RST#	C14	0	PCI Reset
			PCI_RST# resets the PCI bus and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#.
POR#	K24	I	Power On Reset
			POR# is the system reset signal generated from the power supply to indi- cate that the system should be reset.
CPU_RST	K25	0	CPU Reset
			CPU_RST resets the CPU and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#. CLK_14MHZ is used to generate this signal.

3.2.2 Clock Interface

Signal Name	Pin No.	Pin Type	Description
PCICLK	J26	I	PCI Clock
		(SMT)	The PCI clock is used to drive most circuitry of the CS5530A.
TVCLK	B2	I	Television Clock
			The TVCLK is an input from a digital NTSC/PAL converter which is option- ally re-driven back out onto the DCLK signal under software program con- trol. This is only used if interfacing to a compatible digital NTSC/PAL encoder device.
DCLK	A10	0	DOT Clock
			DOT clock is generated by the CS5530A and typically connects to the pro- cessor to create the clock used by the graphics subsystem. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz. However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency.
ISACLK	AD6	0	ISA Bus Clock
			ISACLK is derived from PCICLK and is typically programmed for approxi- mately 8 MHz. F0 Index 50h[2:0] are used to program the ISA clock divisor.
CLK_14MHZ	P24	I	14.31818 MHz Clock
		(SMT)	This clock is used to generate CPU_RST to the Geode processor. DOT clock (DCLK) is also derived from this clock.
USBCLK	W1	I	USBCLK
		(SMT)	This input is used as the clock source for the USB. In this mode, a 48 MHz clock source input is required.
CLK_32K	AE3	I/O	32 KHz Clock
			CLK_32K is a 32.768 KHz clock used to generate reset signals, as well as to maintain power management functionality. It should be active when power is applied to the CS5530A.
			CLK_32K can be an input or an output. As an output CLK_32K is internally derived from CLK_14MHZ. F0 Index 44h[5:4] are used to program this pin.

3.2.3 CPU Interface

Signal Name	Pin No.	Pin Type	Description
INTR	P26	0	CPU Interrupt Request
	Strap Option Pin		INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQ _n) is sampled active.
		I	Strap Option Select Pin
			Pin P26 is a strap option select pin. It is used to select whether the CS5530A operates in Limited ISA or ISA Master mode.
			ISA Limited Mode—Strap pin P26 low through a 10-kohm resistor. ISA Master Mode—Strap pin P26 high through a 10-kohm resistor.
SMI#	P25	I/O	System Management Interrupt
			SMI# is a level-sensitive interrupt to the CPU that can be configured to assert on a number of different system events. After an SMI# assertion, System Management Mode (SMM) is entered, and program execution begins at the base of SMM address space.
			Once asserted, SMI# remains active until all SMI sources are cleared.
IRQ13	R23	I	IRQ13
			IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
PSERIAL	L26	I	Power Management Serial Interface
			PSERIAL is the unidirectional serial data link between the GX1 processor and the CS5530A. An 8-bit serial data packet carries status on power man- agement events within the CPU. Data is clocked synchronous to the PCI- CLK input clock.
SUSP#	K26	0	CPU Suspend
			SUSP# asserted requests that the CPU enters Suspend mode and the CPU asserts SUSPA# after completion. The SUSP# pin is deasserted if SUSP# has gone active and any Speedup or Resume event has occurred, including expiration of the Suspend Modulation ON timer, which is loaded from F0 Index 95h. If the SUSP#/SUSPA# handshake is configured as a system 3 Volt Suspend, the deassertion of SUSP# is delayed by an interval programmed in F0 Index BCh[7:4] to allow the system clock chip and the processor to stabilize.
			The SUSP#/SUSPA# handshake occurs as a result of a write to the Sus- pend Notebook Command Register (F0 Index AFh), or expiration of the Sus- pend Modulation OFF timer (loaded from F0 Index 94h) when Suspend Modulation is enabled. Suspend Modulation is enabled via F0 Index 96h[0]. If SUSPA# is asserted as a result of a HALT instruction, SUSP# does not deassert when the Suspend Modulation ON timer (loaded from F0 Index 95h) expires.
SUSPA#	L25	I	CPU Suspend Acknowledge
			SUSPA# is a level input from the processor. When asserted it indicates the CPU is in Suspend mode as a result of SUSP# assertion or execution of a HALT instruction.

3.2.3 CPU Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
SUSP_3V	L24	I/O	Suspend 3 Volt Active
			SUSP_3V can be connected to the output enable (OE) of a clock synthesis or buffer chip to stop the clocks to the system. SUSP_3V is asserted after the SUSP#/SUSPA# handshake that follows a write to the Suspend Note- book Command Register (F0 Index AFh) with bit 0 set in the Clock Stop Control Register (F0 Index BCh).
			As an input, SUSP_3V is sampled during power-on-reset to determine the inactive state. This allows the system designer to match the active state of SUSP_3V to the inactive state for a clock driver output enabled with a pull-up/down 10-kohm resistor. If pulled down, SUSP_3V is active high. If pulled up, SUSP_3V is active low.

3.2.4 PCI Interface

Signal Name	Pin No.	Pin Type	Description
AD[31:0]	Refer	I/O	PCI Address/Data
	to Table 3-3		AD[31:0] is a physical address during the first clock of a PCI transaction; it is the data during subsequent clocks.
			When the CS5530A is a PCI master, AD[31:0] are outputs during the address and write data phases, and are inputs during the read data phase of a transaction.
			When the CS5530A is a PCI slave, AD[31:0] are inputs during the address and write data phases, and are outputs during the read data phase of a transaction.
C/BE[3:0]#	D26,	I/O	PCI Bus Command and Byte Enables
	A24, B21, B18	B21,	During the address phase of a PCI transaction, C/BE[3:0]# define the bus command. During the data phase of a transaction, C/BE[3:0]# are the data byte enables.
			C/BE[3:0]# are outputs when the CS5530A is a PCI master and inputs when it is a PCI slave.
INTA#,	A14,	I	PCI Interrupt Pins
INTB#, INTC#, INTD#	D15, C15, B14		The CS5530A provides inputs for the optional "level-sensitive" PCI interrupts (also known in industry terms as PIRQx#). These interrupts may be mapped to IRQs of the internal 8259s using PCI Interrupt Steering Registers 1 and 2 (F0 Index 5Ch and 5Dh).
			The USB controller uses INTA# as its output signal. Refer to PCIUSB Index 3Dh.
REQ#	J25	0	PCI Bus Request
			The CS5530A asserts REQ# in response to a DMA request or ISA master request to gain ownership of the PCI bus. The REQ# and GNT# signals are used to arbitrate for the PCI bus.
			REQ# should connect to the REQ0# of the GX1 processor and function as the highest-priority PCI master.

3.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GNT#	D24	I	PCI Bus Grant
			GNT# is asserted by an arbiter that indicates to the CS5530A that access to the PCI bus has been granted.
			GNT# should connect to GNT0# of the GX1 processor and function as the highest-priority PCI master.
HOLD_REQ#	H26	0	PCI Bus Hold Request
	Strap Option		This pin's function as HOLD_REQ# is no longer applicable.
	Pin	I	Strap Option Select Pin
			Pin H26 is a strap option select pin. It allows selection of which address bits are used as the IDSEL.
			Strap pin H26 low: IDSEL = AD28 (Chipset Register Space) and AD29 (USB Register Space)
			Strap pin H26 high: IDSEL = AD26 (Chipset Register Space) and AD27 (USB Register Space)
FRAME#	C23	I/O	PCI Cycle Frame
			FRAME# is asserted to indicate the start and duration of a transaction. It is deasserted on the final data phase.
			FRAME# is an input when the CS5530A is a PCI slave.
IRDY#	B24	I/O	PCI Initiator Ready
			IRDY# is driven by the master to indicate valid data on a write transaction, or that it is ready to receive data on a read transaction.
			When the CS5530A is a PCI slave, IRDY# is an input that can delay the beginning of a write transaction or the completion of a read transaction.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted together.
TRDY#	B23	I/O	PCI Target Ready
			TRDY# is asserted by a PCI slave to indicate it is ready to complete the cur- rent data transfer.
			TRDY# is an input that indicates a PCI slave has driven valid data on a read or a PCI slave is ready to accept data from the CS5530A on a write.
			TRDY# is an output that indicates the CS5530A has placed valid data on AD[31:0] during a read or is ready to accept the data from a PCI master on a write.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted together.
STOP#	E26	I/O	PCI Stop
			As an input, STOP# indicates that a PCI slave wants to terminate the current transfer. The transfer is either aborted or retried. STOP# is also used to end a burst.
			As an output, STOP# is asserted with TRDY# to indicate a target discon- nect, or without TRDY# to indicate a target retry. The CS5530A asserts STOP# during any cache line crossings if in single transfer DMA mode or if busy.

3.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
LOCK#	C22	I/O	PCI Lock
			LOCK# indicates an atomic operation that may require multiple transactions to complete.
			If the CS5530A is currently the target of a LOCKed transaction, any other PCI master request with the CS5530A as the target is forced to retry the transfer.
			The CS5530A does not generate LOCKed transactions.
DEVSEL#	A23	I/O	PCI Device Select
			DEVSEL# is asserted by a PCI slave, to indicate to a PCI master and sub- tractive decoder that it is the target of the current transaction.
			As an input, DEVSEL# indicates a PCI slave has responded to the current address.
			As an output, DEVSEL# is asserted one cycle after the assertion of FRAME# and remains asserted to the end of a transaction as the result of a positive decode. DEVSEL# is asserted four cycles after the assertion of FRAME# if DEVSEL# has not been asserted by another PCI device when the CS5530A is programmed to be the subtractive decode agent. The sub-tractive decode sample point is configured in F0 Index 41h[2:1]. Subtractive decode cycles are passed to the ISA bus.
PAR	A21	I/O	PCI Parity
			PAR is the parity signal driven to maintain even parity across AD[31:0] and C/BE[3:0]#.
			The CS5530A drives PAR one clock after the address phase and one clock after each completed data phase of write transactions as a PCI master. It also drives PAR one clock after each completed data phase of read transactions as a PCI slave.
PERR#	B22	I/O	PCI Parity Error
			PERR# is pulsed by a PCI device to indicate that a parity error was detected. If a parity error was detected, PERR# is asserted by a PCI slave during a write data phase and by a PCI master during a read data phase.
			When the CS5530A is a PCI master, PERR# is an output during read trans- fers and an input during write transfers. When the CS5530A is a PCI slave, PERR# is an input during read transfers and an output during write trans- fers.
			Parity detection is enabled through F0 Index 04h[6]. An NMI is generated if I/ O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.
SERR#	A22	I/O	PCI System Error
		OD	SERR# is pulsed by a PCI device to indicate an address parity error, data parity error on a special cycle command, or other fatal system errors.
			SERR# is an open-drain output reporting an error condition, and an input indicating that the CS5530A should generate an NMI. As an input, SERR# is asserted for a single clock by the slave reporting the error.
			System error detection is enabled with F0 Index 04h[8]. An NMI is generated if I/O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.

3.2.5 ISA Bus Interface

Signal Name	Pin No.	Pin Type	Description				
SA_LATCH/ AD15 SA_DIR	AD15	0	Limited ISA Mode: System Address Latch				
			This signal is used to latch the destination address, which is multiplexed on bits [15:0] of the SA/SD bus.				
			ISA Master Mode: System Address Direction				
			Controls the direction of the external 5.0V tolerant transceiver on bits [15:0] of the SA bus. When low, the SA bus is driven out. When high, the SA bus is driven into the CS5530A by the external transceiver.				
SA_OE#/	H3	0	Limited ISA Mode: Flat Panel Data Port Line 16				
FP_DATA16			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's defini- tion.				
		0	ISA Master Mode: System Address Transceiver Output Enable				
			Enables the external transceiver on bits [15:0] of the SA bus.				
MASTER#/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17				
FP_DATA17	P_DATA17		Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's defini- tion.				
		I	ISA Master Mode: Master				
			The MASTER# input asserted indicates an ISA bus master is driving the ISA bus.				
SA23/GPIO7	AF23		Limited ISA Mode: System Address Bus Lines 23 through 20 or				
SA22/GPIO6	AE23		General Purpose I/Os 7 through 4				
SA21/GPIO5 SA20/GPIO4	AC21 AD22		These pins can function either as the upper four bits of the SA bus or as general purpose I/Os. Programming is done through F0 Index 43h, bits 6 and 2.				
			Refer to Section 3.2.9 "Game Port and General Purpose I/O Interface" on page 39 for further details when used as GPIOs.				
			ISA Master Mode: System Address Bus Lines 23 through 20				
			The pins function only as the four MSB (most significant bits) of the SA bus.				
SA[19:16]	AD10,	I/O	System Address Bus Lines 19 through 16				
	AE11, AF12, AD11	(PU)	Refer to SA[15:0] signal description.				
SA[15:0]/SD[15:0]	Refer	I/O	Limited ISA Mode: System Address Bus / System Data Bus				
	to Table 3-3	Table	Table	Table	Table		This bus carries both the addresses and data for all ISA cycles. Initially, the address is placed on the bus and then SA_LATCH is asserted in order for external latches to latch the address. At some time later, the data is put on the bus, for a read, or the bus direction is changed to an input, for a write.
			Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull- up resistor.				
			ISA Master Mode: System Data Bus				
			These pins perform only as SD[15:0] and pins FP_DATA[15:0] take on the functions of SA[15:0].				
							Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull- up resistor.

3.2.5 ISA Bus Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
SMEMW#/	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
FP_HSYNC_OUT			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's defini- tion.
			Note that if Limited ISA Mode of operation is selected, SMEMW# is available on pin AF3 (multiplexed with RTCCS#).
			ISA Master Mode: System Memory Write
			SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
SMEMR#/	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output
FP_VSYNC_OUT			Refer to Section 3.2.11 "Display Interface" on page 40 for this signal's defini- tion.
			Note that if Limited ISA Mode of operation is selected, SMEMR# is available on pin AD4 (multiplexed with RTCALE).
			ISA Master Mode: System Memory Read
			SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
SMEMW#/	AF3	0	System Memory Write / Real-Time Clock Chip Select
RTCCS#			If Limited ISA Mode of operation has been selected, then SMEMW# can be output on this pin. SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
			RTCCS# is a chip select to an external real-time clock chip. This signal is activated on reads or writes to I/O Port 071h.
			Function selection is made through F0 Index 53h[2]: 0 = SMEMW#, 1 = RTCCS#.
SMEMR#/	AD4	0	System Memory Read / Real-Time Clock Address Latch Enable
RTCALE			If Limited ISA Mode of operation has been selected, then SMEMR# can be output on this pin. SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
			RTCALE is a signal telling an external real-time clock chip to latch the address, which is on the SD bus.
			Function selection is made through F0 Index 53h[2]: 0 = SMEMR#, 1 = RTCALE.
SBHE#	AE17	I/O	System Bus High Enable
		(PU)	The CS5530A or ISA master asserts SBHE# to indicate that SD[15:8] will be used to transfer a byte at an odd address.
			SBHE# is an output during non-ISA master DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles. It is forced low for all 16-bit DMA cycles.
			SBHE# is an input during ISA master operations.
			This pin is internally connected to a 20-kohm pull-up resistor.
BALE	AF9	0	Buffered Address Latch Enable
			BALE indicates when SA[23:0] and SBHE# are valid and may be latched. For DMA transfers, BALE remains asserted until the transfer is complete.

AMD Geode™ CS5530A Companion Device Data Book

3.2.5	ISA Bus Ir	terface	(Continued)
-------	------------	---------	-------------

Signal Name	Pin No.	Pin Type	Description
IOCHRDY	AF11	I/O	I/O Channel Ready
		OD	IOCHRDY deasserted indicates that an ISA slave requires additional wait states.
			When the CS5530A is an ISA slave, IOCHRDY is an output indicating addi- tional wait states are required.
ZEROWS#	AF10	I	Zero Wait States
			ZEROWS# asserted indicates that an ISA 8- or 16-bit memory slave can shorten the current cycle. The CS5530A samples this signal in the phase after BALE is asserted. If asserted, it shortens 8-bit cycles to three ISACLKs and 16-bit cycles to two ISACLKs.
IOCS16#	AF16	I	I/O Chip Select 16
			IOCS16# is asserted by 16-bit ISA I/O devices based on an asynchronous decode of SA[15:0] to indicate that SD[15:0] will be used to transfer data.
			8-bit ISA I/O devices only use SD[7:0].
IOR#	AE12	I/O	I/O Read
		(PU)	IOR# is asserted to request an ISA I/O slave to drive data onto the data bus.
			This pin is internally connected to a 20-kohm pull-up resistor.
IOW#	AC11	I/O (PU)	I/O Write
			IOW# is asserted to request an ISA I/O slave to accept data from the data bus.
			This pin is internally connected to a 20-kohm pull-up resistor.
MEMCS16#	AC15	I/O OD	Memory Chip Select 16
			MEMCS16# is asserted by 16-bit ISA memory devices based on an asyn- chronous decode of SA[23:17] to indicate that SD[15:0] will be used to trans- fer data.
			8-bit ISA memory devices only use SD[7:0].
MEMR#	AE19	I/O (PU)	Memory Read
			MEMR# is asserted for any memory read accesses. It enables 16-bit memory slaves to decode the memory address on SA[23:0].
			This pin is internally connected to a 20-kohm pull-up resistor.
MEMW#	AF20	I/O (PU)	Memory Write
			MEMW# is asserted for any memory write accesses. It enables 16-bit memory slaves to decode the memory address on SA[23:0].
			This pin is internally connected to a 20-kohm pull-up resistor.
AEN	AE8	0	Address Enable
			AEN asserted indicates that a DMA transfer is in progress, informing I/O devices to ignore the I/O cycle.
IRQ[15:14], [12:9], [7:3], 1	Refer	I	ISA Bus Interrupt Request
	to Table 3-3		IRQ inputs indicate ISA devices or other devices requesting a CPU interrupt service.
IRQ8#	AE14	I	Real-Time Clock Interrupt
			IRQ8# is the (active-low) interrupt that comes from the external RTC chip and indicates a date/time update has completed.

3.2.5 ISA Bus Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
DRQ[7:5], DRQ[3:0]	Refer to Table 3-3	I	DMA Request - Channels 7 through 5 and 3 through 0 DRQ inputs are asserted by ISA DMA devices to request a DMA transfer. The request must remain asserted until the corresponding DACK is asserted.
DACK[7:5]#, DACK[3:0]#	Refer to Table 3-3	0	DMA Acknowledge - Channels 7 through 5 and 3 through 0 DACK outputs are asserted to indicate when a DRQ is granted and the start of a DMA cycle.
ТС	AF15	0	Terminal Count TC signals the final data transfer of a DMA transfer.

3.2.6 ROM Interface

Signal Name	Pin No.	Pin Type	Description
KBROMCS#	AE4	0	Keyboard/ROM Chip Select
			KBROMCS# is the enable pin for the BIOS ROM and for the keyboard con- troller. For ROM accesses, KBROMCS# is asserted for ISA memory accesses programmed at F0 Index 52h[2:0].
			For keyboard controller accesses, KBROMCS# is asserted for I/O accesses to I/O Ports 060h, 062h, 064h, and 066h.

3.2.7 IDE Interface

Signal Name	Pin No.	Pin Type	Description
IDE_RST#	W25	0	IDE Reset
			This signal resets all the devices that are attached to the IDE interface.
IDE_ADDR[2:0]	W24,	0	IDE Address Bits
	U26, U25		These address bits are used to access a register or data port in a device on the IDE bus.
IDE_DATA[15:0]	Refer	I/O	IDE Data Lines
	to Table 3-3		IDE_DATA[15:0] transfers data to/from the IDE devices.
IDE_IOR0#	R26	0	IDE I/O Read for Channels 0 and 1
IDE_IOR1#	R25	0	IDE_IOR0# is the read signal for Channel 0, and IDE_IOR1# is the read sig- nal for Channel 1. Each signal is asserted on read accesses to the corre- sponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — DMARDY0# and DMARDY1# Write Cycle — STROBE0 and STROBE1
IDE_IOW0#	R24	0	IDE I/O Write for Channels 0 and 1
IDE_IOW1#	T25	0	IDE_IOW0# is the write signal for Channel 0, and IDE_IOW1# is the read signal for Channel 1. Each signal is asserted on write accesses to corresponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STOP0 and STOP1 Write Cycle — STOP0 and STOP1
IDE_CS0#	V26	0	IDE Chip Selects
IDE_CS1#	Y26	0	The chip select signals are used to select the command block registers in an IDE device.
IDE_IORDY0	AD25	I	I/O Ready Channels 0 and 1
IDE_IORDY1	AE26	I	When deasserted, these signals extend the transfer cycle of any host regis- ter access when the device is not ready to respond to the data transfer request.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STROBE0 and STROBE1 Write Cycle — DMARDY0# and DMARDY1#
IDE_DREQ0	AD26	I	DMA Request Channels 0 and 1
IDE_DREQ1	AC24	I	The DREQ is used to request a DMA transfer from the CS5530A. The direction of the transfers are determined by the IDE_IOR/IOW signals.
IDE_DACK0#	T26	0	DMA Acknowledge Channels 0 and 1
IDE_DACK1#	T24	0	The DACK# acknowledges the DREQ request to initiate DMA transfers.

3.2.8 USB Interface

Signal Name	Pin No.	Pin Type	Description
POWER_EN	V4	0	Power Enable
			This pin enables the power to a self-powered USB hub.
OVER_CUR#	W3	I	Over Current
			This pin indicates the USB hub has detected an overcurrent on the USB.
D+_PORT1	Y2	I/O	USB Port 1 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 1.
DPORT1	Y1	I/O	USB Port 1 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 1.
D+_PORT2	AA2	I/O	USB Port 2 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 2.
DPORT2	AA1	I/O	USB Port 2 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 2.
V _{DD} USB	U2	PWR	Power for USB
AV _{DD} _USB	AB4	I	Analog Power for USB
		Analog	
AV _{SS} _USB	AA4		Analog Ground for USB
		Analog	

3.2.9 Game Port and General Purpose I/O Interface

Signal Name	Pin No.	Pin Type	Description
GPORT_CS#	AD21	0	Game Port Chip Select
			GPORT_CS# is asserted upon any I/O reads or I/O writes to I/O Port 200h and 201h.
GPCS#	AF26	0	General Purpose Chip Select
			GPCS# is asserted upon any I/O access that matches the I/O address in the General Purpose Chip Select Base Address Register (F0 Index 70h) and the conditions set in the General Purpose Chip Select Control Register (F0 Index 72h).
GPIO7/SA23	AF23	I/O	Limited ISA Mode: General Purpose I/Os 7 through 4 or
GPIO6/SA22	AE23		System Address Bus Lines 23 through 20
GPIO5/SA21	AC21		These pins can function either as general purpose I/Os or as the upper four bits of the SA bus. Selection is done through F0 Index 43h[6,2].
GPIO4/SA20	AD22		Refer to GPIO[3:2] signal description for GPIO function description.
			ISA Master Mode: System Address Bus Lines 23 through 20
			These pins function as the four MSB (most significant bits) of the SA bus.
GPIO3	AF24	I/O	General Purpose I/Os 3 and 2
GPIO2	AF25	I/O	GPIOs can be programmed to operate as inputs or outputs via F0 Index 90h. As an input, the GPIO can be configured to generate an external SMI. Additional configuration can select if the SMI# is generated on the rising or falling edge. GPIO external SMI generation/edge selection is done in F0 Index 92h and 97h.

3.2.9 Game Port and General Purpose I/O Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GPIO1/	AE24	I/O	General Purpose I/O 1 or Serial Data Input 2
SDATA_IN2			This pin can function either as a general purpose I/O or as a second serial data input pin if two codecs are used in the system.
			In order for this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0). Then setting F3BAR+Memory Offset 08h[21] = 1 selects the pin to function as SDATA_IN2.
			Refer to GPIO[3:2] signal description for GPIO function description.
GPIO0	AC22	I/O	General Purpose I/O 0
			Refer to GPIO[3:2] signal description for GPIO function description.

3.2.10 Audio Interface

Signal Name	Pin No.	Pin Type	Description
BIT_CLK	V2	I	Audio Bit Clock
			The serial bit clock from the codec.
SDATA_OUT	V1	0	Serial Data I/O
			This output transmits audio serial data to the codec.
SDATA_IN	U4	I	Serial Data Input
			This input receives serial data from the codec.
SYNC	U3	0	Serial Bus Synchronization
			This bit is asserted to synchronize the transfer of data between the CS5530A and the AC97 codec.
PC_BEEP	V3	0	РС Веер
			Legacy PC/AT speaker output.

3.2.11 Display Interface

Signal Name	Pin No.	Pin Type	Description
Pixel Port	·		
PCLK	A13	I	Pixel Clock
			This clock is used to sample data on the PIXEL input port. It runs at the graphics DOT clock (DCLK) rate.
PIXEL[23:0]	Refer	I	Pixel Data Port
	to Table 3-3		This is the input pixel data from the processor's display controller. If F4BAR+Memory Offset 00h[29] is reset, the data is sent in RGB 8:8:8 format. Otherwise, the pixel data is sent in RGB 5:6:5 format which has been dithered by the processor. The other eight bits are used in conjunction with VID_DATA[7:0] to provide 16-bit video data. This bus is sampled by the PCLK input.

Signal Name	Pin No.	Pin Type	Description
ENA_DISP	B1	I	Display Enable Input
			This signal qualifies active data on the pixel input port. It is used to qualify active pixel data for all display modes and configurations and is not specific to flat panel display.
Display CRT			
HSYNC	C6	I	Horizontal Sync Input
			This is the CRT horizontal sync input from the processor's display controller It is used to indicate the start of a new video line. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data A separate output (HSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
HSYNC_OUT	N1	0	Horizontal Sync Output
			This is the horizontal sync output to the CRT. It represents a delayed version of the input horizontal sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programmable.
VSYNC	B5	I	Vertical Sync Input
			This is the CRT vertical sync input from the processor's display controller. It is used to indicate the start of a new frame. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data. A separate output (VSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
VSYNC_OUT	N2	0	Vertical Sync Output
			This is the vertical sync output to the CRT. It represents a delayed version of the input vertical sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programma- ble.
DDC_SCL	M2	0	DDC Serial Clock
			This is the serial clock for the VESA Display Data Channel interface. It is used for monitoring communications. The DDC2B standard is supported by this interface.
DDC_SDA	M4	I/O	DDC Serial Data
			This is the bidirectional serial data signal for the VESA Display Data Chan- nel interface. It is used to monitor communications. The DDC2B standard is supported by this interface.
			The direction of this pin can be configured through F4BAR+Memory Offset 04h[24]: 0 = Input; 1 = Output.
IREF	R3	I	VDAC Current Reference Input
(Video DAC)		Analog	Connect a 680 ohm resistor between this pin and $\mathrm{AV}_{\mathrm{SS}}$ (analog ground for Video DAC).
EXTVREFIN	T2	I	External Voltage Reference Pin
(Video DAC)		Analog	Connect this pin to a 1.235V voltage reference.

Signal Name	Pin No.	Pin Type	Description
AV _{DD1} (DAC)	U1	I	Analog Power for Video DAC
AV _{DD2} (VREF)	Т3	Analog	These pins provide power to the analog portions of the Video DAC.
AV _{DD3} (DAC)	N4		A 47 μ F capacitor should be connected between the DAC analog power and DAC analog ground. Analog power is AV _{DD1} (pin U1) and AV _{DD3} (pin N4). Analog ground is AV _{SS1} (pin R2) and AV _{SS5} (pin P2).
AV _{SS1} (DAC)	R2	I	Analog Ground for Video DAC
AV _{SS2} (ICAP)	R4	Analog	These pins provide the ground plane connections to the analog portions of
AV _{SS3} (VREF)	T4		the Video DAC. A 47 μF capacitor should be connected between the DAC analog power and
AV _{SS4} (ICAP)	P1	-	DAC analog ground. Analog power is AV_{DD1} (pin U1) and AV_{DD3} (pin N4).
AV _{SS5} (DAC)	P2		Analog ground is AV_{SS1} (pin R2) and AV_{SS5} (pin P2).
IOUTR	P3	0	Red DAC Output
(Video DAC)		Analog	Red analog output.
IOUTG	P4	0	Green DAC Output
(Video DAC)		Analog	Green analog output.
IOUTB	R1	0	Blue DAC Output
(Video DAC)		Analog	Blue analog output.
Display TFT/TV			
FP_DATA17/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17
MASTER#			Refer to FP_DATA[15:0] signal description.
		I	ISA Master Mode: Master
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's defini- tion.
FP_DATA16/	H3	0	Limited ISA Mode: Flat Panel Data Port Line 16
SA_OE#		0	Refer to FP_DATA[15:0] signal description.
			ISA Master Mode: System Address Transceiver Output Enable
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's defini- tion.
FP_DATA[15:0]/	Refer	0	Limited ISA Mode: Flat Panel Data Port Lines 15 through 0
SA[15:0]	to Table 3-3		This is the data port to an attached active matrix TFT panel. This port may optionally be tied to a DSTN formatter chip, LVDS transmitter, or digital NTSC/PAL encoder.
			F4BAR+Memory Offset 04h[7] enables the flat panel data bus: 0 = FP_DATA[17:0] is forced low 1 = FP_DATA[17:0] is driven based upon power sequence control
		I/O	ISA Master Mode: System Address Bus Lines 15 through 0
			These pins function as SA[15:0] and the pins designated as SA/SD[15:0] function only as SD[15:0].
			Note that SA[19:16] are dedicated address pins and GPIO[7:4] function as SA[23:20] only.

3.2.11 Display Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
FP_CLK	M1	0	Limited ISA Mode: Flat Panel Clock
			This is the clock for the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A cannot support TFT flat panels or TV controllers.
FP_CLK_EVEN	L3	0	Limited ISA Mode: Flat Panel Even Clock
			This is an optional output clock for a set of external latches used to de-multi- plex the flat panel data bus into two channels (odd/even). Typically this would be used to interface to a pair of LVDS transmitters driving an XGA resolution flat panel.
			F4BAR+Memory Offset 04h[12] enables the FP_CLK_EVEN output: 0 = Standard flat panel 1 = XGA flat panel
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC	C2	I	Limited ISA Mode: Flat Panel Horizontal Sync Input
			This is the horizontal sync input reference from the processor's display con- troller. The timing of this signal is independent of the standard (CRT) hori- zontal sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC_OUT	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
/SMEMW#			This is the horizontal sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel horizontal sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Write
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 for this signal's defini- tion.
FP_VSYNC	C1	I	Limited ISA Mode: Flat Panel Vertical Sync Input
			This is the vertical sync input reference from the processor's display control- ler. The timing of this signal is independent of the standard (CRT) vertical sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_VSYNC_OUT	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output
/SMEMR#			This is the vertical sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel vertical sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Read
			Refer to Section 3.2.5 "ISA Bus Interface" on page 34 on for this signal's def- inition.

Signal Name	Pin No.	Pin Type	Description
FP_DISP_	F2	0	Flat Panel Display Enable Output
ENA_OUT			This is the display enable for an attached active matrix TFT flat panel. This signal qualifies active pixel data on the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_VDD	L2	0	Flat Panel VDD Enable
			This is the enable signal for the V_{DD} supply to an attached flat panel. It is under the control of power sequence control logic. A transition on bit 6 of the Display Configuration Register (F4BAR+Memory Offset 04h) initiates a power-up/down sequence.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_BKL	J4	0	Flat Panel Backlight Enable Output
			This is the enable signal for the backlight power supply to an attached flat panel. It is under control of the power sequence control logic.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
Display MPEG			
VID_DATA[7:0]	C12,	I	Video Data Port
	B12, A12, D11, C11, B13, C13, A11		This is the input data for a video (MPEG) or graphics overlay in its native form. For video overlay, this data is in an interleaved YUV 4:2:2 format. For graphics overlay, the data is in RGB 5:6:5 format. This port operates at the VID_CLK rate.
VID_CLK	A6	I	Video Clock
			This is the clock for the video port. This clock is completely asynchronous to the input pixel clock rate.
VID_VAL	B7	I	Video Valid
			This signal indicates that valid video data is being presented on the VID_DATA input port. If the VID_RDY signal is also asserted, the data will advance.
VID_RDY	B10	0	Video Ready
			This signal indicates that the CS5530A is ready to receive the next piece of video data on the VID_DATA port. If the VID_VAL signal is also asserted, the data will advance.

3.2.11 Display Interface (Continued)

3.2.12 DCLK PLL

Signal Name	Pin No.	Pin Type	Description
PLLTEST	N23		PLLTEST
			Internal test pin. This pin should not be connected for normal operation.
PLLVAA	M25	I	Analog PLL Power (V _{DD})
		Analog	PLLVAA is the analog positive rail power connection to the PLL.
PLLAGD	N25	I	Analog PLL Ground (V _{SS})
		Analog	PLLAGD is the analog ground rail connection to the PLL.
PLLDVD	M23	I	Digital PLL Power (V _{DD})
		Analog	This pin is the digital V_{DD} power connection for the PLL.
PLLDGN	N26	l Analog	Digital PLL Ground (V_{SS}) This pin is the digital ground (V _{SS}) connection for the PLL.

3.2.13 Power, Ground, and No Connects

Signal Name	Pin No.	Pin Type	Description
V _{DD}	Refer to	PWR	3.3V (Nominal) Power Connection
	Table 3-3 (Total of 17)		Note that the USB power (V _{DD} _USB, AV _{DD} _USB) connections are listed in Section 3.2.8 "USB Interface" on page 39.
V _{SS}	Refer to	GND	Ground Connection
	Table 3-3 (Total of 38)		Note that the USB ground (AV _{SS} USB) connection is listed in Section 3.2.8 "USB Interface" on page 39.
NC	Refer to		No Connection
	Table 3-3 (Total of 20)		These lines should be left disconnected. Connecting a pull-up/-down resistor or to an active signal could cause unexpected results and possible malfunctions.

3.2.14 Internal Test and Measurement

Signal Name	Pin No.	Pin Type	Description
TEST	D3	I	Test Mode
			TEST should be tied low for normal operation.

AMD Revision 1.1

Functional Description

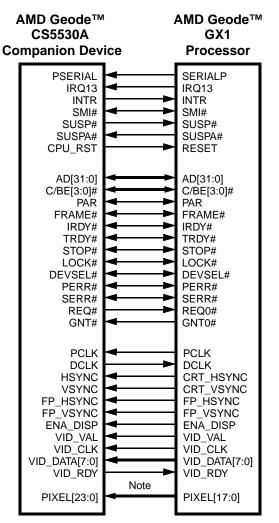
The AMD Geode[™] CS5530A companion device provides many support functions for a GX1 processor. This chapter discusses the detailed operations of the CS5530A in two categories: system-level activities and operations/programming of the major functional blocks.

The system-level discussion topics revolve around events that affect the device as a whole unit and as an interface with other chips (e.g., processor): Topics include:

- Processor Interface
 - Display Subsystem Connections
 - PSERIAL Pin Interface
- PCI Bus Interface
 - PCI Initiator
 - PCI Target
 - Special Bus Cycles-Shutdown/Halt
 - PCI Bus Parity
 - PCI Interrupt Routing Support
 - Delayed Transactions
- Resets and Clocks
 - Resets
 - ISA Clock
 - DOT Clock
- Power Management
 - CPU Power Management
 - APM Support
 - Peripheral Power Management

All of the major functional blocks interact with the processor through the PCI bus, or via its own direct interface. The major functional blocks are divided out as:

PC/AT Compatibility Logic


- ISA Subtractive Decode
- ISA Bus Interface
- ROM Interface
- Megacells
- I/O Ports 092h and 061h System Control
- Keyboard Interface Function
- External Real-Time Clock Interface
- IDE Controller
 - IDE Interface Signals
 - IDE Configuration Registers
- XpressAUDIO[™] Subsystem
 - Subsystem Data Transport Hardware
 - VSA Technology Support Hardware
- Display Subsystem Extensions
 - Video Interface Configuration Registers
 - Video Accelerator
 - Video Overlay
 - Gamma RAM
 - Display Interface
- Universal Serial Bus Support
 - USB PCI Controller
 - USB Host Controller
 - USB Power Management

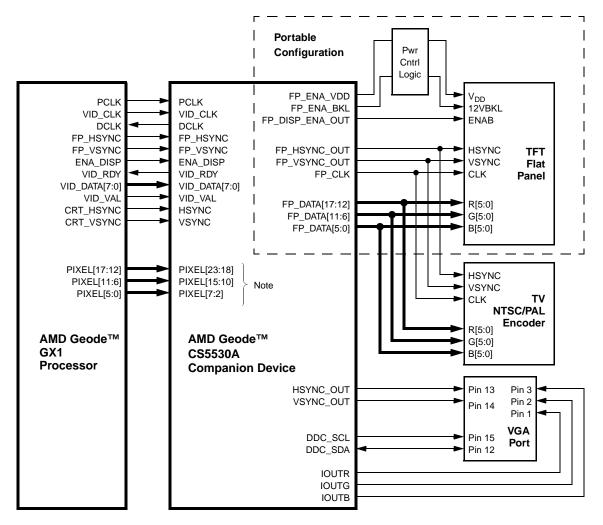
Note that this Functional Description section of the data book describes many of the registers used for configuration of the CS5530A; however, not all registers are reported in detail. Some tables in the following subsections show only the bits (not the entire register) associated with a specific function being discussed. For access, register, and bit information regarding all CS5530A registers refer to Section 5.0 "Register Descriptions" on page 143.

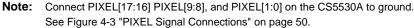
4.1 Processor Interface

The CS5530A interface to the GX1 processor consists of seven miscellaneous connections, the PCI bus interface signals, plus the display controller connections. Figure 4-1 shows the interface requirements. Note that the PC/AT legacy pins NMI, WM_RST, and A20M are all virtual functions executed in SMM (System Management Mode) by the BIOS.

- PSERIAL is a one-way serial bus from the processor to the CS5530A used to communicate power management states and VSYNC information for VGA emulation.
- IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
- INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQn) is sampled active.
- SMI# is a level-sensitive interrupt to the processor that can be configured to assert on a number of different system events. After an SMI# assertion, SMM is entered and program execution begins at the base of the SMM address space. Once asserted, SMI# remains active until the SMI source is cleared.
- SUSP# and SUSPA# are handshake pins for implementing CPU Clock Stop and clock throttling.
- CPU_RST resets the CPU and is asserted for approximately 9 ms after the negation of POR#.
- PCI bus interface signals.
- Display subsystem interface connections.

Note: Refer to Figure 4-3 on page 50 for correct interconnection of PIXEL lines with the processor.


Figure 4-1. Processor Signal Connections


4.1.1 Display Subsystem Connections

When a GX1 processor is used in a system with the CS5530A, the need for an external RAMDAC is eliminated. The CS5530A contains the DACs, a video accelerator engine, and the TFT interface.

The CS5530A also supports both portable and desktop configurations. Figure 4-2 shows the signal connections for both types of systems.

Figure 4-3 on page 50 details how PIXEL[17:0] on the processor connects with PIXEL[23:0] of the CS5530A.

Figure 4-2. Portable/Desktop Display Subsystem Configurations

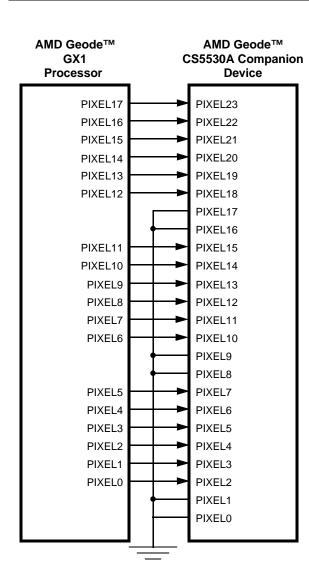


Figure 4-3. PIXEL Signal Connections

4.1.2 PSERIAL Pin Interface

The majority of the system power management logic is implemented in the CS5530A, but a minimal amount of logic is contained within the GX1 processor to provide information that is not externally visible (e.g., graphics controller).

The processor implements a simple serial communications mechanism to transmit the CPU status to the CS5530A. The processor accumulates CPU events in an 8-bit register (defined in Table 4-1) which it transmits serially every 1 to 10 μ s.

The packet transmitter holds the serial output pin (PSE-RIAL) low until the transmission interval timer has elapsed. Once the timer has elapsed, the PSERIAL pin is held high for two clocks to indicate the start of packet transmission. The contents of the Serial Packet Register are then shifted out starting from bit 7 down to bit 0. The PSERIAL pin is held high for one clock to indicate the end of packet transmission and then remains low until the next transmission interval. After the packet transmission is complete, the processor's Serial Packet Register's contents are cleared.

The processor's input clock is used as the clock reference for the serial packet transmitter.

Once a bit in the register is set, it remains set until the completion of the next packet transmission. Successive events of the same type that occur between packet transmissions are ignored. Multiple unique events between packet transmissions accumulate in this register. The processor transmits the contents of the serial packet only when a bit in the Serial Packet Register is set and the interval timer has elapsed.

For more information on the Serial Packet Register referenced in Table 4-1, refer to the AMD GeodeTM GX1 Processor Data Book.

The CS5530A decodes the serial packet after each transmission and performs the power management tasks related to video retrace.

Bit	Description
7	Video IRQ: This bit indicates the occurrence of a video vertical sync pulse. This bit is set at the same time that the VINT (Vertical Interrupt) bit gets set in the DC_TIMING_CFG register. The VINT bit has a corresponding enable bit (VIEN) in the DC_TIM_CFG register.
6	CPU Activity: This bit indicates the occurrence of a level 1 cache miss that was not a result of an instruction fetch. This bit has a corresponding enable bit in the PM_CNTL_TEN register.
5:2	Reserved
1	Programmable Address Decode: This bit indicates the occurrence of a programmable memory address decode. The bit is set based on the values of the PM_BASE register and the PM_MASK register. The PM_BASE register can be initialized to any address in the full CPU address range.
0	Video Decode: This bit indicates that the CPU has accessed either the display controller registers or the graphics memory region. This bit has a corresponding enable bit in the PM_CNTRL_TEN.

Table 4-1. GX1 Processor Serial Packet Register

4.1.2.1 Video Retrace Interrupt

Bit 7 of the "Serial Packet" can be used to generate an SMI whenever a video retrace occurs within the processor. This function is normally not used for power management but for SoftVGA routines.

Setting F0 Index 83h[2] = 1 (bit details on page 164) enables this function. A read only status register located at F1BAR+Memory Offset 00h[5] (bit details on page 181) can be read to see if the SMI was caused by a video retrace event.

4.2 PCI Bus Interface

The PCI bus interface is compliant with the PCI Bus Specification Rev. 2.1.

The CS5530A acts as a PCI target for PCI cycles initiated by the processor or other PCI master devices, or as an initiator for DMA, ISA, IDE, and audio master transfer cycles. It supports positive decode for memory and I/O regions and is the subtractive decode agent on the PCI bus. The CS5530A also generates address and data parity and performs parity checking. A PCI bus arbiter is not part of the CS5530A; however, one is included in the GX1 processor.

The PCI Command Register, located at F0 Index 04h (Table 4-2), provides the basic control over the CS5530A's ability to respond and perform PCI bus accesses.

4.2.1 PCI Initiator

The CS5530A acts as a PCI bus master on behalf of the DMA controller or ISA, IDE, and audio interfaces. The

REQ# and GNT# signals are used to arbitrate for the PCI bus.

Note: In a GX1 processor based system, the REQ#/ GNT# signals of the CS5530A must connect to the REQ0#/GNT0# of the processor. This configuration ensures that the CS5530A is treated as a nonpreemptable PCI master by the processor.

The CS5530A asserts REQ# in response to a bus mastering or DMA request for ownership of the PCI bus. GNT# is asserted by the PCI arbiter (i.e., processor) to indicate that access to the PCI bus has been granted to the CS5530A. The CS5530A then issues a grant to the DMA controller. This mechanism prevents any deadlock situations across the bridge. Once granted the PCI bus, the ISA master or DMA transfer commences.

If an ISA master executes an I/O access, that cycle remains on the ISA bus and is not forwarded to the PCI bus. The CS5530A performs only single transfers on the PCI bus for legacy DMA cycles.

Bit	Description				
F0 Index	04h-05h PCI Command Register (R/W) Reset Value = 00				
15:10	Reserved: Set to 0.				
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS5530A is a master. It is always disabled (always reads 0).				
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Default); 1 = Enable.				
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).				
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a target, and to assert PERR# wh a parity error is detected. 0 = Disable (Default); 1 = Enable.				
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).				
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate cycles, if the PCI Cache Line Size Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.				
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1 = Enable (Default).				
	This bit must be enabled to allow the CPU Warm Reset internal signal to be triggered from a CPU Shutdown cycle.				
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Enable (Default).				
	This bit must be set to 1.				
1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable (Default).				
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 = Enable (Default).				

Table 4-2. PCI Command Register

4.2.2 PCI Target

The CS5530A positively decodes PCI transactions intended for any internal registers, the ROM address range, and several peripheral and user-defined address ranges. For positive-decoded transactions, the CS5530A is a medium responder. Table 4-3 lists the valid C/BE# encoding for PCI target transactions.

The CS5530A acts as the subtractive agent in the system since it contains the ISA bridge functionality. Subtractive decoding ensures that all accesses not positively claimed by PCI devices are forwarded to the ISA bus. The subtractive-decoding sample point can be configured as slow, default, or disabled via F0 Index 41h[2:1]. Table 4-4 shows these programming bits. Figure 4-4 shows the timing for subtractive decoding.

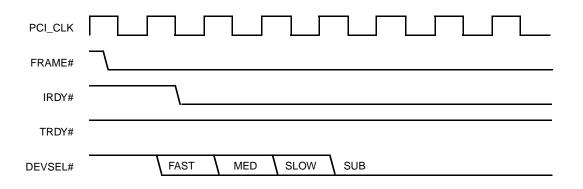

Note: I/O accesses that are mis-aligned so as to include address 0FFFFh and at least one byte beyond will "wrap" around to I/O address 0000h.

Table 4-3. PCI Command Encoding

C/BE[3:0]#	Command Type
0000	Interrupt Acknowledge
0001	Special Cycles: Shutdown, AD[15:0] = 0000
	Special Cycles: Halt, AD[15:0] = 0001
0010	I/O Read
0011	I/O Write
010x	Reserved
0110	Memory Read
0111	Memory Write
100x	Reserved
1010	Configuration Read
1011	Configuration Write
1100	Memory Read Multiple (memory read only)
1101	Reserved
1110	Memory Read Line (memory read only)
1111	Memory Write, Invalidate (memory write)

Table 4-4. Subtractive Decoding Related Bits

Bit	Description
F0 Index	41h PCI Function Control Register 2 (R/W) Reset Value = 10h
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by another device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively.
	00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 1x = No subtractive decode

4.2.3 Special Bus Cycles–Shutdown/Halt

The PCI interface does not pass Special Bus Cycles to the ISA interface, since special cycles by definition have no destination. However, the PCI interface monitors the PCI bus for Shutdown and Halt Special Bus Cycles.

Upon detection of a Shutdown Special Bus Cycle, a WM_RST SMI is generated after a delay of three PCI clock cycles. PCI Shutdown Special Cycles are detected when C/BE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0000h during the data phase. C/BE[3:0]# are also properly asserted during the data phase.

Upon detection of a Halt Special Bus Cycle, the CS5530A completes the cycle by asserting TRDY#. PCI Halt Special Bus Cycles are detected when CBE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0001h during the data phase of a Halt cycle. CBE[3:0]# are also properly asserted during the data phase.

4.2.4 PCI Bus Parity

When the CS5530A is the PCI initiator, it generates address parity for read and write cycles. It checks data par-

ity for read cycles and it generates data parity for write cycles. The PAR signal is an even-parity bit that is calculated across 36 bits of AD[31:0] plus C/BE[3:0]#.

By default, the CS5530A does not report parity errors. However, the CS5530A detects parity errors during the data phase if F0 Index 04h[6] is set to 1. If enabled and a data parity error is detected, the CS5530A asserts PERR#. It also asserts SERR# if F0 Index 41h[5] is set to 1. This allows NMI generation.

The CS5530A also detects parity errors during the address phase if F0 Index 04h[6] is set. When parity errors are detected during the address phase, SERR# is asserted internally. Parity errors are reported to the CPU by enabling the SERR# source in I/O Port 061h (Port B) control register. The CS5530A sets the corresponding error bits in the PCI Status Register (F0 Index 06h[15:14]). Table 4-5 shows these programming bits.

If the CS5530A is the PCI master for a cycle and detects PERR# asserted, it generates SERR# internally.

Table 4-5. PERR#/SERR# Associated Register Bits

Bit	Description					
F0 Index	04h-05h	PCI Command Register (R/W)	Reset Value = 000Fh			
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a target, and to assert PERR# v a parity error is detected. 0 = Disable (Default); 1 = Enable.					
F0 Index	06h-07h	PCI Status Register (R/W)	Reset Value = 0280h			
15	Detected Parity Error: Write 1 to clear.	This bit is set whenever a parity error is detected.				
14	Signaled System Erro Write 1 to clear.	r: This bit is set whenever the CS5530A asserts SERR# active				
F0 Index	41h	PCI Function Control Register 2 (R/W)	Reset Value = 10h			
5	-	#: Assert SERR# any time that PERR# is asserted or detected cascaded to NMI (SMI) generation in the system). 0 = Disable;				

4.2.5 PCI Interrupt Routing Support

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also know in industry terms as PIRQx#) to be mapped internally to any IRQ signal via register programming (shown in Table 4-6). Further details are supplied in Section 4.5.4.4 "PCI Compatible Interrupts" on page 103 regarding edge/level sensitivity selection.

4.2.6 Delayed Transactions

The CS5530A supports delayed transactions to prevent slow PCI cycles from occupying too much bandwidth and allows access for other PCI traffic.

Note: For systems which have only the GX1 processor and CS5530A on the PCI bus, system performance is improved if delayed transactions are disabled.

F0 Index 42h[5] and F0 Index 43h[1] are used to program this function. Table 4-7 shows these bit formats.

Bit	Description				
-0 Index	5Ch	PCI Interrupt Stee	Reset Value = 00		
7:4	INTB# Target Interrupt: Selects target interrupt for INTB#.				
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12	
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD	
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15	
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.		
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12	
	0004 1004	0101 = IRQ5	1001 = IRQ9	1101 = RSVD	
	0001 = IRQ1				
	0001 = IRQ1 0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14	
CC	0010 = RSVD 0011 = IRQ3 the target interrupt must first pompatibility.	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1	1111 = IRQ15 h in order to maintain PCI interrupt	
CC	0010 = RSVD 0011 = IRQ3 the target interrupt must first pompatibility.	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi	1011 = IRQ11	1111 = IRQ15	
	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs ompatibility.	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1111 = IRQ15 h in order to maintain PCI interrupt	
cc O Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs ompatibility.	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1111 = IRQ15 h in order to maintain PCI interrupt	
cc 50 Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs ompatibility. 5Dh INTD# Target Interrup	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee it: Selects target interrupt for I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#.	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00	
cc O Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs pmpatibility. 5Dh INTD# Target Interrup 0000 = Disable	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee t: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12	
cc O Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs ompatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee it: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	1011 = IRQ11 tive via I/O Port 4D0h and 4D11 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD	
cc O Index	0010 = RSVD 0011 = IRQ3 the target interrupt must first ompatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee t: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	1011 = IRQ11 tive via I/O Port 4D0h and 4D11 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14	
сс 7 Index 7:4	0010 = RSVD 0011 = IRQ3 the target interrupt must first ompatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 st: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D11 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14	
сс 7 Index 7:4	0010 = RSVD 0011 = IRQ3 the target interrupt must first ompatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrup	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 st: Selects target interrupt for I	1011 = IRQ11 tive via I/O Port 4D0h and 4D11 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15	
сс 7 Index 7:4	0010 = RSVD 0011 = IRQ3 ne target interrupt must first 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrup 0000 = Disable	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 st: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D11 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#. 1000 = RSVD	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15 1100 = IRQ12	

Table 4-7.	Delay	Transaction	Programming	Bits
------------	-------	-------------	-------------	------

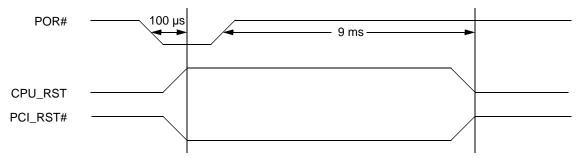
Bit	Description			
F0 Index	42h PCI Function Control Register 3 (R/W)	Reset Value = ACh		
5 Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable.				
	Also see F0 Index 43h[1].			
F0 Index 43h USB Shadow Register (R/W)				
F0 Index 4	3h USB Shadow Register (R/W)	Reset Value = 03h		
F0 Index 4	3h USB Shadow Register (R/W) PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allow the 0 = Disable; 1 = Enable.			

4.3 Resets and Clocks

The operations of resets and clocks in the CS5530A are described in this section of the Functional Description.

4.3.1 Resets

The CS5530A generates two reset signals, PCI_RST# to the PCI bus and CPU_RST to the GX1 processor. These resets are generated after approximately 100 μ s delay from POR# active as depicted in Figure 4-5.


At any state, Power-on/Resume/Reset, the 14.31818 MHz oscillator must be active for the resets to function.

4.3.2 ISA Clock

The CS5530A creates the ISACLK from dividing the PCI-CLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0] as shown in Table 4-8.

Table 4-8. ISACLK Divider Bits

Bit	Description		
F0 Index	50h	PIT Control/ISA CLK Divider (R/W)	Reset Value = 7Bh
2:0	ISA Clock Divisor: Determir approximately 8 MHz.	nes the divisor of the PCI clock used to make the ISA clock	x, which is typically programmed for
	000 = Reserved	100 = Divide by five	
	001 = Divide by two	101 = Divide by six	
	010 = Divide by three	110 = Divide by seven	
	011 = Divide by four	111 = Divide by eight	
	If 25 MHz PCI clock, use sett	ing of 010 (divide by 3). If 30 or 33 MHz PCI clock, use a s	setting of 011 (divide by 4).

POR# minimum pulse width for CS5530A only (i.e., not a system specification) = 100 µs and 14 MHz must be running.

Figure 4-5. CS5530A Reset

4.3.3 DOT Clock

The DOT clock (DCLK) is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DOT clock. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz.

However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock.

For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

The system clock distribution for a CS5530A/GX1 based system is shown in Figure 4-6.

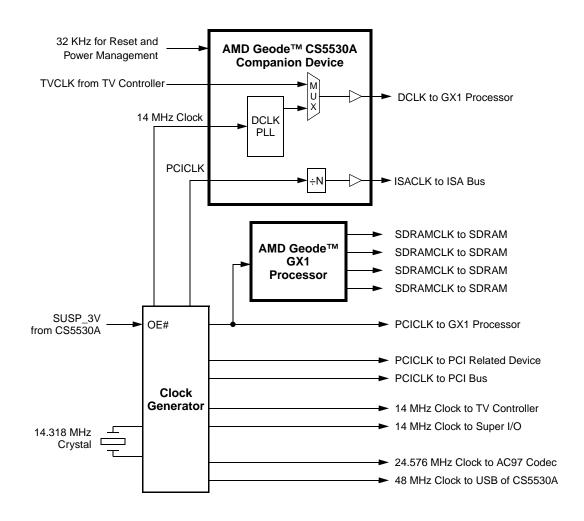


Figure 4-6. System Clock Distribution

4.3.3.1 DCLK Programming

The PLL contains an input divider (ID), feedback divider (FD) and a post divider (PD). The programming of the dividers is through F4BAR+Memory Offset 24h (see Table 4-9 on page 58). The maximum output frequency is 300 MHz. The output frequency is given by equation #1:

Equation #1:

DCLK = [CLK_14MHZ * FD] ÷ [PD *ID]

Condition:

140 MHz < [DCLK * PD] < 300 MHz

Where:

CLK_14MHZ is pin P24 FD is derived from N see equation #2 and #3: PD is derived from bits [28:24] ID is derived from bits [2:0]

Equation #2:

If FD is an odd number then: FD = 2*N + 1

Equation #3:

If FD is an even number then: $FD = 2^*N + 0$

Where:

N is derived from bits [22:12]

+1 is achieved by setting bit 23 to 1.

+0 is achieved by clearing bit 23 to 0.

Example

Define Target Frequency:

Target frequency = 135 MHz

Satisfy the "Condition":

(140 MHz < [DCLK * PD] < 300 MHz) 140 MHz < [135 MHz * 2] < 300 MHz Therefore PD = 2

Solve Equation #1:

 $\begin{array}{l} \text{DCLK} = [\text{CLK}_14\text{MHZ} * \text{FD}] \div [\text{PD} *\text{ID}] \\ 135 = [14.31818 * \text{FD}] \div [2 * \text{ID}] \\ 135 = [7.159 * \text{FD}] \div \text{ID} \\ 18.86 = \text{FD} \div \text{ID} \\ \text{Guess: ID} = 7, \text{ Solve for FD} \\ \text{FD} = 132.02 \end{array}$

Solve Equation #2 or #3:

FD = 2^*N +1 for odd FD FD = 2^*N +0 for even FD FD is 132, therefore even 132 = 2^*N +0 N = 66

Summarize:

 $\label{eq:pd} \begin{array}{l} \text{PD} = 2\text{: Bits } [28\text{:}24] = 00111 \\ \text{ID} = 7\text{: Bits } [2\text{:}0] = 101 \\ \text{N} = 66\text{: Bits } [22\text{:}12] = 073\text{h (found in Table 4-10), clear} \\ \text{bit } 23 \end{array}$

Result:

DCLK = 135

The BIOS has been provided with a complete table of divisor values for supported graphics clock frequencies. Many combinations of divider values and VCO frequencies are possible to achieve a certain output clock frequency. These BIOS values may be adjusted from time to time to meet system frequency accuracy and jitter requirements. For applications that do not use the GX1 processor's graphics subsystem, this is an available clock for general purpose use.

The transition from one DCLK frequency to another is not guaranteed to be smooth or bounded; therefore, new divider coefficients should only be programmed while the PLL is off line in a situation where the transition characteristics of the clock are "don't care". The steps below describe (in order) how to change the DCLK frequency.

- 1) Program the new clock frequency.
- Program Feedback Reset (bit 31) high and Bypass PLL (bit 8) high.
- 3) Wait at least 500 µs for PLL to settle.
- 4) Program Feedback Reset (bit 31) low.
- 5) Program Bypass PLL (bit 8) low.

Table 4-9. DCLK Configuration Register

Bit	Description			
F4BAR+I	lemory Offset 24h-27h	DOT Clock Configuratio	n Register (R/W)	Reset Value = 00000000h
31		PLL postscaler and feedback t description is provided in bit	divider. 0 = Normal operation; 8.	1 = Reset.
30	Half Clock: 0 = Enable; 1 =	Disable.		
		ock enables the falling edge of y approximate a 50% output d		enerate the falling edge of the post
29	Reserved: Set to 0.			
28:24	5-Bit DCLK PLL Post Divis	or (PD) Value: Selects value of	of 1 to 31.	
	00000 = PD divisor of 8 00001 = PD divisor of 6 00010 = PD divisor of 18 00011 = PD divisor of 4 00100 = PD divisor of 12 00101 = PD divisor of 16 00110 = PD divisor of 24 00111 = PD divisor of 2 *See bit 11 description.	01000 = PD divisor of 10 01001 = PD divisor of 20 01010 = PD divisor of 14 01011 = PD divisor of 26 01100 = PD divisor of 22 01101 = PD divisor of 28 01110 = PD divisor of 30 01111 = PD divisor of 1*	10000 = PD divisor of 9 10001 = PD divisor of 7 10010 = PD divisor of 19 10011 = PD divisor of 5 10100 = PD divisor of 13 10101 = PD divisor of 17 10110 = PD divisor of 25 10111 = PD divisor of 3	11000 = PD divisor of 11 11001 = PD divisor of 21 11010 = PD divisor of 15 11011 = PD divisor of 27 11100 = PD divisor of 23 11101 = PD divisor of 29 11110 = PD divisor of 31 11111 = Reserved
23			Divisor) parameter in equatio	n (see Note).
22:12	N: This bit represents "N" in			DCLK PLL VCO feedback divisor)
11	CLK_ON: 0 = PLL disable; 1 disabled by this bit.	= PLL enable. If PD = 1 (i.e.,	bits [28:24] = 01111) the PLL	is always enabled and cannot be
10	DOT Clock Select: 0 = DCL	K; 1 = TV_CLK.		
9	Reserved: Set to 0			
8	If this bit is set to 1, the input	•		Operation; 1 = Bypass PLL. bltage, which in turn powers down
7:6	Reserved: Set to 0.			
5	Reserved (Read Only): Wri	te as read		
4:3	Reserved: Set to 0.			
2:0	PLL Input Divide (ID) Value	e: Selects value of 2 to 9 (see	Note).	
	$000 = ID ext{ divisor of } 2$ $010 = ID ext{ divisor of } 4$	100 = ID divisor of 6 110 = ID divisor of 8	001 = ID divisor of 3 011 = ID divisor of 5	101 = ID divisor of 7 111 = ID divisor of 9
Note:	To calculate DCLK output freq			
	Equation #1: DCLK = [CLK_14 Condition: 140 MHz < [DCLK ?	PD] < 300 MHz		
	FD is deri PD is deri	HZ is pin P24 ved from N see equation #2 ar ved from bits [28:24] ed from bits [2:0]	nd #3	
	Equation #2: If FD is an odd n			
	+1 is achi	number then: $FD = 2*N + 0$ ed from bits [22:12] eved by setting bit 23 to 1. eved by clearing bit 23 to 0.		

Table 4-10. F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")

							-		_			e (valu			-		
N	Reg. Value		N	Reg. Value	r	N	Reg. Value	N	Reg. Value								
400	33A	349	23	298	331	247	7D0	196	143		145	551	9	4	19E	43	161
399	674	348	47	297	662	246	7A1	195	286		144	2A3	9	3	33C	42	2C2
398	4E8	347	8F	296	4C4	245	743	194	50D		143	547	9		678	41	585
397	1D0	346	11F	295	188	244	687	193	21B	_	142	28F	9		4F0	40	30B
396	3A0	345	23E	294	310	243	50E	192	437		141	51F	9		1E0	39	616
395	740	344	47D	293	620	242	21D	191	6E	_	140	23F	8		3C0	38	42C
394	681	343	FA	292	440	241	43B	190	DD	_	139	47F	8		780	37	58
393	502	342	1F5	291	80	240	76	189	1BB	_	138	FE	8		701	36	B1
392	205	341	3EA	290	101	239	ED	188	376		137	1FD		6	603	35	163
391	40B	340	7D4	289	202	238	1DB	187	6EC	_	136	3FA		5	406	34	2C6
390	16	339	7A9	288	405	237	3B6	186	5D8	_	135	7F4		4	С	33	58D
389	2D	338	753	287	A	236	76C	185	3B1		134	7E9	8		19	32	31B
388	5B	337	6A7	286	15	235	6D9	184	762	_	133	7D3		2	33	31	636
387	B7	336	54E	285	2B	234	5B2	183	6C5	_	132	7A7	8		67	30	46C
386	16F	335	29D	284	57	233	365	182	58A		131	74F	8		CF	29	D8
385	2DE	334	53B	283	AF	232	6CA	181	315	_	130	69F	7		19F	28	1B1
384	5BD	333	277	282	15F	231	594	180	62A	_	129	53E	7		33E	27	362
383	37B	332	4EF	281	2BE	230	329	179	454		128	27D	7		67C	26	6C4
382	6F6	331	1DE	280	57D	229	652	178	A8	_	127	4FB	7		4F8	25	588
381	5EC	330	3BC	279	2FB	228	4A4	177	151	_	126	1F6	7		1F0	24	311
380	3D9	329	778	278	5F7	227	148	176	2A2		125	3EC		'4 '2	3E0	23	622
379	7B2	328	6F1	277	3EF	226	290	175	545	_	124	7D8		3	7C0	22	444
378	765	327	5E2	276	7DE	225	521	174	28B	_	123	7B1		2	781	21	88
377	6CB	326	3C5	275	7BD	224	243	173	517		122	763	7		703 607	20 19	111
376	596 32D	325	78A	274	77B 6F7	223	487	172	22F	_	121	6C7 58E					222
375		324	715 62P	273	5EE	222	10E	171 170	45F	_	120		6		40E	18	445
374 373	65A 4B4	323 322	62B 456	272 271	3DD	221 220	21C 439	169	BE 17D		119 118	31D 63A	6		1C 39	17 16	8A 115
373	464 168	322	AC AC	271	7BA	220	439 72	169	2FA	_	117	474	6		73	15	22A
372	2D0	321	159	269	775	219	E5	167	2FA 5F5	_	116	474 E8	6		F7	14	455
370	5A1	319	2B2	268	6EB	210	1CB	166	3EB		115	1D1		4	1CF	13	AA
369	343	318	565	267	5D6	216	396	165	7D6	_	114	3A2	6		39E	12	155
368	686	317	2CB	266	3AD	215	72C	164	7AD	_	113	744	6		73C	11	2AA
367	50C	316	597	265	75A	213	659	163	75B	_	112	689	6		679	10	555
366	219	315	32F	264	6B5	213	4B2	162	6B7	_	111	512		0	4F2	9	2AB
365	433	314	65E	263	56A	212	164	161	56E	_	110	225	5		1E4	8	557
364	66	313	4BC	262	2D5	211	2C8	160	2DD	_	109	44B		8	3C8	7	2AF
363	CD	312	178	261	5AB	210	591	159	5BB	_	108	96		7	790	6	55F
362	19B	311	2F0	260	357	209	323	158	377	_	107	12D		6	721	5	2BF
361	336	310	5E1	259	6AE	208	646	157	6EE	_	106	25A	5		643	4	57F
360	66C	309	3C3	258	55C	207	48C	156	5DC	_	105	4B5		4	486	3	2FF
359	4D8	308	786	257	2B9	206	118	155	3B9	_	104	16A		3	10C	2	5FF
358	1B0	307	70D	256	573	205	230	154	772	_	103	2D4		2	218	1	3FF
357	360	306	61B	255	2E7	204	461	153	6E5	_	102	5A9	5	1	431	L	L
356	6C0	305	436	254	5CF	203	C2	152	5CA	_	101	353		0	62		
355	580	304	6C	253	39F	202	185	151	395	-	100	6A6		9	C5		
354	301	303	D9	252	73E	201	30A	150	72A	-	99	54C		8	18B		
353	602	302	1B3	251	67D	200	614	149	655		98	299		7	316		
352	404	301	366	250	4FA	199	428	148	4AA		97	533		6	62C		
351	8	300	6CC	249	1F4	198	50	147	154	-	96	267		5	458		
350	11	299	598	248	3E8	197	A1	146	2A8		95	4CF		4	B0		

4.4 Power Management

The hardware resources provided by a combined CS5530A/GX1 based system support a full-featured power management implementation. The extent to which these resources are employed depends on the application and the discretion of the system designer.

Power management resources can be grouped according to the function they enable or support. The major functions are as follows:

- CPU Power Management
 - On
 - Active Idle
 - Suspend
 - 3 Volt Suspend
 - Off
 - Save-to-Disk/Save-to-RAM
 - Suspend Modulation
- APM Support
- Peripheral Power Management
 - Device Idle Timers and Traps
 - General Purpose Timers
 - ACPI Timer Register
 - General Purpose I/O Pins
 - Power Management SMI Status Reporting Registers
 - Device Power Management Register Programming Summary

Included in the following subsections are details regarding the registers used for configuring power management features. The majority of these registers are directly accessed through the PCI configuration register space designated as Function 0 (F0). However, included in the discussions are references to F1BAR+Memory Offset 10h. This refers to the registers accessed through a base address register in Function 1 (F1) at Index 10h (F1BAR). F1BAR sets the base address for the SMI status and ACPI timer support registers as shown in Table 3-11.

4.4.1 CPU Power Management

The three greatest power consumers in a system are the display, hard drive, and CPU. The power management of the first two is relatively straightforward and is discussed in Section 4.4.3 "Peripheral Power Management" on page 67. CPU power management is supported through several mechanisms resulting in five defined system power conditions:

- On
- Active Idle
- Suspend
- 3 Volt Suspend
- Off

There are also three derivative power conditions defined:

- Suspend Modulation
 - Combination of On and Suspend
- Save-to-Disk

 Off with the ability to return back to the exact system condition without rebooting
- Save-to-RAM
 - Extreme 3 Volt Suspend with only the contents of RAM still powered

4.4.1.1 On

System is running and the CPU is actively executing code.

Table 4-11. Base Address Register (F1BAR) for SMI Status and ACPI Timer Support

			• •
Bit	Description		
F1 Index 1	0h-13h	Base Address Register — F1BAR (R/W)	Reset Value = 00000000h
indicating a ues. The u	a 256-byte memory ado oper 16 bytes are alwa	ss of the memory mapped SMI status and ACPI timer related regis dress range. Refer to Table 5-16 for the SMI status and ACPI timer ays mapped to the ACPI timer, and are always memory mapped. egister is accessible through F1BAR+Memory Offset 1Ch and I/O F	r registers bit formats and reset val-
31:8	SMI Status/Power M	anagement Base Address	
7:0	Address Range (Re	ad Only)	

60

4.4.1.2 Active Idle

This state is the most powerful power management state because it is an operational state. The CPU has executed a HLT instruction and has asserted the SUSPA# signal. The operating system has control of the entry of this state because the OS has either executed the HLT or made a BIOS call to indicate idle, and the BIOS executed the HLT instruction. The display refresh subsystem is still active but the CPU is not executing code. The clock is stopped to the processing core in this state and considerable power is saved in the processor. The CS5530A takes advantage of this power state by stopping the clock to some of the internal circuitry. This power saving mode can be enabled/disabled by programming F0 Index 96h[4] (see Table 4-12). The CS5530A can still make bus master requests for IDE, audio, USB, and ISA from this state. When the CS5530A or any other device on the PCI bus asserts REQ#, the CPU deasserts SUSPA# for the duration of REQ# activity. Once REQ# has gone inactive and all PCI cycles have stopped, the CPU reasserts SUSPA#. SUSPA# remains active until

the CPU receives an INTR or SMI event which ends the CPU halt condition.

4.4.1.3 Suspend

This state is similar to the Active Idle state except that the CPU enters this state because the CS5530A asserted SUSP#. The CS5530A deasserts SUSP# when an INTR or SMI event occurs. The Suspend Configuration register is shown in Table 4-12, however, also see the tables listed below for a more complete understanding on configuring the Suspend state.

- F0 Index BCh in Table 4-13 "Clock Stop Control Register" on page 62.
- Related registers in Table 4-14 "Suspend Modulation Related Registers" on page 64.
- F0 Index AEh in Table 4-16 "APM Support Registers" on page 67.

Bit	Description					
F0 Index 9	6h Suspend Configuration Register (R/W) Reset Value = 00h					
7:5	Reserved: Set to 0.					
4	Power Savings Mode: 0 = Enable; 1 = Disable.					
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included.					
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a GX1 processor during Suspend. 0 = Disable; 1 = Enable.					
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI occurs.					
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspend Modulation when an SMI occurs.					
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).					
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Management Mode so that VSA technology and power management operations occur at full speed. Two methods for accomplishing this are either to map the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable Suspend Modulation until the SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The latter is the preferred method. The IRQ speedup method is provided for software compatibility with earlier revisions of the CS5530A. This bit has no effect if the Suspend Modulation feature is disabled (bit $0 = 0$).					
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.					
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed in the Suspend Modulation OFF/ON Count Registers (F0 Index 94h/95h).					

Table 4-12. Suspend Configuration Register

4.4.1.4 3 Volt Suspend

This state is a non-operational state. To enter this state the display must have been previously turned off. This state is usually used to put the system into a deep sleep to conserve power and still allow the user to resume where they left off.

The CS5530A supports the stopping of the CPU and system clocks for a 3 Volt Suspend state. If appropriately configured, via the Clock Stop Control Register (F0 Index BCh, see Table 4-13), the CS5530A asserts the SUSP_3V pin after it has gone through the SUSP#/SUSPA# handshake. The SUSP_3V pin is a state indicator, indicating that the system is in a low-activity state. This indicator can be used to put the system into a low-power state (the system clock can be turned off).

The SUSP_3V pin is intended to be connected to the output enable of a clock generator or buffer chip, so that the clocks to the CPU and the CS5530A (and most other system devices) are stopped. The CS5530A continues to decrement all of its device timers and respond to external SMI interrupts after the input clock has been stopped, as long as the 32 KHz clock continues to oscillate. Any SMI event or unmasked interrupt pin causes the CS5530A to deassert the SUSP_3V pin, restarting the system clocks. As the CPU or other device might include a PLL, the CS5530A holds SUSP# active for a pre-programmed period of delay (the PLL re-sync delay) that varies from 0 to 15 ms. After this period has expired, the CS5530A deasserts SUSP#, stopping Suspend. SMI# is held active for the entire period, so that the CPU reenters SMM when the clocks are restarted.

Note: The SUSP_3V pin can be active either high or low. The pin is an input during POR, and is sampled to determine its inactive state. This allows a designer to match the active state of SUSP_3V to the inactive state for a clock driver output enable with a pull-up or pull-down resistor.

4.4.1.5 Off

The system is off and there is no power being consumed by the processor or the CS5530A.

Bit	Description							
F0 Index	BCh	Clock Stop Control Register (R/W)		Reset Value = 00h				
7 <u>:</u> 4	pin is deasserted to the	PLL Delay: The programmed value in this field sets the delay (in milliseconds) after a break event occurs before the SUSP# pin is deasserted to the CPU. This delay is designed to allow the clock chip and CPU PLL to stabilize before starting execution. This delay is only invoked if the STP_CLK bit (bit 0) was set.						
	The four-bit field allow	vs values from 0 to 15 ms.						
	0000 = 0 ms	0100 = 4 ms	1000 = 8 ms	1100 = 12 ms				
	0001 = 1 ms	0101 = 5 ms	1001 = 9 ms	1101 = 13 ms				
	0010 = 2 ms	0110 = 6 ms	1010 = 10 ms	1110 = 14 ms				
	0011 = 3 ms	0111 = 7 ms	1011 = 11 ms	1111 = 15 ms				
3:1	Reserved: Set to 0.							
0	CPU Clock Stop: 0 =	Normal SUSP#/ SUSPA# han	dshake; 1 = Full system Suspe	nd.				
ap clo	propriate conditions, sto ock chip and CPU PLL to		ay of 0 to 15 ms is programmation is the system.	the SUSP_3V pin to assert after the ole (bits 7:4) to allow for a delay for the				
0	= SUSP#/SUSPA# hand	e (nto a low-power state, and the	system clocks are not stopped. When a				
sy	stem clocks are stopped		the SUSP_3V pin will deassert	a full system Suspend (both CPU and , the PLL delay programmed in bits [7:4 the SUSP# pin.				

Table 4-13. Clock Stop Control Register

4.4.1.6 Suspend Modulation

Suspend Modulation is a derivative of the On and Suspend states and works by asserting and de-asserting the SUSP# pin to the CPU for a configurable period and duty cycle. By modulating the SUSP# pin, an effective reduction in frequency is achieved. Suspend Modulation is the system power management choice of last resort. However, it is an excellent choice for thermal management. If the system is expected to operate in a thermal environment where the processor could overheat, then Suspend Modulation could be used to reduce power consumption in the overheated condition and thus reduce the processor's temperature.

When used as a power management state, Suspend Modulation works by assuming that the processor is idle unless external activity indicates otherwise. This approach effectively slows down the processor until external activity indicates a need to run at full speed, thereby reducing power consumption.

Suspend Modulation serves as the primary CPU power management mechanism when APM or some other power management software strategy is not present. It can also act as a backup for situations where the power management scheme does not correctly detect an Idle condition in the system.

In order to provide high-speed performance when needed, the SUSP# pin modulation can be temporarily disabled any time system activity is detected. When this happens, the processor is "instantly" converted to full speed for a programmed duration. System activities in the CS5530A are defined in hardware as: any unmasked IRQ, accessing Port 061h, SMI, and/or accessing the graphics controller. Since the graphics controller is integrated in the GX1 processor, the indication of graphics activity is sent to the CS5530A via the serial link (see Section 4.1.2 "PSERIAL Pin Interface" on page 50 for more information on serial link) and is automatically decoded. Graphics activity is defined as any access to the VGA register space, the VGA frame buffer, the graphics accelerator control registers and the configured graphics frame buffer.

The automatic speedup events (IRQ, SMI, and/or graphics) for Suspend Modulation should be used together with software-controlled speedup registers for major I/O events such as any access to the floppy disk controller, hard disk drive, or parallel/serial ports, since these are indications of major system activities. When major I/O events occur, Suspend Modulation can be temporarily disabled using the procedures described in the following subsections.

Bus master internal (Ultra DMA/33, Audio, USB, or ISA) or external requests do not directly affect the Suspend Modulation programming.

Configuring Suspend Modulation

Control of the Suspend Modulation feature is accomplished using the Suspend Modulation OFF Count Register, the Suspend Modulation ON Count Register, and the Suspend Configuration Register (F0 Index 94h, 95h, and 96h, respectively). The Power Management Enable Register 1 (F0 Index 80h) contains the enables for the individual activity speedup timers.

Bit 0 of the Suspend Configuration Register (F0 Index 96h) enables the Suspend Modulation feature. Bit 1 controls how SMI events affect the Suspend Modulation feature. In general this bit should be set to a 1, which causes SMIs to disable Suspend Modulation until it is re-enabled by the SMI handler.

The Suspend Modulation OFF and ON Count Registers (F0 Index 94h and 95h) control two 8-bit counters that represent the number of 32 μ s intervals that the SUSP# pin is asserted and then deasserted to the processor. These counters define a ratio which is the effective frequency of operation of the system while Suspend Modulation is enabled.

$$F_{eff} = F_{GX86} \times \frac{Off Count}{On Count + Off Count}$$

The IRQ and Video Speedup Timer Count registers (F0 Index 8Ch and 8Dh) configure the amount of time which Suspend Modulation is disabled when the respective events occur.

SMI Speedup Disable

If the Suspend Modulation feature is being used for CPU power management, the occurrence of an SMI disables the Suspend Modulation function so that the system operates at full speed while in SMM. There are two methods used to invoke this via bit 1 of the Suspend Configuration Register.

If F0 Index 96h[1] = 0: Use the IRQ Speedup Timer (F0 Index 8Ch) to temporarily disable Suspend Modulation when an SMI occurs.

If F0 Index 96h[1] = 1: Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).

The SMI Speedup Disable Register prevents VSA technology software from entering Suspend Modulation while operating in SMM. The data read from this register can be ignored. If the Suspend Modulation feature is disabled, reading this I/O location has no effect.

Table 4-14 shows the bit formats of the Suspend Modulation related registers.

Table 4-14. Suspend Modulation Related Registers

Bit	Description	
F0 Index 8	0h Power Management Enable Register 1 (R/W)	Reset Value = 00h
4	Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) sor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the s aged using CPU Suspend modulation. 0 = Disable; 1 = Enable.	ystem is power man-
	The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8E external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This standard, but it does allow the power management routines to support an external VGA chip.	
3	IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SL shake) for a configurable duration when the system is power managed using CPU Suspend modula $0 = Disable; 1 = Enable.$	
	The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch).
F0 Index 8	Ch IRQ Speedup Timer Count Register (R/W)	Reset Value = 00h
7:0	IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is load Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h or occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. It is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms.	curs. When the event
	This speedup mechanism allows instantaneous response to system interrupts for full-speed interrup value here would be 2 to 4 ms.	t processing. A typical
F0 Index 8	Dh Video Speedup Timer Count Register (R/W)	Reset Value = 00h
7:0	Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is low when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controlled access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timeback	r occurs. When a video ne CPU. Upon expira-
	This speedup mechanism allows instantaneous response to video activity for full speed during video tions. A typical value here would be 50 to 100 ms.	processing calcula-
Index 94h	Suspend Modulation OFF Count Register (R/W)	Reset Value = 00h
7:0	Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that deasserted to the GX1 processor. This timer, together with the Suspend Modulation ON Count Regist form the Suspend Modulation function for CPU power management. The ratio of the on-to-off count (emulated) clock frequency, allowing the power manager to reduce CPU power consumption.	ster (F0 Index 95h), per- sets up an effective
	This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ sp speedups.	eedups and video
Index 95h	Suspend Modulation ON Count Register (R/W)	Reset Value = 00h
7:0	Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that th asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), per ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (er quency, allowing the power manager to reduce CPU power consumption.	form the Suspend Mod-
	This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ sp speedups.	eedups and video

Bit	Description	
Index 96h	Suspend Configuration Register (R/W)	Reset Value = 00h
7:5	Reserved: Set to 0.	
4	Power Savings: 0 = Enable; 1 = Disable.	
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included	ed.
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a pend. 0 = Disable; 1 = Enable.	GX1 processor during Sus-
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI	occurs.
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Susper occurs.	nd Modulation when an SMI
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Offset 08h).	e Register (F1BAR+Memory
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Mana technology and power management operations occur at full speed. Two methods for accomplite SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The IRQ speedup method is provided for software compatibility with earlier revisions of the CS if the Suspend Modulation feature is disabled (bit $0 = 0$).	shing this are either to map ole Suspend Modulation until latter is the preferred method.
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.	
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed OFF/ON Count Registers (F0 Index 94h/95h).	I in the Suspend Modulation
F0 Index A	8h-A9h Video Overflow Count Register (R/W)	Reset Value = 0000h
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 10 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count Regist ms timer re-triggers. Software clears the overflow register when new evaluations are to begin. register may be combined with other data to determine the type of video accesses present in	ster increments and the 100 The count contained in this
F1BAR+M	emory Offset 08h-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000h
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Index 96h[1] = invokes the SMI handler to re-enable Suspend Modulation.	= 1), a read of this register
	The data read from this register can be ignored. If the Suspend Modulation feature is disabled no effect.	, reading this I/O location has

Table 4-14. Suspend Modulation Related Registers (Continued)

4.4.1.7 Save-to-Disk/Save-to-RAM

This is a derivative of the Off state. The processor and the CS5530A have the capability to save their complete state. This state information can be saved to a hard disk or to RAM and the system can be turned off. When powered back on, the system can be returned exactly back to the state it was in when the save process began. This means that the system does not have to be rebooted in the traditional sense. In both cases, precautions must be taken in the system design to make sure that there is sufficient space on the hard drive or RAM to store the information. In the case of the RAM, it must also be powered at all times and can not be corrupted when the system is powered off and back on.

The PC/AT compatible floppy port is not part of the CS5530A. If a floppy is attached on the ISA bus in a SuperI/O or by some other means, some of the FDC registers are shadowed in the CS5530A because they cannot be safely read. The FDC registers are shown in Table 4-15. Additional shadow registers for other functions are described in:

- Table 4-40 "DMA Shadow Register" on page 98
- Table 4-42 "PIT Shadow Register" on page 100
- Table 4-45 "PIC Shadow Register" on page 102
- Table 4-53 "Real-Time Clock Registers" on page 109

Bit	Description	
F0 Index	B4h Floppy Port 3F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F2h Shadow (Read Only): Last written value of I/O Port 3F2h. Required for s and Save-to-Disk/RAM coherency.	support of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register the register is being read. It is provided here to assist in a Save-to-Disk operation.	er is not deterministic of when
F0 Index	B5h Floppy Port 3F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F7h Shadow (Read Only): Last written value of I/O Port 3F7h. Required for s and Save-to-Disk/RAM coherency.	support of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register the register is being read. It is provided here to assist in a Save-to-Disk operation.	er is not deterministic of when
F0 Index	B6h Floppy Port 1F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F2h Shadow (Read Only): Last written value of I/O Port 1F2h. Required for s and Save-to-Disk/RAM coherency.	support of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register the register is being read. It is provided here to assist in a Save-to-Disk operation.	er is not deterministic of when
F0 Index	B7h Floppy Port 1F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F7h Shadow (Read Only): Last written value of I/O Port 1F7h. Required for s and Save-to-Disk/RAM coherency.	support of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register the register is being read. It is provided here to assist in a Save-to-Disk operation.	er is not deterministic of when

Table 4-15. Power Management Shadow Registers

Some IA systems rely solely on an APM (Advanced Power Management) driver for enabling the operating system to power-manage the CPU. APM provides several services which enhance the system power management and is theoretically the best approach; but in its current form, APM is imperfect for the following reasons:

- APM is an OS-specific driver, and may not be available for some operating systems.
- Application support is inconsistent. Some applications in foreground may prevent Idle calls.
- APM does not help with Suspend determination or peripheral power management.

The CS5530A provides two entry points for APM support:

- Software CPU Suspend control via the CPU Suspend Command Register (F0 Index AEh)
- Software SMI entry via the Software SMI Register (F0 Index D0h). This allows the APM BIOS to be part of the SMI handler.

These registers are shown in Table 4-16.

4.4.3 Peripheral Power Management

The CS5530A provides peripheral power management using a combination of device idle timers, address traps, and general purpose I/O pins. Idle timers are used in conjunction with traps to support powering down peripheral devices. Eight programmable GPIO (general purpose I/O) pins are included for external device power control as well as other functions. All I/O addresses are decoded in 16 bits. All memory addresses are decoded in 32 bits.

4.4.3.1 Device Idle Timers and Traps

Idle timers are used to power manage a peripheral by determining when the peripheral has been inactive for a specified period of time, and removing power from the peripheral at the end of that time period.

Revision 1.1

Idle timers are provided for the commonly-used peripherals (FDC, IDE, parallel/serial ports, and mouse/keyboard). In addition, there are three user-defined timers that can be configured for either I/O or memory ranges. The Power Management enable bit (F0 Index 80h[1]) enables and disables the power management idle timers. The Trap bit in the same register (F0 Index 80h[2]) enables and disables device I/O traps.

The idle timers are 16-bit countdown timers with a 1 second time base, providing a time-out range of 1 to 65536 seconds (1092 minutes) (18 hours). General purpose timers can be programmed to count milliseconds instead of seconds (see Section 4.4.3.2 on page 77 for further information on general purpose timers).

When the idle timers are enabled, the timers are loaded from the timer count registers and start to decrement at the next timebase clock, but cannot trigger an interrupt on that cycle. If an idle timer is initially set to 1, it decrements to 0 on the first cycle and continues counting with 65535 on the next cycle. Starting at 2 gives 1 on the first cycle, and 0 on the second cycle, generating the interrupt. Since the timebase is one second, the minimum interval before the next interrupt from this timer is variable, from one to two seconds with a setting of two.

The idle timers continue to decrement until one of two possibilities occurs: a bus cycle occurs at that I/O or memory range, or the timer decrements to zero.

When a bus cycle occurs, the idle timer is reloaded with its starting value. It then continues to decrement.

Bit	Description			
F0 Index	AEh CPU Suspend Command Register (WO)	Reset Value = 00h		
7:0	Software CPU Suspend Command (Write Only): If bit 0 in the Clock Stop Control Register is 0) and all SMI status bits are 0, a write to this register causes a SUSP#/SUSPA# handshake will in a low-power state. The data written is irrelevant. Once in this state, any unmasked IRQ or SM dition.	th the CPU, placing the CPU		
	If F0 Index BCh[0] = 1, writing to this register invokes a full system Suspend. In this case, the SU the SUSP#/SUSPA# halt. Upon a Resume event (see Note), the PLL delay programmed in the F allowing the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin.			
	Note: If the clocks are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR+Merr only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 are e source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS5530 up the system from Suspend when the clocks are stopped. As long as the 32 KHz clock events are also Resume events.	nabled as an external SMI A pins can be used to wake-		
F0 Index	D0h Software SMI Register (WO)	Reset Value = 00h		
7:0	Software SMI (Write Only): A write to this location generates an SMI. The data written is irrele software entry into SMM via normal bus access instructions.	evant. This register allows		

Table 4-16. APM Support Registers

When the timer decrements to zero, if power management is enabled (F0 Index 80h[0] = 1), the timer generates an SMI. (F0 Index 80h[0] = 0 does not disable these timers from running, but only from generating SMI.)

When an idle timer generates an SMI, the SMI handler manages the peripheral power, disables the timer, and enables the trap. The next time an event occurs, the trap generates an SMI. This time, the SMI handler applies power to the peripheral, enables the timer (thus reloading its starting value), and disables the trap.

Tables 4-17 through 4-25 show the device associated idle timers and traps programming bits.

Table 4-17. Power Management Global Enabling Bits

Bit	Description	
F0 Index	80h Power Management Enable Register 1 (R/W)	Reset Value = 00h
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable.	
	This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.	
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.	
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at th	eir current counts.
	This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# Index AEh).	
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.	
	This bit must be set (1) immediately after POST for some power management resources to funct command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trig F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register them from generating an SMI# interrupt. It also has no effect on the UDEF traps.	gger events listed for

Table 4-18. Keyboard/Mouse Idle Timer and Trap Related Registers

Bit	Description		
F0 Index 81h Power Management Enable Register 2 (R/W) Reset Value = 00h			
3	Keyboard/Mouse Idle Timer Enable: Load tile erate an SMI when the timer expires. 0 = Disa	mer from Keyboard/Mouse Idle Timer Count Regi ble; 1 = Enable.	ster (F0 Index 9Eh) and gen-
	If an access occurs in the address ranges (list Keyboard Controller: I/O Ports 060h/064h	ed below) the timer is reloaded with the program	med count.
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1 COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1	· · · · · · · · · · · · · · · · · · ·	
	Top level SMI status is reported at F1BAR+Me Second level SMI status is reported at F0 Inde	,	
F0 Inde	lex 82h Power Manage	ment Enable Register 3 (R/W)	Reset Value = 00h
3	Keyboard/Mouse Trap: 0 = Disable; 1 = Enal	ble.	
	If this bit is enabled and an access occurs in the Keyboard Controller: I/O Ports 060h/064h	he address ranges (listed below) an SMI is gener	rated.
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1 COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1	· · · · · · · · · · · · · · · · · · ·	
	Top level SMI status is reported at F1BAR+Me Second level SMI status is reported at F0 Inde	,	
F0 Inde	lex 93h Miscellaneous	Device Control Register (R/W)	Reset Value = 00h
1	Mouse on Serial Enable: Mouse is present o	n a serial port. 0 = No; 1 = Yes. (Note)	
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2. (Note)		(Note)
	Bits 1 and 0 - If a mouse is attached to a serial por monitor serial port access for power management p mouse, along with the keyboard, is considered an i	ourposes and added to the keyboard/mouse deco	ode. This is done because a
	These bits determine the decode used for the Keyl Serial Port Idle Timer Count Register (F0 Index 9C	0 (s 9Eh) as well as the Parallel/

Table 4-18. Keyboard/Mouse Idle Timer and Trap Related Registers (Continued)

Bit	Description
F0 Index 9Eh-9Fh Keyboard / Mouse Idle Timer Count Register (R/W) Re	
15:0	Keyboard / Mouse Idle Timer Count: The idle timer loaded from this register determines when the keyboard and mouse are not in use so that the LCD screen can be blanked. The 16-bit value programmed here represents the period of inactivity for these ports after which the system is alerted via an SMI. The timer is automatically reloaded with the count value when ever an access occurs to either the keyboard or mouse I/O address spaces, including the mouse serial port address space when a mouse is enabled on a serial port. The timer uses a 1 second timebase.
	To enable this timer set F0 Index 81h[3] = 1.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].

Table 4-19. Parallel/Serial Idle Timer and Trap Related Registers

Bit	Description		
F0 Index	Th Power Management Enable Register 2 (R/W)	Reset Value = 00h	
2 F0 Index F0 Index	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2]. Power Management Enable Register 3 (R/W) Reset Value = 00h		
-	Parallel/Serial Trap: 0 = Disable; 1 = Enable.If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generalLPT1: I/O Port 378h-37Fh, 778h-77AhLPT2: I/O Port 278h-27Fh, 678h-67AhCOM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)COM3: I/O Port 3E8h-3EFhCOM4: I/O Port 2E8h-2EFhTop level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].Second level SMI status is reported at F0 Index 86h/F6h[2].	ted.	
F0 Index	3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h	
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)		
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2. (Note)	
mc mc Th	1 and 0 - If a mouse is attached to a serial port (bit $1 = 1$), that port is removed from the serial dentitor serial port access for power management purposes and added to the keyboard/mouse decoduse, along with the keyboard, is considered an input device and is used only to determine when to ese bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (F0 Index 9 Ch).	le. This is done because a blank the screen.	
F0 Index	Ch-9Dh Parallel / Serial Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Parallel / Serial Idle Timer Count: The idle timer loaded from this register is used to determine v ports are not in use so that the ports can be power managed. The 16-bit value programmed here inactivity for these ports after which the system is alerted via an SMI. The timer is automatically value whenever an access occurs to the parallel (LPT) or serial (COM) I/O address spaces. If the serial port, that port is not considered here. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[2] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2].	e represents the period of reloaded with the count	

Table 1-20	Eloppy Dick Idla	Timor and Tran	Polatod Pogistors
Table 4-20.	FIOPPY DISK IUIE	i nnei anu nap	Related Registers

Bit	Description	
F0 Index	81h Power Management Enable Register 2 (R/W)	Reset Value = 00h
1	Floppy Disk Idle Timer Enable: Load timer from Floppy Disk Idle Timer Count Registe SMI when the timer expires. 0 = Disable; 1 = Enable.	r (F0 Index 9Ah) and generate an
	If an access occurs in the address ranges (listed below) the timer is reloaded with the primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h	rogrammed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	
F0 Index	82h Power Management Enable Register 3 (R/W)	Reset Value = 00h
1	Floppy Disk Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, or 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, or 377h Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[1].	s generated.
F0 Index	93h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
7	Floppy Drive Port Select: All system resources used to power manage the floppy drive addresses for decode. 0 = Primary; 1 = Primary and Secondary.	use the primary or secondary FDC
F0 Index	9Ah-9Bh Floppy Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the floppy disk drive is not in use so that it can be powered down. The 16-bit value programmed here represents the period of floppy disk drive inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 375h, and 377h (secondary). The timer uses a 1 second timebase.	
	To enable this timer set F0 Index $81h[1] = 1$.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	

Bit	Description	
F0 Index	81h Power Management Enable Register 2 (R/W)	Reset Value = 00h
0 Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle T generate an SMI when the timer expires. 0 = Disable; 1 = Enable.		Register (F0 Index 98h) and
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded w	vith the programmed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].	
F0 Index	82h Power Management Enable Register 3 (R/W)	Reset Value = 00h
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[5], Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].	an SMI is generated.
F0 Index	93h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
5	Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are deco accesses.	oded as primary hard disk
	0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 = Power management monitors only writes to I/O Port 1F6h and 1F7h	
F0 Index	98h-99h Primary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the primary hard disk is not in use so that it can be powered down. The 16-bit value programmed here represents the period of primary hard disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to the configured primary hard disk's data port (configured in F0 Index 93h[5]). The timer uses a 1 second timebase.	
	To enable this timer set F0 Index 81h[0] = 1.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].	

Table 4-21. Primary Hard Disk Idle Timer and Trap Related Registers

Table 4-22	. Secondary Hard Disk Idle Ti	imer and Trap Related Registers
------------	-------------------------------	---------------------------------

Bit	Description		
F0 Index 8	3h Power Management Enable Register 4 (R/W)	Reset Value = 00h	
7	Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer Co and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	unt Register (F0 Index ACh)	
	If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded wit	h the programmed count.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].		
6	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4], an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].		
F0 Index 9	3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h	
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are dec Disk accesses.	oded as secondary hard	
	0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h		
F0 Index /	ACh-ADh Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Secondary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the secondary hard disk is not in use so that it can be powered down. The 16-bit value programmed here represents the period of second-ary hard disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to the configured secondary hard disk's data port (configured in F0 Index 93h[4]). The timer uses a 1 second timebase.		
	To enable this timer set F0 Index 83h[7] = 1.		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].		

	Description			
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h	
4	User Defined Device 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Count Register (F0 Index generate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF1 address programming is at F0 Index C0h (base address register) and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].			
	ł	status is reported at F0 Index 85h/F5h[4].	Decet Value - 00h	
F0 Index		Power Management Enable Register 3 (R/W)	Reset Value = 00h	
4	If this bit is enable programming is at Top level SMI stat	vice 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. ed and an access occurs in the programmed address range an SMI is gen t F0 Index C0h (base address register), and CCh (control register). sus is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[2].	erated. UDEF1 address	
Index A0	h-A1h	User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	configured as UDD period of inactivity count value when ter) and F0 Index To enable this time Top level SMI stat	vice 1 (UDEF1) Idle Timer Count: The idle timer loaded from this registe EF1 is not in use so that it can be power managed. The 16-bit value progr / for this device after which the system is alerted via an SMI. The timer is a ever an access occurs to memory or I/O address space configured at F0 I CCh (control register). The timer uses a 1 second timebase. er set F0 Index 81h[4] = 1. us is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[4].	ammed here represents the automatically reloaded with the	
F0 Index	C0h-C3h	User Defined Device 1 Base Address Register (R/W)	Reset Value = 00000000h	
31:0	timer resources) f	vice 1 (UDEF1) Base Address [31:0]: This 32-bit register supports powe or a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in	r management (trap and idle s used as the address compara-	
31:0 F0 Index	timer resources) for tor for the device t	or a PCMCIA slot or some other device in the system. The value written is	r management (trap and idle s used as the address compara-	
F0 Index	timer resources) fi tor for the device t CCh Memory or I/O M	or a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in	er management (trap and idle s used as the address compara- F0 Index CCh).	
F0 Index	timer resources) for tor for the device the	or a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in I User Defined Device 1 Control Register (R/W) apped: User Defined Device 1 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking Mask for address bits A[4:0]	er management (trap and idle s used as the address compara- F0 Index CCh). Reset Value = 00h	

Table 4-23. User Defined Device 1 (UDEF1) Idle Timer and Trap Related Registers

Table 4-24. User Defined Device 2 (UDEF2) Idle Timer and Trap Related Registers

Bit	Description				
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h		
5	generate an SMI w If an access occur	ice 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer Co /hen the timer expires. 0 = Disable; 1 = Enable. s in the programmed address range the timer is reloaded with the progra rogramming is at F0 Index C4h (base address register) and CDh (control	ammed count.		
		is is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].			
F0 Index	82h	Power Management Enable Register 3 (R/W)	Reset Value = 00h		
5	If this bit is enabled programming is at Top level SMI state	tice 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. d and an access occurs in the programmed address range an SMI is ger F0 Index C4h (base address register) and CDh (control register). us is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[3].	nerated. UDEF2 address		
F0 Index	A2h-A3h	User Defined Device 2 Idle Timer Count Register (R/W)	Reset Value = 0000h		
15:0	configured as UDE period of inactivity count value whene ter) and F0 Index (To enable this time Top level SMI statu	rice 2 (UDEF2) Idle Timer Count: The idle timer loaded from this register F2 is not in use so that it can be power managed. The 16-bit value prog for this device after which the system is alerted via an SMI. The timer is ever an access occurs to memory or I/O address space configured at F0 CDh (control register). The timer uses a 1 second timebase. er set F0 Index 81h[5] = 1. us is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].	rammed here represents the automatically reloaded with the		
F0 Index	C4h-C7h	User Defined Device 2 Base Address Register (R/W)	Reset Value = 00000000h		
31:0	timer resources) for	rice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports power or a PCMCIA slot or some other device in the system. The value written i rap/timer logic. The device can be memory or I/O mapped (configured in	s used as the address compara-		
F0 Index	CDh	User Defined Device 2 Control Register (R/W)	Reset Value = 00h		
7	Memory or I/O Ma	apped: User Defined Device 2 is: 0 = I/O; 1 = Memory.			
6:0	Mask If bit 7 = 0 (I/O): Bit 6 Bit 5 Bits 4:0 If bit 7 = 1 (M/IO):	 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking Mask for address bits A[4:0] 			
	Bits 6:0	Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max	(.) and A[8:0] are ignored.		
	Note: A "1" in a m	ask bit means that the address bit is ignored for comparison.			

	Description				
F0 Index	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h		
6	User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register (F0 Index A4h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].				
F0 Index	82h	Power Management Enable Register 3 (R/W)	Reset Value = 00h		
6	If this bit is enable programming is at Top level SMI stat	vice 3 (UDEF3) Trap: 0 = Disable; 1 = Enable. ed and an access occurs in the programmed address range an SMI is gene t F0 Index C8h (base address register) and CEh (control register). tus is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[4].	erated. UDEF3 address		
F0 Index	A4h-A5h	User Defined Device 3 Idle Timer Count Register (R/W)	Reset Value = 0000h		
15:0	configured as UD period of inactivity count value when ter) and F0 Index To enable this time Top level SMI stat	vice 3 (UDEF3) Idle Timer Count: The idle timer loaded from this registe EF3 is not in use so that it can be power managed. The 16-bit value progra for this device after which the system is alerted via an SMI. The timer is a ever an access occurs to memory or I/O address space configured at F0 I CEh (control register). The timer uses a 1 second timebase. er set F0 Index 81h[6] = 1. tus is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[6].	ammed here represents the automatically reloaded with the		
F0 Index	C8h-CBh	User Defined Device 3 Base Address Register (R/W)	Reset Value = 00000000h		
31:0	timer resources) f	vice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports power or a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in I	used as the address compara-		
	timer resources) for tor for the device t	vice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports powe for a PCMCIA slot or some other device in the system. The value written is	used as the address compara-		
F0 Index	timer resources) fi tor for the device t CEh Memory or I/O M	vice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports powe for a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in I	s used as the address compara- F0 Index CEh).		
F0 Index	timer resources) fi tor for the device t CEh	 vice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports power for a PCMCIA slot or some other device in the system. The value written is trap/timer logic. The device can be memory or I/O mapped (configured in I User Defined Device 3 Control Register (R/W) lapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking Mask for address bits A[4:0] 	s used as the address compara- F0 Index CEh). Reset Value = 00h		

Table 4-25. User Defined Device 3 (UDEF3) Idle Timer and Trap Related Registers

Although not considered as device idle timers, two additional timers are provided by the CS5530A. The Video Idle Timer used for Suspend determination and the VGA Timer used for SoftVGA. These timers and their associated programming bits are listed in Tables 4-26 and 4-27.

Table 4-26. Video Idle Timer and Trap Related Registers

Bit	Description					
F0 Index	81h Power Management Enable Register	r 2 (R/W) Reset Value = 00h				
7	Video Access Idle Timer Enable: Load timer from Video Idle Timer Count Register (F0 Index A6h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.					
	If an access occurs in the video address range (sets bit 0 of the GX1 with the programmed count.	processor's PSERIAL register) the timer is reloaded				
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0 Second level SMI status is reported at F0 Index 85h/F5h[7].].				
F0 Index	82h Power Management Enable Register	r 3 (R/W) Reset Value = 00h				
7	Video Access Trap: 0 = Disable; 1 = Enable.					
	If this bit is enabled and an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL register) an SMI is generated.					
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0 Second level SMI status is reported at F0 Index 86h/F6h[7].].				
F0 Index	A6h-A7h Video Idle Timer Count Register ((R/W) Reset Value = 0000h				
15:0	Video Idle Timer Count: The idle timer loaded from this register dete part of the Suspend determination algorithm. The 16-bit value progra after which the system is alerted via an SMI. The count in this timer is graphics controller space. The timer uses a 1 second timebase.	mmed here represents the period of video inactivity				
	In a GX1 processor based system the graphics controller is embedde CS5530A via the serial connection (PSERIAL register, bit 0) from the standard VGA space on PCI (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) i	processor. The CS5530A also detects accesses to				
	To enable this timer set F0 Index 81h[7] = 1.					
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0 Second level SMI status is reported at F0 Index 85h/F5h[7].].				

Table 4-27. VGA Timer Related Registers

Bit	Description				
F0 Index 8	B3h Power Management Enable Register 4 (R/W) Reset Value = 00h				
3	VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disable; 1 = Enable. VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6]. To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7:0], and reenable it before enabling power management. SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only). Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. The VGA Timer counts whether power management is enabled or disabled.				
F0 Index 8	Bh General Purpose Timer 2 Control Register (R/W) Reset Value = 00h				
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 µs.				
F0 Index 8	BEh VGA Timer Count Register				
7:0	VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded into the timer when the timer is enabled (F0 Index 83h[3] = 1). The timer is decremented with each clock of the configured timebase (F0 Index 8Bh[6]). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+Memory Offset 00h/02h[6] (only). Once expired, this timer must be re-initialized by disabling it (F0 Index 83h[3] = 0) and then enabling it (F0 Index 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value to be loaded.				
	This timer's timebase is selectable as 1 ms (default) or 32 µs. (F0 Index 8Bh).				
	Note: Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. It is not affected by the Global Power Management Enable setting at F0 Index 80h[0].				

4.4.3.2 General Purpose Timers

The CS5530A contains two general purpose timers, General Purpose Timer 1 (F0 Index 88h) and General Purpose Timer 2 (F0 Index 8Ah). These two timers are similar to the Device Idle Timers in that they count down to zero unless re-triggered, and generate an SMI when they reach zero. However, these are 8-bit timers instead of 16 bits, they have a programmable timebase, they are not enabled or disabled by Global Power Management bits F0 Index 80h[1:0], and the events which reload these timers are configurable. These timers are typically used for an indication of system inactivity for Suspend determination.

General Purpose Timer 1 can be re-triggered by activity to any of the configured user defined devices, keyboard and mouse, parallel and serial, floppy disk, or hard disk.

General Purpose Timer 2 can be re-triggered by a transition on the GPIO7 pin (if GPIO7 is properly configured). Configuration of the GPIO7 is explained in Section 4.4.3.4 "General Purpose I/O Pins" on page 80. The timebase for both general purpose timers can be configured as either 1 second (default) or 1 millisecond. The registers at F0 Index 89h and 8Bh are the control registers for the general purpose timers. Table 4-28 show the bit formats for these registers.

After a general purpose timer is enabled or after an event reloads the timer, the timer is loaded with the configured count value. Upon expiration of the timer an SMI is generated and a status flag is set. Once expired, this timer must be re-initialized by disabling and enabling it.

The general purpose timer is not loaded immediately, but when the free-running timebase counter reaches its maximum value. Depending on the count at the time, this could be on the next 32 KHz clock (CLK_32K), or after a full count of 32, or 32,768 clocks (approximately 1 msec, or exactly 1 sec). The general purpose timer cannot trigger an interrupt until after the first count. Thus, the minimum time before the next SMI from the timer can be either from 1-2 msec or 1-2 sec with a setting of 02h.

Bit	Description					
F0 Index	K 88h General Purpose Timer 1 Count Register (R/W) Reset Value = 00					
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This value can represent either an 8- bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enabled (F0 Index 83h[0] =1). Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer.					
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, an SMI is generated ar the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMI status is reported at F1BAR+Memory Offset 04h/06h[0]).					
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new count value here.					
	This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7].					
F0 Index	x 89h General Purpose Timer 1 Control Register (R/W) Reset Value = 00					
7	Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec.					
6	Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable.					
	Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address					
	programming is at F0 Index C8h (base address register) and CEh (control register).					
5	Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable.					
	Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address					
	programming is at F0 Index C4h (base address register) and CDh (control register).					
4	Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 = Enable.					
	Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. UDEF1 address					
	programming is at F0 Index C0h (base address register) and CCh (control register)					
3	Re-trigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable					
	Any access to the keyboard or mouse I/O address range (listed below) reloads GP Timer 1.					
	Keyboard Controller: I/O Ports 060h/064h					
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included)					
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)					
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Enable.					
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Timer 1.					
	LPT1: I/O Port 378h-37Fh, 778h-77Ah					
	LPT2: I/O Port 278h-27Fh, 678h-67Ah					
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)					
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh					
	COM3. I/O Port 2E8h-2EFh					

Table 4-28. General Purpose Timers and Control Registers

77

Revision 1.1

Table 4-28. General Purpose Timers and Control Registers (Continued)

Bit	Description					
1	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable.					
	Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1.					
	Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7					
	Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h					
	The active floppy drive is configured via F0 Index 93h[7].					
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.					
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Timer 1.					
F0 Index	8Ah General Purpose Timer 2 Count Register (R/W) Reset Value = 00h					
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can represent either an 8- bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled (F0 Index 83h[1] = 1) Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.					
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, an SMI is generated and the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reported in F1BAR+Memory Offset 04h/06h[1]).					
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new count value here.					
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be configured as an input (F0 Index 90h[7]).					
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].					
F0 Index	8Bh General Purpose Timer 2 Control Register (R/W) Reset Value = 00h					
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enable.					
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP Timer 1.					
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP Timer 1.					
6	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP Timer 1. VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs.					
6 5						
	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). $0 = 1$ ms; $1 = 32 \ \mu$ s.					
	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit.					
	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). $0 = 1 \text{ ms}; 1 = 32 \mu \text{s}.$ General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. $0 = 8$ -bit; $1 = 16$ -bit.As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah).As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become					
5	 VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2. 					
5	 VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. 					
5	 VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is that loaded into GP Timer 1. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is that loaded into GP Timer 1. As a 16-bit timer, the value loaded into GP Timer 1. Count Register is shifted left by eight bit, the lower eight bits become 					
5	 VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is that loaded into GP Timer 1. As a 16-bit timer, the value loaded into GP Timer 1 Count Register (F0 Index 88h). As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become zero, and this 16-bit value is that loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 1. 					
5 4 3	 VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 μs. General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah). As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2. General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit. As an 8-bit timer, the count value is that loaded into GP Timer 1. General Purpose Timer 1 Shift: GP Timer 1 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit timer, the value loaded into GP Timer 1 Count Register (F0 Index 88h). As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GPIO7 pin reloads GP 					

4.4.3.3 ACPI Timer Register

The ACPI Timer Count Register (F1BAR+Memory Offset 1Ch or a fixed I/O Port at 121Ch) provides the current value of the ACPI timer. The timer counts at 14.31818/4 MHz (3.579545 MHz). If SMI generation is enabled (F0 Index 83h[5] = 1), an SMI is generated when bit 23 toggles. Table 4-29 shows the ACPI Timer Count Register and the ACPI Timer SMI enable bit.

V-ACPI I/O Register Space

The register space designated as V-ACPI (Virtualized ACPI) I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space. In order for ACPI to be supported, the V-ACPI module must be included in the BIOS. The register descriptions that follow are supplied here for reference only.

Fixed Feature space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the V-ACPI solution are mapped to normal I/O space starting at Offset AC00h. However, the designer can relocate this register space at compile time, hereafter referred to as ACPI_BASE. Registers within the V-ACPI I/O space must only be accessed on their defined boundaries. For example, BYTE aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

Table 4-29 summarizes the registers available in the V-ACPI I/O Register Space. The "Reference" column gives the table and page number where the bit formats for the registers are located.

Table 4-29. ACPI Timer Related Registers/Bits

Bit	Description		
F1BAR+N	lemory Offset 1Ch-1Fh (Note)	ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh
_	MHz). If SMI generation is enabled	egister provides the current value of the ACPI time via F0 Index 83h[5], an SMI is generated when the	
•	SMI status is reported at F1BAR+M vel SMI status is reported at F0 Ind	,	
31:24	Reserved: Always returns 0.		
23:0	Counter		
Note: Th	e ACPI Timer Count Register is also	accessible through I/O Port 121Ch.	
F0 Index	83h Po	wer Management Enable Register 4 (R/W)	Reset Value = 00h
5	ACPI Timer SMI: Allow SMI gene 121Ch). 0 = Disable; 1 = Enable.	eration for MSB toggles on the ACPI Timer (F1BA	R+Memory Offset 1Ch or I/O Port
	Top level SMI status is reported a Second level SMI status is report	t F1BAR+Memory Offset 00h/02h[0]. ed at F0 Index 87h/F7h[0].	

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 5-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 224
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 224
05h		1	1	Reserved	00h	Page 224
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 224
07h		1	1	Reserved	00h	Page 225
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 225
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 225
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 225
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 226
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 226
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 226
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 227
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 227

Table 4-30. V-ACPI I/O Register Space Summary

AMD Geode™ CS5530A Companion Device Data Book

Revision 1.1

4.4.3.4 General Purpose I/O Pins

The CS5530A provides up to eight GPIO (general purpose I/O) pins. Five of the pins (GPIO[7:4] and GPIO1) have alternate functions. Table 4-31 shows the bits used for GPIO pin function selection.

Each GPIO pin can be configured as an input or output. GPIO[7:0] can be independently configured to act as edgesensitive SMI events. Each pin can be enabled and configured to be either positive-edge sensitive or negative-edge sensitive. These pins then cause an SMI to be generated when an appropriate edge condition is detected. The power management status registers indicate that a GPIO external SMI event has occurred.

The GPIO Pin Direction Register 1 (F0 Index 90h) selects whether the GPIO pin is an input or output. The GPIO Pin

Data Register 1 (F0 Index 91h) contains the direct values of the GPIO pins. Write operations are valid only for bits defined as outputs. Reads from this register read the last written value if the pin is an output.

GPIO Control Register 1 (F0 Index 92h) configures the operation of the GPIO pins for their various alternate functions. Bits [5:3] set the edge sensitivity for generating an SMI on the GPIO[2:0] (input) pins respectively. Bits [2:0] enable the generation of an SMI. Bit 6 enables GPIO6 to act as the lid switch input. Bit 7 determines which edge transition will cause General Purpose Timer 2 (F0 Index 8Ah) to reload.

Table 4-32 shows the bit formats for the GPIO pin configuration and control registers.

Bit	Description				
F0 Index 4	43h	USB Shadow Register (R/W)	Reset Value = 03h		
6	Enable SA20: Pin AD22 configuration: 0 = GPIO4; 1 = SA20. If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.				
2	Enable SA[23:20]: Pins AF23, AE23, AC21, and AD22 configuration: 0 = GPIO[7:4]; 1 = SA[23:20]. If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.				
F3BAR+M	lemory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h		
21	Enable SDATA_IN2: Pin AE24 functions as: 0 = GPIO1; 1 = SDATA_IN2.				
	For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0).				

Table 4-31. GPIO Pin Function Selection

Bit	Description	
F0 Index 9	CPIO Pin Direction Register 1 (R/W)	Reset Value = 00h
7	GPI07 Direction: Selects if GPI07 is an input or output: 0 = Input; 1 = Output.	
6	GPIO6 Direction: Selects if GPIO6 is an input or output: 0 = Input; 1 = Output.	
5	GPIO5 Direction: Selects if GPIO5 is an input or output: 0 = Input; 1 = Output.	
4	GPIO4 Direction: Selects if GPIO4 is an input or output: 0 = Input; 1 = Output.	
3	GPIO3 Direction: Selects if GPIO3 is an input or output: 0 = Input; 1 = Output.	
2	GPIO2 Direction: Selects if GPIO2 is an input or output: 0 = Input; 1 = Output.	
1	GPIO1 Direction: Selects if GPIO1 is an input or output: 0 = Input; 1 = Output.	
0	GPIO0 Direction: Selects if GPIO0 is an input or output: 0 = Input; 1 = Output.	
	eral of these pins have specific alternate functions. The direction configured here must be consistent function. Ih GPIO Pin Data Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Data: Reflects the level of GPIO7: 0 = Low: 1 = High.	
6	GPIO6 Data: Reflects the level of GPIO6: 0 = Low: 1 = High.	
5	GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High.	
4	GPIO4 Data: Reflects the level of GPIO4: 0 = Low; 1 = High.	
3	GPIO3 Data: Reflects the level of GPIO3: 0 = Low; 1 = High.	
2	GPIO2 Data: Reflects the level of GPIO2: 0 = Low; 1 = High.	
1	GPIO1 Data: Reflects the level of GPIO1: 0 = Low; 1 = High.	
0	GPIO0 Data: Reflects the level of GPIO0: 0 = Low; 1 = High.	
	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits defin register will read the last written value if the pin is an output. The pins are configured as inputs or	•

Table 4-32. GPIO Pin Configuration/Control Registers (Continued)

	Description					
F0 Index	92h GPIO Control Register 1 (R/W) Reset Value = 00h					
7	GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2).					
6	GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch.					
	When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI.					
	The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].					
	Second level SMI status is reported at F0 Index 87h/F7h[3].					
	If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position.					
5	GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit.					
4	GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Falling.					
4	Bit 1 must be set to enable this bit.					
3	GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Falling.					
Ū	Bit 1 must be set to enable this bit.					
2	Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI on either a					
	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3).					
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7].					
1	Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI on either a					
	rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3).					
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].					
	Second level SMI status reporting is at F0 Index 87h/F7h[6].					
0	Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI on either a					
	rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3)					
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].					
Notes: 1)	Second level SMI status reporting is at F0 Index 87h/F7h[5].					
	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).					
2)	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both.					
2)	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).					
2) 3)	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped.					
2) 3)	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped.					
2) 3) F0 Index	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W)					
2) 3) F0 Index	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling.					
2) 3) F0 Index 7	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h BIt 3 must be set to enable this bit.					
2) 3) F0 Index 7	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling.					
2) 3) F0 Index 7 6	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit.					
2) 3) F0 Index 7 6	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling.					
2) 3) F0 Index 7 6 5	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit.					
2) 3) F0 Index 7 6 5	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI					
2) 3) F0 Index 7 6 5 4	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising;					
2) 3) F0 Index 7 6 5 4	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enab					
2) 3) F0 Index 7 6 5 4 3	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an					
2) 3) F0 Index 7 6 5 4	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enab					
2) 3) F0 Index 7 6 5 4 3	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising;					
2) 3) F0 Index 7 6 5 4 3	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enab					
2) 3) F0 Index 7 6 5 4 3 2	Second level SMI status reporting is at F0 Index 87h/F7h[5]. For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h). GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped. 97h GPIO Control Register 2 (R/W) Reset Value = 00h GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 0 must be set to enab					

Bit	Description
0	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and to generate an SMI on either a rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].
	Second level SMI status reporting is at F0 Index 84h/F4h[0].
Note: Fo	r any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).

Table 4-32. GPIO Pin Configuration/Control Registers (Continued)

4.4.3.5 Power Management SMI Status Reporting Registers

The CS5530A updates status registers to reflect the SMI sources. Power management SMI sources are the device idle timers, address traps, and general purpose I/O pins.

Power management events are reported to the processor through the SMI# pin. It is active low. When an SMI is initiated, the SMI# pin is asserted low and is held low until all SMI sources are cleared. At that time, SMI# is deasserted.

All SMI sources report to the Top Level SMI Status Register (F1BAR+Memory Offset 02h) and the Top Level SMI Status Mirror Register (F1BAR+Memory Offset 00h). The Top SMI Status and Status Mirror Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status. Since all SMI sources report to the Top Level SMI Status Register, many of its bits combine a large number of events requiring a second level of SMI status reporting. The second level of SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same, the difference between the two being that the SMI can not be cleared by reading the mirror register.

Figure 4-7 on page 83 shows an example SMI tree for checking and clearing the source of general purpose timer and the user defined trap generated SMIs.

Table 4-33 on page 84 shows the bit formats of the read to clear Top Level SMI Status Register (F1BAR+Memory Offset 02h). Table 4-34 starting on page 85 shows the bit formats of the read to clear second level SMI status registers. For information regarding the location of the corresponding mirror register, refer to the note in the footer of the register description.

Keep in mind, all SMI sources in the CS5530A are reported into the Top Level SMI Status Registers (F1BAR+Memory Offset 00h/02h); however, this discussion is regarding power management SMIs. For details regarding audio SMI events/reporting, refer to Section 4.7.2.2 "Audio SMI Related Registers" on page 125.

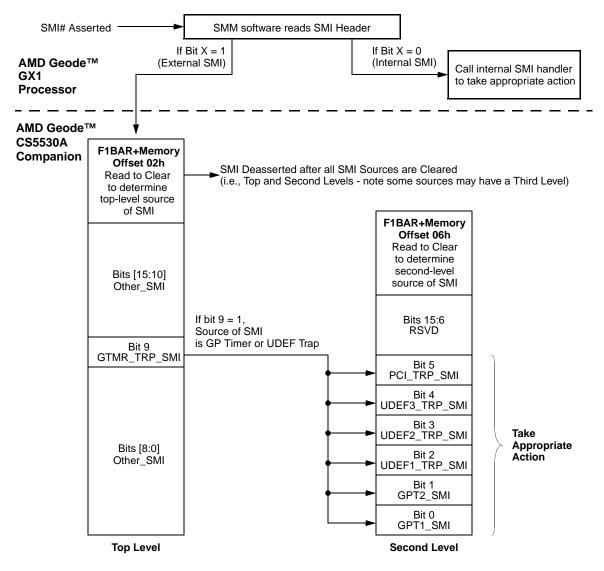


Figure 4-7. General Purpose Timer and UDEF Trap SMI Tree Example

Bit	Description						
F1BAR+N	Memory Offset 02h-03h Top Level SMI Status Register (RC)	Reset Value = 0000h					
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode Configuration bit (F0 Index 96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Memory Offset 08h) must be cleared on exit.						
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No	p; 1 = Yes.					
SMI generation is configured in F0 Index 42h[7:6].							
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset command? 0 = No; 1 = Yes.						
12	2 SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.						
11:10	Reserved (Read to Clear): Always reads 0.						
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped a Space? 0 = No; 1 = Yes.						
	The next level of status is found at F1BAR+Memory Offset 04h/06h.						
8 SMI Source is Software Generated (Read to Clear): SMI was caused by software? 0 = No; 1 = Yes.							
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to e which initiates an A20M# SMI? 0 = No; 1 = Yes.	either Port 092h or the keyboard command					
	This method of controlling the internal A20M# in the GX1 processor is used insi	tead of a pin.					
	SMI generation enabling is at F0 Index 53h[0].						
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the e 0 = No; 1 = Yes.	xpiration of the VGA Timer (F0 Index 8Eh)?					
	SMI generation enabling is at F0 Index 83h[3].						
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a v serial connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 =						
	SMI generation enabling is at F0 Index 83h[2].						
4:2	Reserved (Read to Clear): Always reads 0.						
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio	p interface? 0 = No; 1 = Yes.					
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.						
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by $0 = No; 1 = Yes.$	y one of the power management resources?					
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.						
	Note: The status for the General Purpose Timers and the User Device Defined	d Traps are checked separately in bit 9.					
Ar	ading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have an ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If th aring the SMI source (and consequently deasserting SMI), the Mirror register may	ne value of the register must be read without					

Table 4-33. Top Level Sivil Status Register (Read to Clear	Table 4-33.	Top Level SMI Status Reg	ister (Read to Clear
--	-------------	--------------------------	----------------------

Table 4-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear)

Bit	Bit Description						
F1BAR+	Memory Offset 06h-07h Second Level Gen. Traps/Timers SMI Status Register (RC) Reset Value = 0000						
15:6	Reserved (Read to Clear)						
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].						
Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[0].							
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].						
	SMI generation enabling is at F0 Index 82h[6].						
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].						
	SMI generation enabling is at F0 Index 82h[5].						
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4].						
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].						
	SMI generation enabling is at F0 Index 83h[1].						
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].						
	SMI generation enabling is at F0 Index 83h[0].						
Note: R	eading this register clears all the SMI status bits.						
	read-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the value of the register must be read without earing the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.						
F0 Index	F4h Second Level Power Management Status Register 1 (RC) Reset Value = 84h						
7:5	Reserved						
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game port (I/O Port 200h and 201h)? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].						
	Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].						
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO7 pin? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].						
	SMI generation enabling is at F0 Index 97h[3].						
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO5 pin? 0 = No; 1 = Yes.						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].						
	SMI generation enabling is at F0 Index 97h[2].						
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO4 pin? 0 = No; 1 = Yes.						
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO4 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].						
1							
1	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].						
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[1].						

Bit Description Note: Properly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI. This register provides status on various power-management SMI events. Reading this register clears the SMI status bits. A readonly (mirror) version of this register exists at F0 Index 84h. F0 Index F5h Second Level Power Management Status Register 2 (RC) Reset Value = 00h 7 Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Video Idle Timer Count Register (F0 Index A6h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[7]. 6 User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF3 Idle Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[6]. 5 User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF2 Idle Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[5]. User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF1 Idle 4 Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[4].

Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Keyboard/Mouse Idle
Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.

	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].					
	SMI generation enabling is at F0 Index 81h[3].					
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.					
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].					
	SMI generation enabling is at F0 Index 81h[2].					
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Disk Idle Timer Count					
	Register (F0 Index 9Ah)? 0 = No; 1 = Yes.					

	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[1].
0	Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Primary Hard Disk Idle
	Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.

This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[0].

Note: This register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the duration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status bits. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead.

F0 Index F	6h Second Level Power Management Status Register 3 (RC) Reset Value = 00h
7	Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[7].
6	Reserved (Read Only)
5	Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[6].

	Description
4	Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer
	Count Register (F0 Index ACh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[7].
3	Keyboard/Mouse Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the keyboard o mouse? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[3].
2	Parallel/Serial Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to either the serial or parallel ports? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[2].
1	Floppy Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the floppy disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[1].
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the primary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].
Note: Thi	s register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access occurred to the
	rice while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A read-only (mirror) version
	his register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI source (and consequent)
	asserting SMI), F0 Index 86h may be read instead.
O Index I	
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO2 pin? 0 = No; 1 = Yes.
	This is the second level of CNI status reporting. The tag level is reported in E4DAD Memory Offset 00h/00h[0]
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].
6	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.
6	SMI generation enabling is at F0 Index 92h[2].GPIO1 SMI Status (Read to Clear):SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].SMI generation enabling is at F0 Index 92h[1].
6 5	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes.
	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
5	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0].
	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid
5	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin.
5	SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid
5	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 90h (F0 I
5 4 3	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on
5 4 3	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes.
5 4 3	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0].
5 4 3 2	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[5].
5 4 3 2	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes.
5 4 3 2	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs.
5 4 3 2 1	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This is the second level of SMI status (reead to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This SMI event can only occur while in 3V Suspend and RTC interrupt occurs. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
5 4 3 2 1	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes.
5 4 3 2 1 0	 SMI generation enabling is at F0 Index 92h[2]. GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[1]. GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0]. Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin. Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes. For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Inde 92h[6] = 1). Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes. This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5]. RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset

4.4.3.6

gramming Summary Table 4-35 provides a programming register summary of the device idle timers, address traps, and general purpose I/O pins. For complete bit information regarding the regis-

ters listed in Table 4-35, refer to Section 5.3.1 "Bridge Configuration Registers - Function 0" on page 155 and Section 5.3.2 "SMI Status and ACPI Timer Registers - Function 1" on page 180.

	Located at F0 Index xxh Unless Otherwise Noted			
Device Power Management Resource	Enable	Configuration	Second Level SMI Status/No Clear	Second Level SMI Status/With Clear
Global Timer Enable	80h[1]	N/A	N/A	N/A
Keyboard / Mouse Idle Timer	81h[3]	93h[1:0]	85h[3]	F5h[3]
Parallel / Serial Idle Timer	81h[2]	93h[1:0]	85h[2]	F5h[2]
Floppy Disk Idle Timer	81h[1]	9Ah[15:0], 93h[7]	85h[1]	F5h[1]
Video Idle Timer (Note 1)	81h[7]	A6h[15:0]	85h[7]	F5h[7]
VGA Timer (Note 2)	83h[3]	8Eh[7:0]	F1BAR+Memory Offset 00h[6]	F1BAR+Memory Offset 02h[6]
Primary Hard Disk Idle Timer	81h[0]	98h[15:0], 93h[5]	85h[0]	F5h[0]
Secondary Hard Disk Idle Timer	83h[7]	ACh[15:0], 93h[4]	86h[4]	F6h[4]
User Defined Device 1 Idle Timer	81h[4]	A0h[15:0], C0h[31:0], CCh[7:0]	85h[4]	F5h[4]
User Defined Device 2 Idle Timer	81h[5]	A2h[15:0], C4h[31:0], CDh[7:0]	85h[5]	F5h[5]
User Defined Device 3 Idle Timer	81h[6]	A4h[15:0], C8h[31:0], CEh[7:0]	85h[6]	F5h[6]
Global Trap Enable	80h[2]	N/A	N/A	N/A
Keyboard / Mouse Trap	82h[3]	9Eh[15:0] 93h[1:0]	86h[3]	F6h[3]
Parallel / Serial Trap	82h[2]	9Ch[15:0], 93h[1:0]	86h[2]	F6h[2]
- Floppy Disk Trap	82h[1]	93h[7]	86h[1]	F6h[1]
Video Access Trap	82h[7]	N/A	86h[7]	F6h[7]
Primary Hard Disk Trap	82h[0]	93h[5]	86h[0]	F6h[0]
Secondary Hard Disk Trap	83h[6]	93h[4]	86h[5]	F6h[5]
User Defined Device 1 Trap	82h[4]	C0h[31:0], CCh[7:0]	F1BAR+Memory Offset 04h[2]	F1BAR+Memory Offset 06h[2]
User Defined Device 2 Trap	82h[5]	C4h[31:0], CDh[7:0]	F1BAR+Memory Offset 04h[3]	F1BAR+Memory Offset 06h[3]
User Defined Device 3 Trap	82h[6]	C8h[31:0], CEh[7:0]	F1BAR+Memory Offset 04h[4]	F1BAR+Memory Offset 06h[4]
General Purpose Timer 1	83h[0]	88h[7:0], 89h[7:0], 8Bh[4]	F1BAR+Memory Offset 04h[0]	F1BAR+Memory Offset 06h[0]
General Purpose Timer 2	83h[1]	8Ah[7:0], 8Bh[5,3,2]	F1BAR+Memory Offset 04h[1]	F1BAR+Memory Offset 06h[1]
GPIO7 Pin	N/A	90h[7], 91h[7], 92h[7], 97h[7,3]	91h[7]	N/A
GPIO6 Pin	N/A	90h[6], 91h[6], 92h[6]	87h[4,3], 91h[6]	F7h[4,3]
GPIO5 Pin	N/A	90h[5], 91h[5], 97h[6,2]	91h[5]	N/A
GPIO4 Pin	N/A	90h[4], 91h[4], 97h[5,1]	91h[4]	N/A
GPIO3 Pin	N/A	90h[3], 91h[3], 97h[4,0]	91h[3]	N/A
GPIO2 Pin	N/A	90h[2], 91h[2], 92h[5,2]	87h[7], 91h[2]	F7h[7]
GPIO1 Pin	N/A	90h[1], 91h[1] 92h[4,1]	87h[6], 91h[1]	F7h[6]
GPIO0 Pin	N/A	90h[0], 91h[0], 92h[3,0]	87h[5], 91h[0]	F7h[5]
Suspend Modulation OFF/ON Video Speedup IRQ Speedup	96h[0] 80h[4] 80h[3]	94h[7:0]/95h[7:0] 8Dh[7:0] 8Ch[7:0]	N/A A8h[15:0] N/A	N/A N/A N/A

Table 4-35. Device Power Management Programming Summary	Table 4-35.	Device Power	Management	Programming	Summary
---	-------------	---------------------	------------	-------------	---------

2. This function is used for SoftVGA, not power management. It is not affected by Global Power Enable.

4.5 PC/AT Compatibility Logic

The CS5530A's PC/AT compatibility logic provides support for the standard PC architecture. This subsystem also provides legacy support for existing hardware and software. Support functions for the GX1 processor provided by these subsystems include:

- ISA Subtractive Decode
- ISA Bus Interface
 - Delayed PCI Transactions
 - Limited ISA and ISA Master Modes
- ROM Interface
- Megacells
 - Direct Memory Access (DMA)
 - Programmable Interval Timer
 - Programmable Interrupt Controller
 - PCI Compatible Interrupts
- I/O Ports 092h and 061h System Control
 - I/O Port 092h System Control
 - I/O Port 061h System Control

- SMI Generation for NMI
- Keyboard Interface Function
 - Fast Keyboard Gate Address 20 and CPU Reset
- External Real-Time Clock Interface

The following subsections give a detailed description for each of these functions.

4.5.1 ISA Subtractive Decode

The CS5530A provides an ISA bus controller. The CS5530A is the default subtractive-decoding agent, and forwards all unclaimed memory and I/O cycles to the ISA interface. For reads and writes in the first 1 MB of memory (i.e., A23:A20 set to 0), MEMR# or MEMW# respectively will be asserted. However, the CS5530A can be configured using F0 Index 04h[1:0] to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled, F0 Index 41h[2:1] = 1x). Table 4-36 shows these programming bits.

Table 4-36. Cycle Configuration Bits

Bit	Description	
F0 Index	04h-05h PCI Command Register (R/W)	Reset Value = 000Fh
1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI b	us. 0 = Disable; 1 = Enable (Default).
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Dise	able; 1 = Enable (Default) .
F0 Index	41h PCI Function Control Register 2 (R/W)	Reset Value = 10h
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accept device. device. The CS5530A defaults to taking subtractive decode cycles in the default cycles. Slow Decode cycle point if all other PCI devices decode in the fast or medium cloc done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active)	ycle clock, but can be moved up to the
	1x = No subtractive decode	

4.5.2 ISA Bus Interface

The ISA bus controller issues multiple ISA cycles to satisfy PCI transactions that are larger than 16 bits. A full 32-bit read or write results in two 16-bit ISA transactions or four 8-bit ISA transactions. The ISA controller gathers the data from multiple ISA read cycles and returns TRDY# only after all of the data can be presented to the PCI bus at the same time.

SA[23:0] are a concatenation of ISA LA[23:17] and SA[19:0] and perform equivalent functionality at a reduced pin count.

Figure 4-8 shows the relationship between a PCI cycle and the corresponding ISA cycle generated.

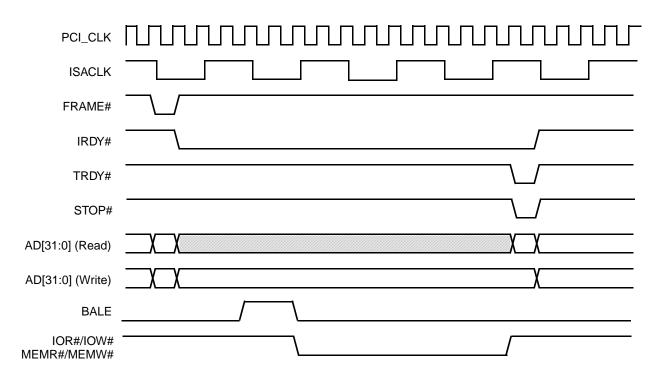


Figure 4-8. Non-Posted PCI-to-ISA Access

4.5.2.1 Delayed PCI Transactions

If PCI delayed transactions are enabled (F0 Index 42h[5] = 1) multiple PCI cycles occur for every slower ISA cycle. Figure 4-9 shows the relationship of PCI cycles to an ISA cycle with PCI delayed transactions enabled.

See Section 4.2.6 "Delayed Transactions" on page 54 for additional information.

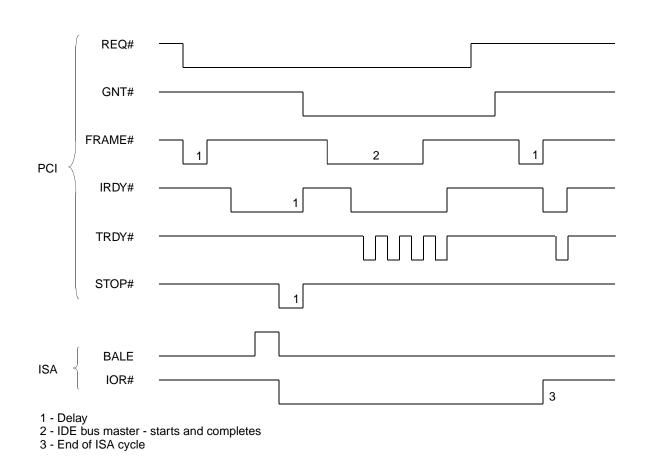


Figure 4-9. PCI to ISA Cycles with Delayed Transaction Enabled

4.5.2.2 Limited ISA and ISA Master Modes

The CS5530A supports two modes on the ISA interface. The default mode of the ISA bus is a fully functional ISA mode, but it does not support ISA masters, as shown in Figure 4-10 "Limited ISA Mode". When in this mode, the address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPIO[7:4].

The second mode of the ISA interface supports ISA bus masters, as shown in Figure 4-11. When the CS5530A is placed in the ISA Master mode, a large number of pins are redefined as shown in Table 4-37.

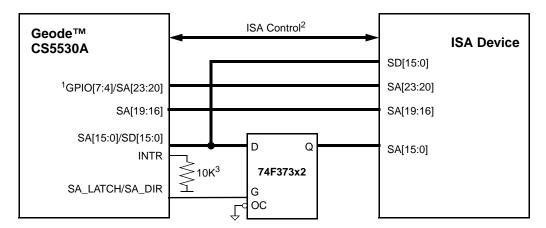
In this mode of operation, the CS5530A cannot support TFT flat panels or TV controllers, since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

The mode of operation is selected by the strapping of pin P26 (INTR):

- ISA Limited Mode Strap pin P26 (INTR) low through a 10-kohm resistor.
- ISA Master Mode Strap pin P26 (INTR) high through a 10-kohm resistor.

F0 Index 44h[7] (bit details on page 158) reports the strap value of the INTR pin (pin P26) during POR: 0 = ISA Limited; 1 = ISA Master.

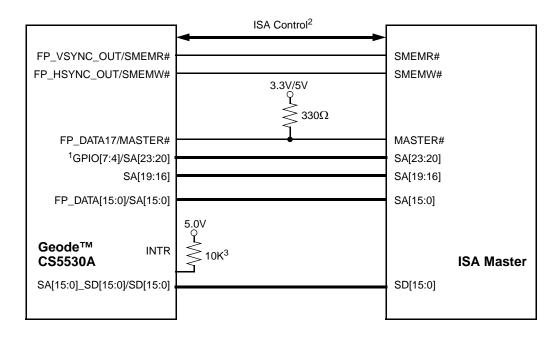
This bit can be written after POR# deassertion to change the ISA mode selected. Writing to this bit is not recommended due to the actual strapping done on the board.


ISA memory and ISA refresh cycles are not supported by the CS5530A, although, the refresh toggle bit in I/O Port 061h still exists for software compatibility reasons.

PC/AT Compatibility Logic

Table 4-37. Signal Assignments

Pin No.	Limited ISA Mode	ISA Master Mode
AD15	SA_LATCH	SA_DIR
AE25, AD24, AE22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AE9	SA[15:0]/SD[15:0]	SD[15:0]
H2, K1, K2, L1, D1, E2, F1, G1, G3, G4, G2, H1, J1, J3, J2, K3	FP_DATA[15:0]	SA[15:0]
H3	FP_DATA[16]	SA_OE#
F3	FP_DATA[17]	MASTER#
E1	FP_HSYNC_OUT	SMEMW#
E3	FP_VSYNC_OUT	SMEMR#
AF3 (Note)	SMEMW#	RTCCS#
AD4 (Note)	SMEMR#	RTCALE
AF23, AE23, AC21, AD22	GPIO[7:4] SA[23:20]	SA[23:20]


Note: If Limited ISA Mode of operation has been selected, SMEMW# and SMEMR# can be output on these pins by programming F0 Index 53[2] = 0 (bit details on page 159).

Notes:

- 1. F0 Index 43h[2] controls GPIO[7:4]/SA[23:20].
- 2. These signals are: MEMW#, MEMR#, IOR#, IOW#, TC, AEN, DREQ[7:5, 3:0], DACK[7:5, 3:0]#, MEMCS16#, ZEROWS#, SBHE#, IOCS16#, IOCHRDY, ISACLK.
- 3. This resistor is used at boot time to determine the mode of the ISA bus.

Figure 4-10. Limited ISA Mode

Notes:

- 1. When strapped for ISA Master mode, GPIO[7:4]/SA[23:20] are set to SA[23:20] and the settings in F0 Index 43h[2] are invalid.
- 2. These signals are: MEMW#, MEMR#, IOR#, IOW#, TC, AEN, DREQ[7:5, 3:0], DACK[7:5, 3:0]#, MEMCS16#, ZEROWS#, SBHE#, IOCS16#, IOCHRDY, ISACLK.
- 3. This resistor is used at boot time to determine the mode of the ISA bus.

Figure 4-11. ISA Master Mode

4.5.2.3 ISA Bus Data Steering

The CS5530A performs all of the required data steering from SD[7:0] to SD[15:0] during normal 8-bit ISA cycles, as well as during DMA and ISA master cycles. It handles data transfers between the 32-bit PCI data bus and the ISA bus. 8/16-bit devices can reside on the ISA bus. Various PCcompatible I/O registers, DMA controller registers, interrupt controller registers, and count registers (for loading timers) lie on the on-chip I/O data bus. Either the PCI bus master or the DMA controllers can become the bus owner.

When the PCI bus master is the bus owner, the CS5530A data steering logic provides data conversion necessary for 8/16/32-bit transfers to and from 8/16-bit devices on either the ISA bus or the 8-bit registers on the on-chip I/O data bus. When PCI data bus drivers of the CS5530A are tristated, data transfers between the PCI bus master and PCI bus devices are handled directly via the PCI data bus.

When the DMA requestor is the bus owner, the CS5530A allows 8/16-bit data transfer between the ISA bus and the PCI data bus.

4.5.2.4 I/O Recovery Delays

In normal operation, the CS5530A inserts a delay between back-to-back ISA I/O cycles that originate on the PCI bus. The default delay is four ISACLK cycles. Thus, the second of consecutive I/O cycles is held in the ISA bus controller until this delay count has expired. The delay is measured between the rising edge of IOR#/IOW# and the falling edge of BALE. This delay can be adjusted to a greater delay through the ISA I/O Recovery Control Register (F0 Index 51h, see Table 4-38).

Note: This delay is not inserted for a 16-bit ISA I/O access that is split into two 8-bit I/O accesses.

Bit	Description			
F0 Index	51h	ISA I/O Recovery Con	trol Register (R/W)	Reset Value = 40h
7:4	-	se bits determine the number c reset one-clock delay built into		-to-back 8-bit I/O read cycles. This
	0000 = 1 ISA clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks
3:0	count is in addition to a p	reset one-clock delay built into	the controller.	k-to-back 16-bit I/O cycles. This
	0000 = 1 ISA clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks

Table 4-38. I/O Recovery Programming Register

Revision 1.1

4.5.2.5 ISA DMA

DMA transfers occur between ISA I/O peripherals and system memory. The data width can be either 8 or 16 bits. Out of the seven DMA channels available, four are used for 8bit transfers while the remaining three are used for 16-bit transfers. One BYTE or WORD is transferred in each DMA cycle.

Note: The CS5530A does not support DMA transfers to ISA memory.

The ISA DMA device initiates a DMA request by asserting one of the DRQ[7:5, 3:0] signals. When the CS5530A receives this request, it sends a bus grant request to the PCI arbiter. After the PCI bus has been granted, the respective DACK# is driven active.

The CS5530A generates PCI memory read or write cycles in response to a DMA cycle. Figures 4-12 and 4-13 are examples of DMA memory read and memory write cycles. Upon detection of the DMA controller's MEMR# or MEMW# active, the CS5530A starts the PCI cycle, asserts FRAME#, and negates an internal IOCHRDY. This assures the DMA cycle does not complete before the PCI cycle has provided or accepted the data. IOCHRDY is internally asserted when IRDY# and TRDY# are sampled active.

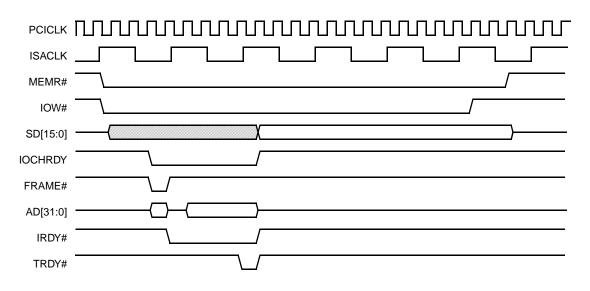
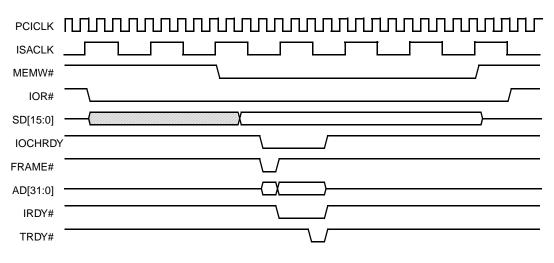



Figure 4-12. ISA DMA Read from PCI Memory

4.5.3 ROM Interface

The CS5530A positively decodes memory addresses 000F0000h-000FFFFFh (64 KB) and FFFC0000h-FFFFFFFh (256 KB) at reset. These memory cycles cause the CS5530A to claim the cycle, and generate an ISA bus memory cycle with KBROMCS# asserted. The CS5530A can also be configured to respond to memory addresses FF000000h-FFFFFFFFh (16 MB) and 000E0000h-000FFFFFh (128 KB).

Flash ROM is supported in the CS5530A by enabling the KBROMCS# signal on write accesses to the ROM region. Normally only read cycles are passed to the ISA bus, and the KBROMCS# signal is suppressed. When the ROM Write Enable bit (F0 Index 52h[1]) is set, a write access to the ROM address region causes an 8-bit write cycle to occur with MEMW# and KBROMCS# asserted. Table 4-39 shows the ROM interface related programming bits.

4.5.4 Megacells

The CS5530A core logic integrates:

- Two 8237-equivalent DMA controllers (DMAC) with full 32-bit addressing for DMA transfers.
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts.
- An 8254-equivalent timer for refresh, timer, and speaker logic.
- NMI control and generation for PCI system errors and all parity errors.
- Support for standard AT keyboard controllers, reset control, and VSA technology audio.

Bit	Description	
F0 Index	52h ROM/AT Logic Control Register (R/W)	Reset Value = F8h
2	Upper ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = FFFC0000h-FFFFFFFh (256 KB, Default); 1 = FF000000h-FFFFFFFh (16 MB)	
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).	
1	ROM Write Enable: Assert KBROMCS# during writes to configured ROM space (configured in allowing Flash programming. 0 = Disable; 1 = Enable.	bits 2 and 0),
0	Lower ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = 000F0000h-000FFFFFh (64 KB, Default); 1 = 000E0000h-000FFFFFh (128 KB).	
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).	
F0 Index	5Bh Decode Control Register 2 (R/W)	Reset Value = 20h
5	BIOS ROM Positive Decode: Selects PCI positive or subtractive decoding for accesses to the 0 = Subtractive; 1 = Positive.	configured ROM space.
	ROM configuration is at F0 Index 52h[2:0].	

Table 4-39. ROM Interface Related Bits

4.5.4.1 Direct Memory Access (DMA)

The 8237-compatible DMA controllers in the CS5530A control transfers between ISA I/O devices and system memory. They generate a bus request to the PCI bus when an I/O device requests a DMA operation. Once they are granted the bus, the DMA transfer cycle occurs. DMA transfers can occur over the entire 32-bit address range of the PCI bus. Software DMA is not supported.

The CS5530A contains registers for driving the high address bits (high page) and registers for generating the middle address bits (low page) output by the 8237 controller.

DMA Controllers

The CS5530A supports seven DMA channels using two standard 8237-equivalent controllers. DMA Controller 1 contains Channels 0 through 3 and supports 8-bit I/O adapters. These channels are used to transfer data between 8-bit peripherals and PCI memory or 8/16-bit ISA memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 64 KB pages.

DMA Controller 2 contains Channels 4 through 7. Channel 4 is used to cascade DMA Controller 1, so it is not available externally. Channels 5 through 7 support 16-bit I/O adapters to transfer data between 16-bit I/O adapters and 16-bit system memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 128 KB pages. Channels 5, 6, and 7 transfer 16-bit WORDs on even byte boundaries only.

DMA Transfer Modes

Each DMA channel can be programmed for single, block, demand or cascade transfer modes. In the most commonly used mode, single transfer mode, one DMA cycle occurs per DRQ and the PCI bus is released after every cycle. This allows the CS5530A to timeshare the PCI bus with the CPU. This is imperative, especially in cases involving large data transfers, so that the CPU does not get locked out for too long.

In block transfer mode, the DMA controller executes all of its transfers consecutively without releasing the PCI bus.

In demand transfer mode, DMA transfer cycles continue to occur as long as DRQ is high or terminal count is not reached. In this mode, the DMA controller continues to execute transfer cycles until the I/O device drops DRQ to indicate its inability to continue providing data. For this case, the PCI bus is held by the CS5530A until a break in the transfers occurs.

In cascade mode, the channel is connected to another DMA controller or to an ISA bus master, rather than to an I/ O device. In the CS5530A, one of the 8237 controllers is designated as the master and the other as the slave. The HOLD output of the slave is tied to the DRQ0 input of the the memory.

DMA channel.

The verify transfer type causes the CS5530A to execute DMA transfer bus cycles, including generation of memory addresses, but neither the Read nor Write command lines are activated. This transfer type was used by DMA Channel 0 to implement DRAM refresh in the original IBM PC/XT.

DMA Priority

The DMA controller may be programmed for two types of priority schemes: fixed and rotate (I/O Ports 008h[4] and 0D0h[4]), as shown in Table 5-27 "DMA Channel Control Registers" on page 215.

In fixed priority, the channels are fixed in priority order based on the descending values of their numbers. Thus, Channel 0 has the highest priority. In rotate priority, the last channel to get service becomes the lowest-priority channel with the priority of the others rotating accordingly. This prevents a channel from dominating the system.

97

Revision 1.1

master (Channel 4), and the master's DACK0# output is

In each of these modes, the DMA controller can be pro-

Both DMA controllers are reset at Power On Reset (POR)

to fixed priority. Since master Channel 0 is actually con-

nected to the slave DMA controller, the slave's four DMA channels have the highest priority, with Channel 0 as high-

est and Channel 3 as the lowest. Immediately following

slave Channel 3, master Channel 1 (Channel 5) is the next

The DMA controller can be programmed with standard I/O

cycles to the standard register space for DMA. The I/O

addresses of all registers for the DMA controller are listed

in Table 5-27 "DMA Channel Control Registers" on page

Addresses under Master are for the 16-bit DMA channels,

and Slave corresponds to the 8-bit channels. When writing

to a channel's address or word-count register, the data is written into both the base register and the current register

simultaneously. When reading a channel address or word

count register, only the current address or word count can

be read. The base address and base word count are not

Each of the seven DMA channels may be programmed to

perform one of three types of transfers: read, write, or ver-

ify. The transfer type selected defines the method used to

For read transfer types, the CS5530A reads data from memory and writes it to the I/O device associated with the

For write transfer types, the CS5530A reads data from the

I/O device associated with the DMA channel and writes to

transfer a BYTE or WORD during one DMA bus cycle.

tied to the slave's HLDA input.

grammed for read, write, or verify transfers.

highest, followed by Channels 6 and 7.

DMA Controller Registers

accessible for reading.

DMA Transfer Types

215.

The address and word count registers for each channel are 16-bit registers. The value on the data bus is written into the upper byte or lower byte, depending on the state of the internal addressing byte pointer. This pointer can be cleared by the Clear Byte Pointer command. After this command, the first read/write to an address or word count register will read/write to the low byte of the 16-bit register and the byte pointer will point to the high byte. The next read/ write to an address or word-count register will read or write to the high byte of the 16-bit register and the byte pointer will point back to the low byte.

When programming the 16-bit channels (Channels 5, 6, and 7), the address which is written to the base address register must be the real address divided by two. Also, the base word count for the 16-bit channels is the number of 16-bit WORDs to be transferred, not the number of bytes as is the case for the 8-bit channels.

The DMA controller allows the user to program the active level (low or high) of the DRQ and DACK# signals. Since the two controllers are cascaded together internally on the chip, these signals should always be programmed with the DRQ signal active high and the DACK# signal active low.

DMA Shadow Registers

The CS5530A contains a shadow register located at F0 Index B8h (Table 4-40) for reading the configuration of the DMA controllers. This read-only register can sequence to read through all of the DMA registers.

DMA Addressing Capability

DMA transfers occur over the entire 32-bit address range of the PCI bus. This is accomplished by using the DMA controller's 16-bit memory address registers in conjunction with an 8-bit DMA Low Page register and an 8-bit DMA High Page register. These registers, associated with each channel, provide the 32-bit memory address capability. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard. The starting address for the DMA transfer must be programmed into the DMA controller registers and the channel's respective Low and High Page registers prior to beginning the DMA transfer.

DMA Page Registers and Extended Addressing

The DMA Page registers provide the upper address bits during DMA cycles. DMA addresses do not increment or decrement across page boundaries. Page boundaries for the 8-bit channels (Channels 0 through 3) are every 64 KB and page boundaries for the 16-bit channels (Channels 5, 6, and 7) are every 128 KB.

Before any DMA operations are performed, the Page Registers must be written at the I/O Port addresses shown in Table 5-28 "DMA Page Registers" on page 218 to select the correct page for each DMA channel. The other address locations between 080h and 08Fh and 480h and 48Fh are not used by the DMA channels, but can be read or written by a PCI bus master. These registers are reset to zero at POR. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard.

For most DMA transfers, the High Page register is set to zeros and is driven onto PCI address bits AD[31:24] during DMA cycles. This mode is backward compatible with the PC/AT standard. For DMA extended transfers, the High Page register is programmed and the values are driven onto the PCI addresses AD[31:24] during DMA cycles to allow access to the full 4 GB PCI address space.

DMA Address Generation

The DMA addresses are formed such that there is an upper address, a middle address, and a lower address portion.

The upper address portion, which selects a specific page, is generated by the Page registers. The Page registers for each channel must be set up by the system before a DMA operation. The DMA Page register values are driven on PCI address bits AD[31:16] for 8-bit channels and AD[31:17] for 16-bit channels.

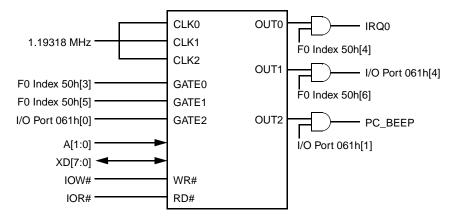
Bit	Description	
F0 Index	x B8h DMA Shadow Register (RO) Reset Value =	= xxh
7:0	DMA Shadow (Read Only): This 8-bit port sequences through the following list of shadowed DMA Controller register power on, a pointer starts at the first register in the list and consecutively reads incrementally through it. A write to this ister resets the read sequence to the first register. Each shadow register in the sequence contains the last data writter that location.	is reg-
	The read sequence for this register is:	
	1. DMA Channel 0 Mode Register	
	2. DMA Channel 1 Mode Register	
	3. DMA Channel 2 Mode Register	
	4. DMA Channel 3 Mode Register	
	5. DMA Channel 4 Mode Register	
	6. DMA Channel 5 Mode Register	
	7. DMA Channel 6 Mode Register	
	8. DMA Channel 7 Mode Register	
	9. DMA Channel Mask Register (bit 0 is channel 0 mask, etc.)	
	10. DMA Busy Register (bit 0 or 1 means a DMA occurred within last 1 ms, all other bits are 0)	

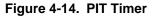
Table 4-40. DMA Shadow Register

The middle address portion, which selects a block within the page, is generated by the DMA controller at the beginning of a DMA operation and any time the DMA address increments or decrements through a block boundary. Block sizes are 256 bytes for 8-bit channels (Channels 0 through 3) and 512 bytes for 16-bit channels (Channels 5, 6, and 7). The middle address bits are driven on PCI address bits AD[15:8] for 8-bit channels and AD[16:9] for 16-bit channels.

The lower address portion is generated directly by the DMA controller during DMA operations. The lower address bits are output on PCI address bits AD[7:0] for 8-bit channels and AD[8:1] for 16-bit channels.

SBHE# is configured as an output during all DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles and forced low for all 16-bit DMA cycles.


4.5.4.2 Programmable Interval Timer


The CS5530A contains an 8254-equivalent Programmable Interval Timer (PIT) configured as shown in Figure 4-14. The PIT has three timers/counters, each with an input frequency of 1.19318 MHz (OSC divided by 12), and individually programmable to different modes.

The gates of Counter 0 and 1 are usually enabled, however, they can be controlled via F0 Index 50h (see Table 4-41). The gate of Counter 2 is connected to I/O Port 061h[0]. The output of Counter 0 is connected internally to IRQ0. This timer is typically configured in Mode 3 (square wave output), and used to generate IRQ0 at a periodic rate to be used as a system timer function. The output of Counter 1 is connected to I/O Port 061h[4]. The reset state of I/O Port 061h[4] is 0 and every falling edge of Counter 1 output causes I/O Port 061h[4] to flip states. The output of Counter 2 is brought out to the PC_BEEP output. This output is gated with I/O Port 061h[1].

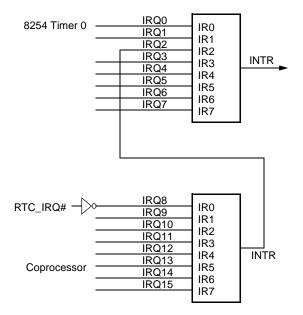
Bit	Description	
F0 Index 5	Dh PIT Control/ISA CLK Divider (R/W)	Reset Value = 7Bh
7	PIT Software Reset: 0 = Disable; 1 = Enable.	
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (O Port 061h[4].	OUT1) to pass to I/O
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high.	
4	PIT Counter 0: 0 = Forces Counter 0 output (OUT0) to zero; 1 = Allows Counter 0 output (0	OUT0) to pass to IRQ0.
3	PIT Counter 0 Enable: 0 = Sets GATE0 input low; 1 = Sets GATE0 input high.	
I/O Port 06	1h Port B Control Register (R/W)	Reset Value = 00x01100b
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT	Γ2).
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).	
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 of speaker.	output (OUT2) to pass to the
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.	

Table 4-41. PIT Control and I/O Port 061h Associated Register Bits

AMD Geode™ CS5530A Companion Device Data Book

PC/AT Compatibility Logic

PIT Registers


The PIT registers are summarized and bit formats are in Table 5-29 "Programmable Interval Timer Registers" on page 219.

PIT Shadow Register

The PIT registers are shadowed to allow for Save-to-Disk/ RAM to save/restore the PIT state by reading the PIT's counter and write-only registers. The read sequence for the shadow register is listed in F0 Index BAh, Table 4-42.

4.5.4.3 Programmable Interrupt Controller

The CS5530A includes an AT-compatible Programmable Interrupt Controller (PIC) configuration with two 8259equivalent interrupt controllers in a master/slave configuration (Figure 4-15). These PIC devices support all x86 modes of operation except Special Fully Nested Mode.

Figure 4-15. PIC Interrupt Controllers

Table 4-42. PIT Shadow Register

Bit	Description
F0 Index	BAh PIT Shadow Register (RO) Reset Value = xxh
7:0	PIT Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Programmable Interval Timer registers. At power on, a pointer starts at the first register in the list and consecutively reads to increment through it. A write to this register resets the read sequence to the first register. Each shadow register in the sequence contains the last data written to that location.
	The read sequence for this register is:
	 Counter 0 LSB (least significant byte) Counter 0 MSB Counter 1 LSB Counter 1 MSB Counter 2 LSB Counter 2 MSB Counter 0 Command Word Counter 1 Command Word Counter 2 Command Word
	Note: The LSB/MSB of the count is the Counter base value, not the current value.
	Bits [7:6] of the command words are not used.

Of the 16 IRQs, four are mapped as shown in Table 4-43, leaving 12 external interrupts. The two controllers are cascaded through IRQ2. The internal 8254 PIT connects to IRQ0. The real-time clock interface chip (see Figure 4-18 "External RTC Interface" on page 109) and the external coprocessor interface (see Figure 4-1 "Processor Signal Connections" on page 48) connect to IRQ8# and IRQ13 respectively.

Table 4-43. PIC Interrupt Mapping

Master IRQ#	Mapping
IRQ0	Connected to the OUT0 (system timer) of the internal 8254 PIT.
IRQ2	Connected to the slave's INTR for a cascaded configuration.
IRQ8#	Connected to external real-time clock.
IRQ13	Connected to the coprocessor interface.
IRQ[15:14, 12:9, 7:3, 1]	External interrupts.

The CS5530A allows the PCI interrupt signals INTA#-INTD# (also known in industry terms as PIRQx#) to be routed internally to any IRQ signal. The routing can be modified through the CS5530A's configuration registers. If this is done, the IRQ input must be configured to be levelrather than edge-sensitive. IRQ inputs may be individually programmed to be active low, level-sensitive with the Interrupt Sensitivity configuration registers at I/O address space 4D0h and 4D1h. PCI interrupt configuration is discussed in further detail in Section 4.5.4.4 "PCI Compatible Interrupts" on page 103.

PIC Interrupt Sequence

A typical AT-compatible interrupt sequence is as follows. Any unmasked interrupt generates the INTR signal to the Revision 1.1

CPU. The interrupt controller then responds to the interrupt acknowledge (INTA) cycles from the CPU. On the first INTA cycle the cascading priority is resolved to determine which of the two 8259 controllers output the interrupt vector onto the data bus. On the second INTA cycle the appropriate 8259 controller drives the data bus with the correct interrupt vector for the highest priority interrupt.

By default, the CS5530A responds to PCI INTA cycles because the system interrupt controller is located within the CS5530A. This may be disabled with F0 Index 40h[7] (see Table 4-44). When the CS5530A responds to a PCI INTA cycle, it holds the PCI bus and internally generates the two INTA cycles to obtain the correct interrupt vector. It then asserts TRDY# and returns the interrupt vector.

PIC I/O Registers

Each PIC contains registers located in the standard I/O address locations, as shown in Table 5-30 "Programmable Interrupt Controller Registers" on page 220.

An initialization sequence must be followed to program the interrupt controllers. The sequence is started by writing Initialization Command Word 1 (ICW1). After ICW1 has been written, the controller expects the next writes to follow in the sequence ICW2, ICW3, and ICW4 if it is needed. The Operation Control Words (OCW) can be written after initialization. The PIC must be programmed before operation begins.

Since the controllers are operating in cascade mode, ICW3 of the master controller should be programmed with a value indicating that IRQ2 input of the master interrupt controller is connected to the slave interrupt controller rather than an I/O device as part of the system initialization code. In addition, ICW3 of the slave interrupt controller should be programmed with the value 02h (slave ID) and corresponds to the input on the master controller.

Bit	Description
F0 Index 4	0h PCI Function Control Register 1 (R/W) Reset Value = 89h
7	PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI interrupt acknowledge cycles. 0 = Disable; 1 = Enable.

Table 4-44. PCI INTA Cycle Disable/Enable Bit

PIC Shadow Register

The PIC registers are shadowed to allow for Save-to-Disk/ RAM to save/restore the PIC state by reading the PIC's write-only registers. A write to this register resets the read sequence to the first register. The read sequence for the shadow register is listed in F0 Index B9h (Table 4-45).

Table 4-45. PIC Shadow Register

Bit	Description	
F0 Index	B9h PIC Shadow Register (RO)	Reset Value = xxh
7:0	PIC Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Progra troller registers. At power on, a pointer starts at the first register in the list and consecutively reads i A write to this register resets the read sequence to the first register. Each shadow register in the sec data written to that location.	incrementally through it.
	The read sequence for this register is:	
	 PIC1 ICW1 PIC1 ICW2 PIC1 ICW3 PIC1 ICW4 - Bits [7:5] of ICW4 are always 0 PIC1 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) PIC1 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 PIC2 ICW1 PIC2 ICW2 PIC2 ICW3 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) 	
	12. PIC2 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1	
	Note: To restore OCW2 to shadow register value, write the appropriate address twice. First with the then with the shadow register value ORed with C0h.	e shadow register value,

4.5.4.4 PCI Compatible Interrupts

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also known in industry terms as PIRQx#) to be mapped internally to any IRQ signal with the PCI Interrupt Steering Registers 1 and 2, F0 Index 5Ch and 5Dh (Table 4-46). This reassignment does not disable the corresponding IRQ pin. Two interrupt signals may not be assigned to the same IRQ.

PCI interrupts are low-level sensitive, whereas PC/AT interrupts are positive-edge sensitive; therefore, the PCI interrupts are inverted before being connected to the 8259.

Although the controllers default to the PC/AT-compatible mode (positive-edge sensitive), each IRQ may be individually programmed to be edge or level sensitive using the Interrupt Edge/Level Sensitivity registers in I/O Port 4D0h and 4D1h, as shown in Table 4-47. However, if the controllers are programmed to be level-sensitive via ICW1, all interrupts must be level-sensitive. Figure 4-16 shows the PCI interrupt mapping for the master/slave 8259 interrupt controller.

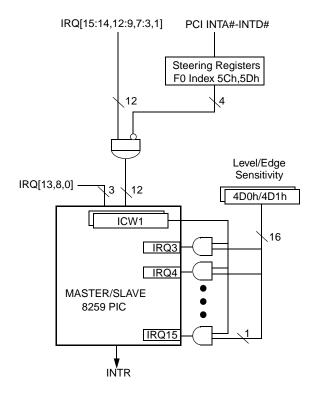


Figure 4-16. PCI and IRQ Interrupt Mapping

Bit	Description			
-0 Index	5Ch	PCI Interrupt Stee	ring Register 1 (R/W)	Reset Value = 00
7:4	INTB# Target Interrup	t: Selects target interrupt for I	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12
	0004 1004	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0001 = IRQ1			1110 = IRQ14
	0001 = IRQ1 0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = 10014
CO	0010 = RSVD 0011 = IRQ3 ne target interrupt must first mpatibility.	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1	1111 = IRQ15 h in order to maintain PCI interrupt
	0010 = RSVD 0011 = IRQ3 ne target interrupt must first mpatibility.	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11	1111 = IRQ15
CO	0010 = RSVD 0011 = IRQ3 the target interrupt must first mpatibility. 5Dh	0111 = IRQ7 st be configured as level sensi	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1111 = IRQ15 h in order to maintain PCI interrupt
co 50 Index	0010 = RSVD 0011 = IRQ3 the target interrupt must first mpatibility. 5Dh	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1111 = IRQ15 h in order to maintain PCI interrupt
co 50 Index	0010 = RSVD 0011 = IRQ3 et target interrupt must firs mpatibility. 5Dh INTD# Target Interrup	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#.	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00
co O Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh INTD# Target Interrup 0000 = Disable	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12
co O Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must first mpatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD
co O Index	0010 = RSVD 0011 = IRQ3 te target interrupt must first mpatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee st: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
co 60 Index 7:4	0010 = RSVD 0011 = IRQ3 te target interrupt must first mpatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
co 60 Index 7:4	0010 = RSVD 0011 = IRQ3 te target interrupt must first mpatibility. 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt	0111 = IRQ7 at be configured as level sensit PCI Interrupt Stee at: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 at: Selects target interrupt for I	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15
co F0 Index 7:4	0010 = RSVD 0011 = IRQ3 te target interrupt must first 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt 0000 = Disable	0111 = IRQ7 at be configured as level sensit PCI Interrupt Stee at: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 at: Selects target interrupt for I 0100 = IRQ4	1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#. 1000 = RSVD	1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15 1100 = IRQ12

Table 4-46. PCI Interrupt Steering Registers

AMD Geode™ CS5530A Companion Device Data Book

Revision 1.1

Bit	Description	
I/O Port 4	D0h Interrupt Edge/Level Select Register 1 (R/W)	Reset Value = 00h
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
2	Reserved: Set to 0.	
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a	and 2)
0	Reserved: Set to 0.	
Notes: 1	. If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.	
2	. This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shared	d).
2 I/O Port 4I		d). Reset Value = 00h
		Reset Value = 00h
I/O Port 4I	D1h Interrupt Edge/Level Select Register 2 (R/W)	Reset Value = 00h 1 and 2)
I/O Port 4	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	Reset Value = 00h 1 and 2)
I/O Port 4 7 6	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	Reset Value = 00h 1 and 2) 1 and 2)
I/O Port 4 7 6 5	D1h Interrupt Edge/Level Select Register 2 (R/W) IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0.	Reset Value = 00h 1 and 2) 1 and 2) 1 and 2)
I/O Port 4 7 6 5 4	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0. IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	Reset Value = 00h 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2)
I/O Port 4 7 6 5 4 3	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0. IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ11 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	Reset Value = 00h 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2)
I/O Port 4I 7 6 5 4 3 2	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0. IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	Reset Value = 00h 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2)
I/O Port 41 7 6 5 4 3 2 1	D1h Interrupt Edge/Level Select Register 2 (R/W) I IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes Reserved: Set to 0. IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ11 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Notes IRQ9 Edge or Level Select: Selects PIC IRQ9 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 a) Reserved: Set to 0.	Reset Value = 00h 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2) 1 and 2)

Table 4-47. Interrupt Edge/Level Select Registers

4.5.5 I/O Ports 092h and 061h System Control

The CS5530A supports control functions of I/O Ports 092h (Port A) and 061h (Port B) for PS/2 compatibility. I/O Port 092h allows a fast assertion of the A20M# or CPU_RST. I/O Port 061h controls NMI generation and reports system status. Table 4-48 shows these register bit formats.

The CS5530A does not use a pin to control A20 Mask when used together with a GX1 processor. Instead, it generates an SMI for every internal change of the A20M# state and the SMI handler sets the A20M# state inside the CPU. This method is used for both the Port 092h (PS/2) and Port 061h (keyboard) methods of controlling A20M#.

Table 4-48. I/O Ports 061h and 092h

Bit	Description				
I/O Port	061h Port B Control Register (R/W) I	Reset Value = 00x01100b			
7	PERR#/SERR# Status (Read Only): Was a PCI bus error (PERR#/SERR#) asserted by a PCI device or by the CS5530A? 0 = No; 1 = Yes.				
	This bit can only be set if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ERR_EN with a 1 or after reset.				
6	IOCHK# Status (Read Only): Is an I/O device reporting an error to the CS5530A? 0 = No; 1 = Yes.				
	This bit can only be set if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to IOCHK_EN with a 1 or after reset.				
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).				
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).				
3	IOCHK Enable:				
	0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. Note that NMI is under SMI control. 1 = Ignores the IOCHK# input signal and does not generate NMI.				
2	PERR#/SERR# Enable: Generates an NMI if PERR#/SERR# is driven active to report an error. 0 = Enable; 1 = Disable				
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output (OUT2) to pass to the speaker.				
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.				
I/O Port	092h Port A Control Register (R/W)	Reset Value = 02h			
7:2	Reserved: Set to 0.				
1	A20M# SMI Assertion: Assert A20M#. 0 = Enable mask; 1 = Disable mask.				
0	Fast CPU Reset: WM_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.				
	This bit must be cleared before the generation of another reset.				

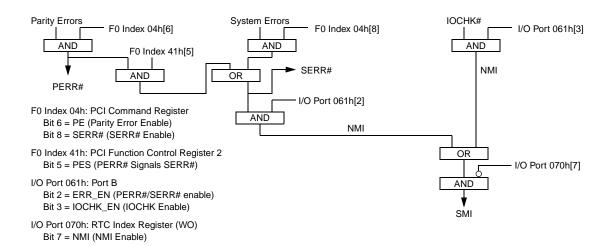
4.5.5.1 I/O Port 092h System Control

I/O Port 092h allows for a fast keyboard assertion of an A20# SMI and a fast keyboard CPU reset. Decoding for this register may be disabled via F0 Index 52h[3] (Table 4-49).

The assertion of a fast keyboard A20# SMI is controlled by either I/O Port 092h or by monitoring for the keyboard command sequence (see Section 4.5.6.1 "Fast Keyboard Gate Address 20 and CPU Reset" on page 108). If bit 1 of I/O Port 092h is cleared, the CS5530A internally asserts an A20M# SMI, which in turn causes an SMI to the processor. If bit 1 is set, A20M# SMI is internally deasserted again causing an SMI.

The assertion of a fast keyboard reset (WM_RST SMI) is controlled by bit 0 in I/O Port 092h or by monitoring for the keyboard command sequence. If bit 0 is changed from a 0 to a 1, the CS5530A generates a reset to the processor by generating a WM_RST SMI. When the WM_RST SMI occurs, the BIOS jumps to the Warm Reset vector. This bit remains set until the CS5530A is externally reset, or this bit is cleared by program control. Note that Warm Reset is not a pin; it is under SMI control.

4.5.5.2 I/O Port 061h System Control


Through I/O Port 061h, the speaker output can be enabled, NMI from IOCHK# or SERR# can be enabled, the status of IOCHK# and SERR# can be read, and the state of the speaker data (Timer2 output) and refresh toggle (Timer1 output) can be read back. Note that NMI is under SMI control. Even though the hardware is present, the IOCHK# pin does not exist so an NMI from IOCHK# can not happen.

4.5.5.3 SMI Generation for NMI

Figure 4-17 shows how the CS5530A can generate an SMI for an NMI. Note that NMI is not a pin.

Table 4-49. I/O Port 092h Decode Enable Bit

Bit	Description	
F0 Index 5	2h ROM/AT Logic Control Register (R/W)	Reset Value = F8h
3	3 Enable I/O Port 092h Decode (Port A): I/O Port 092h decode and the logical functions. 0 = Disable; 1 = Enable.	

4.5.6 Keyboard Interface Function

The CS5530A actively decodes the keyboard controller I/O Ports 060h and 064h, and generate an ISA I/O cycle with KBROMCS# asserted. Access to I/O Ports 062h and 066h must be enabled for KBROMCS# to be asserted. The CS5530A also actively decodes the keyboard controller I/O Ports 062h and 066h if F0 Index 5Bh[7] is set. Keyboard positive decoding can be disabled if F0 Index 5Ah[1] is cleared. Table 4-50 shows these two decoding bits.

Table 4-51 lists the standard keyboard control I/O registers and their bit formats.

Table 4-50. Decode Control Registers

Bit	Description			
F0 Inde	x 5Ah	Decode Control Register 1 (R/W)	Reset Value = 03h	
1	Keyboard Controller Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 060h and 064h (and 062h/066h if enabled). 0 = Subtractive; 1 = Positive.			
Note: Positive decoding by the CS5530A speeds up the I/O cycle time. These I/O Ports do not exist in the CS5530A. It is assumed that if positive decode is enabled, the port exists on the ISA bus.				
	poolitive decede			
F0 Inde		Decode Control Register 2 (R/W)	Reset Value = 20h	
	x 5Bh Keyboard I/C			

Table 4-51. External Keyboard Controller Registers

I/O Port 060h (R/W)

Description

Bit

External Keyboard Controller Data Register

Keyboard Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.

I/O Port 062h (R/W)

External Keyboard Controller Mailbox Register

Keyboard Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through bit 7 of the Decode Control Register 2 (F0 Index 5Bh[7]).

I/O Port 064h (R/W)

External Keyboard Controller Command Register

Keyboard Controller Command Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.

I/O Port 066h (R/W)

External Keyboard Controller Mailbox Register

Keyboard Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through bit 7 of the Decode Control Register 2 (F0 Index 5Bh[7]).

AMD Revis

4.5.6.1 Fast Keyboard Gate Address 20 and CPU Reset

The CS5530A monitors the keyboard I/O Ports 064h and 060h for the fast keyboard A20M# and CPU reset control sequences. If a write to I/O Port 060h[1] = 1 after a write takes place to I/O Port 064h with data of D1h, then the CS5530A asserts the A20M# signal. A20M# remains asserted until cleared by:

- (1) a write to bit 1 of I/O Port 092h,
- (2) a CPU reset of some kind, or
- (3) write to I/O Port 060h[1] = 0 after a write takes place to I/O Port 064h with data of D1h.

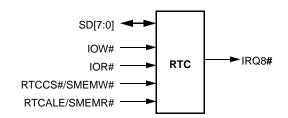
The CS5530A also monitors the keyboard ports for the CPU reset control sequence. If a write to I/O Port 060h with data bit 0 set occurs after a write to I/O Port 064h with data of D1h, the CS5530A asserts a WM_RST SMI.

The fast keyboard A20M# and CPU reset can be disabled through F0 Index 52h[7]. By default, bit 7 is cleared, and the fast keyboard A20M# and CPU reset monitor logic is active. If bit 7 is clear, the CS5530A forwards the commands to the keyboard controller.

By default, the CS5530A forces the deassertion of A20M# during a warm reset. This action may be disabled if F0 Index 52h[4] is cleared.

Bit	Description		
F0 Index	52h ROM/AT Logic Control Register (R/W) Reset Value = F8h		
7	Snoop Fast Keyboard Gate A20 and Fast Reset: Enables the snoop logic associated with keyboard commands for A20 Mask and Reset. 0 = Disable; 1 = Enable (snooping).		
	If disabled, the keyboard controller handles the commands.		
4	Enable A20M# Deassertion on Warm Reset: Force A20M# high during a Warm Reset (guarantees that A20M# is deasserted regardless of the state of A20). 0 = Disable; 1 = Enable.		

Table 4-52. A20 Associated Programming Bits


4.5.7 External Real-Time Clock Interface

I/O Ports 070h and 071h decodes are provided to interface to an external real-time clock controller. I/O Port 070h, a write only port, is used to set up the address of the desired data in the controller. This causes the address to be placed on the ISA data bus, and the RTCALE signal to be triggered. A read of I/O Port 071h causes an ISA I/O read cycle to be performed while asserting the RTCCS# signal. A write to I/O Port 071h causes an ISA I/O write cycle to be performed with the desired data being placed on the ISA bus and the RTCCS# signal to be asserted. RTCCS#/ SMEMW# and RTCALE/SMEMR# are multiplexed pins. The function selection is made through F0 Index 53h[2].

The connection between the CS5530A and an external real-time clock is shown in Figure 4-18.

The CS5530A also provides the RTC Index Shadow Register (F0 Index BBh) to store the last write to I/O Port 070h.

Table 4-53 shows the bit formats for the associated registers for interfacing with an external real-time clock.

Figure 4-18. External RTC Interface

Bit	Description		
I/O Port			
7	NMI Mask: 0 = Enable; 1 =	Mask.	
6:0	RTC Register Index: A writ	e of this register sends the data out on the ISA bus and also	causes RTCALE to be triggered.
Note: Th	his register is shadowed within	the CS5530A and is read through the RTC Shadow Register	r (F0 Index BBh).
I/O Port	071h (R/W)	RTC Data Register	
A read of	this register returns the value	of the register indexed by the RTC Address Register plus init	iates a RTCCS#
	the register retaine the raise	and register indexed by the rene reduces register plus inte	
	U U	the register indexed by the RTC Address Register plus initia	
	this register sets the value into		ates a RTCCS#.
A write of	this register sets the value into	the register indexed by the RTC Address Register plus initia	ates a RTCCS#. Reset Value = xxh
A write of F0 Index 7:0	this register sets the value into BBh RTC Index Shadow (Read register (I/O Port 070h).	the register indexed by the RTC Address Register plus initia RTC Index Shadow Register (RO)	ates a RTCCS#. Reset Value = xxf alue of the RTC Index
A write of F0 Index	this register sets the value into BBh RTC Index Shadow (Read register (I/O Port 070h). 53h RTC Enable/RTC Pin Conf	o the register indexed by the RTC Address Register plus initia RTC Index Shadow Register (RO) Only): The RTC Shadow register contains the last written va	ates a RTCCS#. Reset Value = xxh alue of the RTC Index Reset Value = 00h

Table 4-53. Real-Time Clock Registers

4.6 IDE Controller

The CS5530A integrates a fully-buffered, 32-bit, ANSI ATA-4-compliant (Ultra DMA33) IDE interface. The IDE interface supports two channels, primary and secondary, each supporting two devices that can operate in PIO Modes 1, 2, 3, 4, Multiword DMA, or Ultra DMA/133.

The IDE interface provides a variety of features to optimize system performance, including 32-bit disk access, post write buffers, bus master, Multiword DMA, look-ahead read buffer, and prefetch mechanism for each channel respectively.

The IDE interface timing is completely programmable. Timing control covers the command active and recover pulse widths, and command block register accesses. The IDE data-transfer speed for each device on each channel can be independently programmed allowing high-speed IDE peripherals to coexist on the same channel as older, compatible devices.

The CS5530A also provides a software-accessible buffered reset signal to the IDE drive, F0 Index 44h[3:2] (Table 4-54). The IDE_RST# signal is driven low during reset to the CS5530A and can be driven low or high as needed for device-power-off conditions.

4.6.1 IDE Interface Signals

The CS5530A has two completely separate IDE control signals, however, the IDE_RST#, IDE_ADDR[2:0] and IDE_DATA[15:0] are shared. The connections between the CS5530A and IDE devices are shown as Figure 4-19.

Bit	Description						
F0 Index 4	Ah Reset Control Register (R/W) Reset Value = xx000000b						
3 IDE Controller Reset: Reset both of the CS5530A IDE controllers' internal state machines. 0 = Run; 1 = Reset.							
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.						
2	2 IDE Reset: Reset IDE bus. 0 = Deassert IDE bus reset signal; 1 = Assert IDE bus reset signal.						
	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.						

Table 4-54. IDE Reset Bits

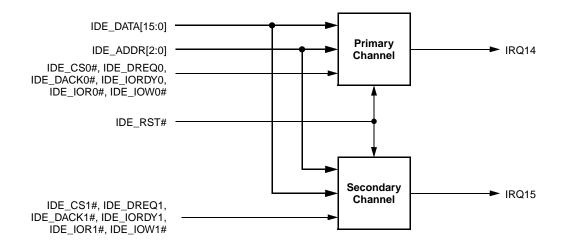


Figure 4-19. CS5530A and IDE Channel Connections

Registers for configuring the IDE interface are accessed through F2 Index 20h, the Base Address Register (F2BAR) in Function 2. F2BAR sets the base address for the IDE Controllers Configuration Registers as shown in Table 4-55. For complete bit information, refer to Section 5.3.3 "IDE Controller Registers - Function 2" on page 184.

The following subsections discuss CS5530A operational/ programming details concerning PIO, Bus Master, and Ultra DMA/33 modes.

4.6.2.1 PIO Mode

The IDE data port transaction latency consists of address latency, asserted latency and recovery latency. Address latency occurs when a PCI master cycle targeting the IDE data port is decoded, and the IDE_ADDR[2:0] and IDE_CS# lines are not set up. Address latency provides the setup time for the IDE_ADDR[2:0] and IDE_CS# lines prior to IDE_IOR# and IDE_IOW#.

Asserted latency consists of the I/O command strobe assertion length and recovery time. Recovery time is provided so that transactions may occur back-to-back on the IDE interface without violating minimum cycle periods for the IDE interface.

If IDE_IORDY is asserted when the initial sample point is reached, no wait states are added to the command strobe assertion length. If IDE_IORDY is negated when the initial sample point is reached, additional wait states are added.

Recovery latency occurs after the IDE data port transactions have completed. It provides hold time on the IDE_ADDR[2:0] and IDE_CS# lines with respect to the read and write strobes (IDE_IOR# and IDE_IOW#).

Revision 1.1

The PIO portion of the IDE registers is enabled through:

- Channel 0 Drive 0 Programmed I/O Register (F2BAR+I/ O Offset 20h)
- Channel 0 Drive 1 Programmed I/O Register (F2BAR+I/ O Offset 28h)
- Channel 1 Drive 0 Programmed I/O Register (F2BAR+I/ O Offset 30h)
- Channel 1 Drive 1 Programmed I/O Register (F2BAR+I/ O Offset 38h)

The IDE channels and devices can be individually programmed to select the proper address setup time, asserted time, and recovery time.

The bit formats for these registers are shown in Table 4-56. Note that there are different bit formats for each of the PIO programming registers depending on the operating format selected: Format 0 or Format 1.

F2BAR+I/O Offset 24h[31] (Channel 0 Drive 0 — DMA Control Register) sets the format of the PIO register. If bit 31 = 0, Format 0 is used and it selects the slowest PIO-MODE (bits [19:16]) per channel for commands. If bit 31 = 1, Format 1 is used and it allows independent control of command and data.

Also listed in the bit formats are recommended values for the different PIO modes.

Note: These are only recommended settings and are not 100% tested.

Table 4-55. Base Address Register (F2BAR) for IDE Support Registers

Bit	Description							
F2 Index 2	0h-23h	Base Address Register - F2BAR (R/W)	Base Address Register - F2BAR (R/W) Reset Value = 00000001h					
This register sets the base address of the I/O mapped bus mastering IDE and controller registers. Bits [6:0] are read only (0000 001), indicating a 128-byte I/O address range. Refer to Table 5-19 for the IDE configuration registers bit formats and reset values.								
31:7	Bus Mastering IDE Base Address							
6:0	Address Range (Read Only)						

Bit	Description		
F2BAR+I	O Offset 20h-23h	Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)
If Offset 2	24h[31] = 0, Format 0: Sele	ects slowest PIOMODE per channel for commands.	
Format 0	settings for: PIO Mode 0 = 0	0009172h	
	PIO Mode $1 = 0$		
	PIO Mode $2 = 0$		
	PIO Mode 3 = 0 PIO Mode 4 = 0		
31:20	Reserved: Set to 0.		
19:16	PIOMODE: PIO mode		
15:12	t2l: Recovery time (value	e + 1 cycle)	
11:8	t3: IDE_IOW# data setur	o time (value + 1 cycle)	
7:4	t2W: IDE_IOW# width m	inus t3 (value + 1 cycle)	
3:0	t1: Address Setup Time	(value + 1 cycle)	
If Offset 2	24h[31] = 1, Format 1: Allo	ws independent control of command and data.	
Format 1	settings for: PIO Mode 0 = 9	172D132h	
	PIO Mode $1 = 2$		
	PIO Mode 2 = 0		
	PIO Mode $3 = 2$		
24.00	PIO Mode 4 = 0		
31:28		covery time (value + 1 cycle)	
27:24 23:20	,	E_IOW# data setup (value + 1 cycle) DE_IOW# pulse width minus t3 (value + 1 cycle)	
	,		
19:16 15:12	,	dress setup time (value + 1 cycle)	
15:12	t2ID: Data cycle recovery	/# data setup (value + 1 cycle)	
7:4	-	DW# pulse width minus t3 (value + 1 cycle)	
3:0	· · -	Setup Time (value + 1 cycle)	
	e reset value of this register		
Offset 28	5	Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel) Drive 1 Programmed I/O	Control Register: Refer to F2BAR+I/O Offset 20h for bi	
Offset 30	h-33h	Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h
Channel	1 Drive 0 Programmed I/O	Control Register: Refer to F2BAR+I/O Offset 20h for bi	t descriptions.
Offset 38	h-3Bh	Channel 1 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel	1 Drive 1 Programmed I/O	Control Register: Refer to F2BAR+I/O Offset 20h for bi	t descriptions.
		• • • • • • • • • • • • • • • • • • • •	

Table 4-56. PIO Programming Registers

4.6.2.2 Bus Master Mode

Two IDE bus masters are provided to perform the data transfers for the primary and secondary channels. The CS5530A off-loads the CPU and improves system performance in multitasking environments.

The bus master mode programming interface is an extension of the standard IDE programming model. This means that devices can always be dealt with using the standard IDE programming model, with the master mode functionality used when the appropriate driver and devices are present. Master operation is designed to work with any IDE device that supports DMA transfers on the IDE bus. Devices that work in PIO mode can only use the standard IDE programming model.

The IDE bus masters use a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Physical Region Descriptor Table Address

Before the controller starts a master transfer it is given a pointer (shown in Table 4-57) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The PRDs must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

Revision 1.1

Primary and Secondary IDE Bus Master Registers

The IDE Bus Master Registers for each channel (primary and secondary) have an IDE Bus Master Command Register and Bus Master Status Register. These registers must be accessed individually; a 32-bit DWORD access attempting to include both the Command and Status registers may not operate correctly. Bit formats of these registers are given in Table 4-58.

Bit	Description							
F2BAR+I/O	Offset 04h-07h	IDE Bus Master 0 PRD Table Address — Primary (R/W)	Reset Value = 00000000h					
31:2	Pointer to the Physic	al Region Descriptor Table: This register is a PRD table pointer f	or IDE Bus Master 0.					
		ster points to the first entry in a PRD table. Once IDE Bus Master 0 inter and updates this register to the next PRD by adding 08h.	is enabled (Command Register bit					
	When read, this regist	er points to the next PRD.						
1:0	Reserved: Set to 0.							
F2BAR+I/O	Offset 0Ch-0Fh	IDE Bus Master 1 PRD Table Address — Secondary (R/W)	Reset Value = 00000000h					
31:2	Pointer to the Physic	al Region Descriptor Table: This register is a PRD table pointer f	or IDE Bus Master 1.					
	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 1 is enabled (Command Register bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.							
	When read, this register points to the next PRD.							
1:0	Reserved: Set to 0.							

Table 4-57. IDE Bus Master PRD Table Address Registers

Bit	Description	
F2BAR+I/C	O Offset 00h IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI	writes performed.
	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master.	
	Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, it can n is set to 0 while a bus master operation is active, the command is aborted and the data transferred fre carded. This bit should be reset after completion of data transfer.	
F2BAR+I/C	Offset 02h IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00h
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode).	
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	
	Write 1 to clear.	
1	Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes.	
	Write 1 to clear.	
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.	
F2BAR+I/C	Offset 04h-07h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reset	Value = 00000000h
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus I When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled ($0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
F2BAR+I/C	Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI	writes performed.
	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. $0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can n is set to 0 while a bus master operation is active, the command is aborted and the data transferred frecarded. This bit should be reset after completion of data transfer.$	
F2BAR+I/C	Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W)	Reset Value = 00h
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode).	
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
1.0		
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	
	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	

Table 4-58. IDE Bus Master Command and Status Registers

Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 4-59. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. This pointer must be 16-byte aligned. The second DWORD contains the size (16 bits) of the buffer and the EOT flag. The size must be in multiples of 16 bytes. The EOT bit (bit 31) must be set to indicate the last PRD in the PRD table.

Programming Model

The following steps explain how to initiate and maintain a bus master transfer between memory and an IDE device.

- Software creates a PRD table in system memory. Each PRD entry is 8 bytes long, consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT bit set.
- 2) Software loads the starting address of the PRD table by programming the PRD Table Address Register.

- Software must fill the buffers pointed to by the PRDs with IDE data.
- 4) Write 1 to the Bus Master Interrupt bit and Bus Master Error (Status Register bits 2 and 1) to clear the bits.
- 5) Set the correct direction to the Read or Write Control bit (Command Register bit 3).
- 6) Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).
- The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.
- 8) The bus master transfers data to/from memory responding to bus master requests from the IDE device. At the completion of each PRD, the bus master's next response depends on the settings of the EOT flag in the PRD. If the EOT bit is set, then the IDE bus master clears the Bus Master Active bit (Status Register bit 0) and stops. If any errors occurred during the transfer, the bus master sets the Bus Master Error bit (Status Register bit 1).

		Byte 3 Byte 2				Byte 1						Byte 0																				
DWORD	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Memory Region Physical Base Address [31:4] (IDE Data Buffer)					•	0	0	0	0																						
1	1 E Reserved Size [15:4] O T					0	0	0	0																							

Table 4-59. Physical Region Descriptor Format

4.6.2.3 Ultra DMA/33 Mode

The CS5530A supports Ultra DMA/33. It utilizes the standard IDE Bus Master functionality to interface, initiate, and control the transfer. Ultra DMA/33 definition also incorporates a Cyclic Redundancy Check (CRC) error checking protocol to detect errors.

The Ultra DMA/33 protocol requires no extra signal pins on the IDE connector. The CS5530A redefines three standard IDE control signals when in Ultra DMA/33 mode. These definitions are shown in Table 4-60.

CS5530A IDE Channel Signal	Ultra DMA/33 Read Cycle	Ultra DMA/33 Write Cycle
IDE_IOW#	STOP	STOP
IDE_IOR#	DMARDY#	STROBE
IDE_IORDY	STROBE	DMARDY#

Table 4-60.	Ultra	DMA/33	Signal	Definitions
	onua	01117400	Orginal	Deminions

All other signals on the IDE connector retain their functional definitions during the Ultra DMA/33 operation.

IDE_IOW# is defined as STOP for both read and write transfers to request to stop a transaction.

IDE_IOR# is redefined as DMARDY# for transferring data from the IDE device to the CS5530A. It is used by the CS5530A to signal when it is ready to transfer data and to add wait states to the current transaction. IDE_IOR# signal is defined as STROBE for transferring data from the CS5530A to the IDE device. It is the data strobe signal driven by the CS5530A on which data is transferred during each rising and falling edge transition.

IDE_IORDY is redefined as STROBE for transferring data from the IDE device to the CS5530A during a read cycle. It is the data strobe signal driven by the IDE device on which data is transferred during each rising and falling edge transition. IDE_IORDY is defined as DMARDY# during a write cycle for transferring data from the CS5530A to the IDE device. It is used by the IDE device to signal when it is ready to transfer data and to add wait states to the current transaction.

Ultra DMA/33 data transfer consists of three phases, a startup phase, a data transfer phase and a burst termination phase.

The IDE device begins the startup phase by asserting IDE_DREQ. When ready to begin the transfer, the CS5530A asserts IDE_DACK#. When IDE_DACK# is asserted, the CS5530A drives IDE_CS0# and IDE_CS1# asserted, and IDE_ADDR[2:0] low. For write cycles, the CS5530A negates STOP, waits for the IDE device to assert DMARDY#, and then drives the first data WORD and STROBE signal. For read cycles, the CS5530A negates STOP, and asserts DMARDY#. The IDE device then sends the first data WORD and asserts STROBE.

The data transfer phase continues the burst transfers with the CS5530A and the IDE via providing data, toggling STROBE and DMARDY#. IDE_DATA[15:0] is latched by the receiver on each rising and falling edge of STROBE. The transmitter can pause the burst cycle by holding STROBE high or low, and resume the burst cycle by again toggling STROBE. The receiver can pause the burst cycle by negating DMARDY# and resumes the burst cycle by asserting DMARDY#.

The current burst cycle can be terminated by either the transmitter or the receiver. A burst cycle must first be paused as described above before it can be terminated. The CS5530A can then stop the burst cycle by asserting STOP, with the IDE device acknowledging by negating IDE_DREQ. The IDE device stops the burst cycle by negating IDE_DREQ and the CS5530A acknowledges by asserting STOP. The transmitter then drives the STROBE signal to a high level. The CS5530A then puts the result of the CRC calculation onto IDE_DATA[15:0] while deasserting IDE_DACK#.

The CRC value is used for error checking on Ultra DMA/33 transfers. The CRC value is calculated for all data by both the CS5530A and the IDE device during the Ultra DMA/33 burst transfer cycles. This result of the CRC calculation is based on all data transferred with a valid STROBE edge while IDE_DACK# is asserted. At the end of the burst transfer, the CS5530A drives the result of the CRC calculation onto IDE_DATA[15:0] which is then strobed by the deassertion of IDE_DACK#. The IDE device compares the CRC result of the CS5530A to its own and reports an error if there is a mismatch.

The timings for Ultra DMA/33 are programmed into the DMA control registers:

- Channel 0 Drive 0 DMA Control Register (F2BAR+I/O Offset 24h)
- Channel 0 Drive 1 DMA Control Register (F2BAR+I/O Offset 2Ch)
- Channel 1 Drive 0 DMA Control Register (F2BAR+I/O Offset 34h)
- Channel 1 Drive 1 DMA Control Register (F2BAR+I/O Offset 3Ch)

The bit formats for these registers are given in Table 4-61. Note that F2BAR+I/O Offset 24h[20] is used to select either Multiword or Ultra DMA mode. Bit 20 = 0 selects Multiword DMA mode. If bit 20 = 1, then Ultra DMA/33 mode is selected. Once mode selection is made using this bit, the remaining DMA Control Registers also operate in the selected mode.

Also listed in the bit formats are recommended values for both Multiword DMA Modes 0-2 and Ultra DMA/33 Modes 0-2.

Note: These are only recommended settings and are not 100% tested.

116

Bit	Description
F2BAR+I/	O Offset 24h-27h Channel 0 Drive 0 DMA Control Register (R/W) Reset Value = 00077771h
	0, Multiword DMA r: Multiword DMA Mode 0 = 00077771h Multiword DMA Mode 1 = 00012121h Multiword DMA Mode 2 = 00002020h
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.
30:21	Reserved: Set to 0.
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.
19:16	tKR: IDE_IOR# recovery time (4-bit) (value + 1 cycle)
15:12	tDR: IDE_IOR# pulse width (value + 1 cycle)
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1#
	r: Ultra DMA Mode 0 = 00921250h Ultra DMA Mode 1 = 00911140h Ultra DMA Mode 2 = 00911030h
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.
30:21	Reserved: Set to 0.
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = tMLI + tSS)
15:12	tSS: UDMA out (value + 1 cycle)
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)
Offset 2C	n-2Fh Channel 0 Drive 1 DMA Control Register (R/W) Reset Value = 00017771h Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.
	ce the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.
Offset 34	n-37h Channel 1 Drive 0 DMA Control Register (R/W) Reset Value = 00017771h
	Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. ce the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.
Offset 3C	n-3Fh Channel 1 Drive 1 DMA Control Register (R/W) Reset Value = 00017771h
	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. ce the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.

Table 4-61. MDMA/UDMA Control Registers

4.7 XpressAUDIO[™] Subsystem

Through XpressAUDIO[™] architecture, the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. The XpressAUDIO architecture uses Virtual System Architecture[™] (VSA) technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.

The hardware portion of the XpressAUDIO subsystem is for transporting streaming audio data to/from the system memory and an AC97 codec. This hardware includes:

- Six (three inbound/three outbound) buffered PCI bus mastering engines that drive specific AC97 interface slots.
- Interfaces to AC97 codecs for audio input/output.

Additional hardware provides the necessary functionality for VSA technology. This hardware includes the ability to:

- Generate an SMI to alert software to update required data. An SMI is generated when either audio buffer is half empty or full. If the buffers become completely empty or full, the Empty bit is asserted.
- Generate an SMI on I/O traps.
- Trap accesses for sound card compatibility at either I/O Port 220h-22Fh, 240h-24Fh, 260h-26Fh, or 280h-28Fh.
- Trap accesses for FM compatibility at I/O Port 388h-38Bh.
- Trap accesses for MIDI UART interface at I/O Port 300h-301h or 330h-331h.

- Trap accesses for serial input and output at COM2 (I/O Port 2F8h-2FFh) or COM4 (I/O Port 2E8h-2EFh).
- Support trapping for low (I/O Port 00h-0Fh) and/or high (I/O Port C0h-DFh) DMA accesses.
- Support hardware status register reads in CS5530A, minimizing SMI overhead.
- Support is provided for software-generated IRQs on IRQ 2, 3, 5, 7, 10, 11, 12, 13, 14, and 15.

Included in the following subsections are details regarding the registers used for configuring the audio interface. The registers are accessed through F3 Index 10h, the Base Address Register (F3BAR) in Function 3. F3BAR sets the base address for XpressAUDIO subsystem support registers as shown in Table 4-62.

4.7.1 Subsystem Data Transport Hardware

The data transport hardware can be broadly divided into two sections: bus mastering and the codec interface.

4.7.1.1 Audio Bus Masters

The CS5530A audio hardware includes six PCI bus masters (three for input and three for output) for transferring digitized audio between memory and the external codec. With these bus master engines, the CS5530A off-loads the CPU and improves system performance.

The programming interface defines a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Table 4-62. Base Address Register (F3BAR) for XpressAUDIO™ Subsystem Support Registers

Bit	Description							
f3 Index 10)h-13h	Base Address Register - F3BAR (R/W)	Base Address Register - F3BAR (R/W) Reset Value = 00000000h					
used to cor (0000 0000	trol the audio FI	address of the memory mapped audio interface control register block. This is FO and codec interface, as well as to support SMIs produced by VSA techn 28-byte memory address range. Refer to Table 5-21 for the bit formats and res.	nology. Bits [6:0] are read only					
21.7	Audia Interfee	De Rece Address						

31:7	Audio Interface Base Address
6:0	Address Range (Read Only)

Revision 1.1

The six bus masters that directly drive specific slots on the AC97 interface:

- Audio Bus Master 0
 - Output to codec
 - PCI read
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 1
 - Input from codec
 - PCI write
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 2
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 5
- Audio Bus Master 3
 - Input from codec
 - PCI write
 - 16-Bit
 - Slot 5

- Audio Bus Master 4
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot)
- Audio Bus Master 5
- Input from codec
 - PCI write
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot)

Bus Master Audio Configuration Registers

The format for the bus master audio configuration registers is similar in that each bus master has a Command Register, an SMI Status Register and a PRD Table Address Register. Programming of the bus masters is generic in many ways, although specific programming is required of bit 3 in the Command Register. This bit selects read or write control and is dependent upon which Audio Bus Master is being programmed. For example, Audio Bus Master 0 is defined as an output only, so bit 3 of Audio Bus Master 0 Command Register (F3BAR+Memory Offset 20h[3]) must always be set to 1.

Table 4-63. Generic Bit Formats for Audio Bus Master Configuration Registers

Bit	Description
	Command Register (R/W)
7:4	Reserved: Set to 0. Must return 0 on reads.
3	Read or Write Control: Set the transfer direction of Audio Bus Master X: 0 = Memory reads performed (output to codec); 1 = Memory writes performed (input from codec).
	This bit should not be changed when the bus master is active. The setting of this bit is dependent upon the assigned bus master.
2:1	Reserved: Set to 0. Must return 0 on reads.
0	Bus Master Control: Controls the state of the Audio Bus Master X: 0 = Disable; 1 = Enable.
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must either be paused or have reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.
Note: Th	is register must be read and written as a BYTE.
	SMI Status Register (RC)
7:2	Reserved (Read to Clear)
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP (end of page) before software has cleared the first? 0 = No; 1 = Yes.
	If hardware encounters a second EOP before software has cleared the first, it causes the bus master to pause until this reg- ister is read to clear the error.
	Must be R/W as a byte.
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.
Note: M	ist be read and written as a BYTE.
	PRD Table Address (R/W)
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master X.
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master X is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.
	When read, this register points to the next PRD.
1:0	Reserved: Set to 0.

Table 4-63 on page 119 explains the generic format for the six audio bus masters. Table 4-64 gives the register locations, reset values and specific programming information of

bit 3, Read or Write Control, in the Command Register for the Audio Bus Masters.

Table 4-64. Audio Bus Master Configuration Register Summary

Bit	Description		
Audio Bus	s Master 0: Output to Codec; 3	2-Bit; Left and Right Channels; Slots 3 and 4.	
F3BAR+M F3BAR+M	emory Offset 20h emory Offset 21h emory Offset 22h-23h	Command Register (R/W) SMI Status Register (RC) Reserved	Reset Value = 00 Reset Value = 00 Reset Value = 00 Reset Value = xxt
Refer to Ta	emory Offset 24h-27h able 4-63 on page 119 for bit des 3 of the Command Register mus	PRD Table Address (R/W) criptions. t be set to 0 (memory read) for correct operation.	Reset Value = 00000000
Audio Bus	s Master 1: Input from Codec;	32-Bit; Left and Right Channels; Slots 3 and 4.	
F3BAR+M F3BAR+M F3BAR+M Refer to Ta	emory Offset 28h emory Offset 29h emory Offset 2Ah-2Bh emory Offset 2Ch-2Fh able 4-63 on page 119 for bit des 3 of the Command Register mus	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) criptions. t be set to 1 (memory write) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 0000000h
	s Master 2: Output to Codec; 1		
F3BAR+M F3BAR+M F3BAR+M F3BAR+M Refer to Ta	emory Offset 30h emory Offset 31h emory Offset 32h-33h emory Offset 34h-37h able 4-63 on page 119 for bit des	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) criptions.	Reset Value = 00f Reset Value = 00f Reset Value = xxf Reset Value = 0000000f
	s Master 3: Input from Codec;	t be set to 0 (memory read) for correct operation.	
F3BAR+M F3BAR+M F3BAR+M F3BAR+M Refer to Ta	emory Offset 38h emory Offset 39h emory Offset 3Ah-3Bh emory Offset 3Ch-3Fh able 4-63 for bit descriptions.	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W) t be set to 1 (memory write) for correct operation.	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 0000000h
Audio Bus	s Master 4: Output to Codec; 1	6-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[1	9] selects slot).
F3BAR+M F3BAR+M F3BAR+M	emory Offset 40h emory Offset 41h emory Offset 42h-43h emory Offset 44h-47h	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W)	Reset Value = 00h Reset Value = 00h Reset Value = xxh Reset Value = 0000000h
	ble 4-63 on page 119 for bit des 3 of the Command Register mus	criptions. t be set to 0 (memory read) for correct operation.	
Audio Bus	s Master 5: Input from Codec;	16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[2	20] selects slot).
F3BAR+M F3BAR+M	emory Offset 48h emory Offset 49h emory Offset 4Ah-4Bh emory Offset 4Ch-4Fh	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W)	Reset Value = 00 Reset Value = 00 Reset Value = xx Reset Value = 00000000
	ble 4-63 on page 119 for bit des 3 of the Command Register mus	criptions. t be set to 1 (memory write) for correct operation.	

4.7.1.2 Physical Region Descriptor Table Address

Before the bus master starts a master transfer it must be programmed with a pointer (PRD Table Address Register) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The descriptor table entries must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

4.7.1.3 Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 4-65. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. The second DWORD contains the size (16 bits) of the buffer and flags (EOT, EOP, JMP). The description of the flags are as follows:

- EOT bit If set in a PRD, this bit indicates the last entry in the PRD table (bit 31). The last entry in a PRD table must have either the EOT bit or the JMP bit set. A PRD can not have both the JMP and EOT bits set.
- EOP bit If set in a PRD and the bus master has completed the PRD's transfer, the End of Page bit is set (Status Register bit 0 = 1) and an SMI is generated. If a second EOP is reached due to the completion of another PRD before the End of Page bit is cleared, the Bus Master Error bit is set (Status Register bit 1 = 1) and the bus master pauses. In this paused condition, reading the Status Register clears both the Bus Master Error and the End of Page bits and the bus master continues.
- JMP bit This PRD is special. If set, the Memory Region Physical Base Address is now the target address of the JMP. There is no data transfer with this PRD. This PRD allows the creation of a looping mechanism. If a PRD table is created with the JMP bit set in the last PRD, the PRD table does not need a PRD with the EOT bit set. A PRD can not have both the JMP and EOT bits set.

				Byt	te 3					Byte 2			Byte 1							Byte 0												
DWORD	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Memory Region Base Address [31:1] (Audio Data Buffer) 0																															
1	E O T	E J Reserved												Siz	e [1	5:1]							0									

 Table 4-65. Physical Region Descriptor Format

4.7.1.4 Programming Model

The following discussion explains, in steps, how to initiate and maintain a bus master transfer between memory and an audio slave device.

In the steps listed below, the reference to "Example" refers to Figure 4-20, PRD Table Example.

 Software creates a PRD table in system memory. Each PRD entry is 8 bytes long; consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT or JMP bit set.

Example - Assume the data is outbound. There are three PRDs in the example PRD table. The first two PRDs (PRD_1, PRD_2) have only the EOP bit set. The last PRD (PRD_3) has only the JMP bit set. This example creates a PRD loop.

2) Software loads the starting address of the PRD table by programming the PRD Table Address Register.

Example - Program the PRD Table Address Register with Address_3.

 Software must fill the buffers pointed to by the PRDs with audio data. It is not absolutely necessary to fill the buffers; however, the buffer filling process must stay ahead of the buffer emptying. The simplest way to do this is by using the EOP flags to generate an SMI when a PRD is empty.

Example - Fill Audio Buffer_1 and Audio Buffer_2. The SMI generated by the EOP from the first PRD allows the software to refill Audio Buffer_1. The second SMI will refill Audio Buffer_2. The third SMI will refill Audio Buffer_1 and so on.

4) Read the SMI Status Register to clear the Bus Master Error and End of Page bits (bits 1 and 0).

Set the correct direction to the Read or Write Control bit (Command Register bit 3). Note that the direction of the data transfer of a particular bus master is fixed and therefore the direction bit must be programmed accordingly. It is assumed that the codec has been properly programmed to receive the audio data.

Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).

The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.

Example - The bus master is now properly programmed to transfer Audio Buffer_1 to a specific slot(s) in the AC97 interface.

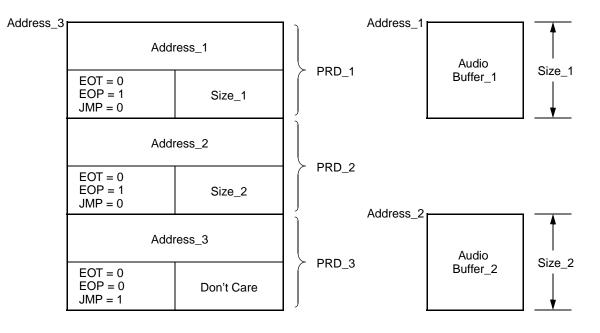


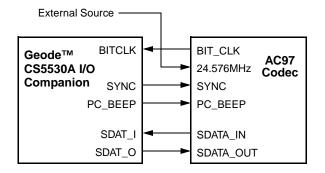
Figure 4-20. PRD Table Example

5) The bus master transfers data to/from memory responding to bus master requests from the AC97 interface. At the completion of each PRD, the bus master's next response depends on the settings of the flags in the PRD.

Example - At the completion of PRD_1 an SMI is generated because the EOP bit is set while the bus master continues on to PRD_2. The address in the PRD Table Address Register is incremented by 08h and is now pointing to PRD_3. The SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_1 is now empty, the software can refill it.

At the completion of PRD_2 an SMI is generated because the EOP bit is set. The bus master then continues on to PRD_3. The address in the PRD Table Address Register is incremented by 08h. The DMA SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_2 is now empty, the software can refill it. Audio Buffer_1 has been refilled from the previous SMI.

PRD_3 has the JMP bit set. This means the bus master uses the address stored in PRD_3 (Address_3) to locate the next PRD. It does not use the address in the PRD Table Address Register to get the next PRD. Since Address_3 is the location of PRD_1, the bus master has looped the PRD table.


Stopping the bus master can be accomplished by not reading the SMI Status Register End of Page status flag. This leads to a second EOP which causes a Bus Master Error and pauses the bus master. In effect, once a bus master has been enabled it never needs to be disabled, just paused. The bus master cannot be disabled unless the bus master has been paused or has reached an EOT.

4.7.1.5 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec that supports sample rate conversion (SRC) can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation.

The AC97 codec is the master of the serial interface and generates the clocks to CS5530A, Figure 4-21 shows the codec and CS5530A signal connections. For specifications on the serial interface, refer to the appropriate codec manufacturer's data sheet.

For PC speaker synthesis, the CS5530A outputs the PC speaker signal on the PC_BEEP pin which is connected to the PC_BEEP input of the AC97 codec.

Figure 4-21. AC97 Signal Connections

Codec Configuration/Control Registers

The codec related registers consist of four 32-bit registers:

- Codec GPIO Status Register
- Codec GPIO Control Register
- Codec Status Register
- Codec Command Register

Codec GPIO Status and Control Registers (F3BAR+ Memory Offset 00h and 04h)

The Codec GPIO Status and Control Registers are used for codec GPIO related tasks such as enabling a codec GPIO interrupt to cause an SMI.

Codec Status Register (F3BAR+Memory Offset 08h)

The Codec Status Register stores the codec status word. It updates every valid Status Word slot.

Codec Control Register (F3BAR+Memory Offset 0Ch)

The Codec Control Register writes the control word to the codec. By writing the appropriate control words to this port, the features of the codec can be controlled. The contents of this register are written to the codec during the Control Word slot.

The bit formats for these registers are given in Table 4-66.

Bit	Description	4-66. Codec Conngulation/Control Regis	
F3BAR+N	Memory Offset 00h-03h	Codec GPIO Status Register (R/W)	Reset Value = 00100000h
31	Codec GPIO Interface: 0 =	Disable: 1 = Enable.	
30		dec GPIO interrupt to generate an SMI. 0 = Disable; 1= I	Enable.
		ted at F1BAR+Memory Offset 00h/02h[1]. eported at F3BAR+Memory Offset 10h/12h[1].	
29:21	Reserved: Set to 0.		
20	Codec GPIO Status Valid (Read Only): Is the status read valid? 0 = Yes; 1 = No.	
19:0	Codec GPIO Pin Status (Resignal.	ead Only): This is the GPIO pin status that is received fi	rom the codec in slot 12 on SDATA_IN
F3BAR+M	lemory Offset 04h-07h	Codec GPIO Control Register (R/W)	Reset Value = 00000000h
31:20	Reserved: Set to 0.		
19:0	Codec GPIO Pin Data: This	s is the GPIO pin data that is sent to the codec in slot 12	on the SDATA_OUT signal.
F3BAR+M	Memory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h
31:24	Codec Status Address (Re slot 1 bits [19:12].	ad Only): Address of the register for which status is bein	ng returned. This address comes from
23	Codec Serial INT SMI: Allo	w codec serial interrupt to generate an SMI. 0 = Disable;	; 1= Enable.
		ted at F1BAR+Memory Offset 00h/02h[1]. eported at F3BAR+Memory Offset 10h/12h[1].	
22	SYNC Pin: Selects SYNC p	in level. 0 = Low; 1 = High.	
21	Enable SDATA_IN2: Pin AE	24 function selection. $0 = GPIO1$; $1 = SDATA_IN2$.	
	For this pin to function as SI	DATA_IN2, it must first be configured as an input (F0 Inde	ex 90h[1] = 0).
20	Audio Bus Master 5 AC97	Slot Select: Selects slot for Audio Bus Master 5 to recei	ive data. 0 = Slot 6; 1 = Slot 11.
19	Audio Bus Master 4 AC97	Slot Select: Selects slot for Audio Bus Master 4 to trans	smit data. $0 = $ Slot 6; $1 = $ Slot 11.
18	Reserved: Set to 0.		
17	Status Tag (Read Only): De	etermines if the status in bits [15:0] is new or not. 0 = No	ot new; 1 = New.
16	Codec Status Valid (Read	Only): Is the status in bits [15:0] valid? 0 = No; 1 = Yes.	
15:0	Codec Status (Read Only)[19:4] are used from slot 2.	: This is the codec status data that is received from the c	codec in slot 2 on SDATA_IN. Only bits
F3BAR+N	Memory Offset 0Ch-0Fh	Codec Command Register (R/W)	Reset Value = 00000000h
31:24	Codec Command Address in slot 1 bits [19:12] on SDA	: Address of the codec control register for which the com TA_OUT.	mand is being sent. This address goes
23:22	00 = Primary codec 01 = Secondary codec	ication: Selects which codec to communicate with. 10 = Third codec 11 = Fourth codec	
		ly valid settings for these bits.	
21:17	Reserved: Set to 0.		
16		the command in bits [15:0] valid? 0 = No; 1 = Yes.	
		when a command is loaded. It remains set until the comm	
15:0	Codec Command: This is the	he command being sent to the codec in bits [19:12] of sl	ot 2 on SDATA_OUT.

Table 4-66. Codec Configuration/Control Registers

4.7.2 VSA Technology Support Hardware

The CS5530A companion device incorporates the required hardware in order to support the Virtual System Architecture (VSA) technology for capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

4.7.2.1 VSA Technology

VSA technology provides a framework to enable software implementation of traditionally hardware-only components. VSA technology software executes in System Management Mode (SMM), enabling it to execute transparently to the operating system, drivers, and applications.

The VSA technology design is based upon a simple model for replacing hardware components with software. Hardware to be virtualized is merely replaced with simple access detection circuitry which asserts the SMI# (System Management Interrupt) pin when hardware accesses are detected. The current execution stream is immediately preempted, and the processor enters SMM. The SMM system software then saves the processor state, initializes the VSA technology execution environment, decodes the SMI source and dispatches handler routines which have registered requests to service the decoded SMI source. Once all handler routines have completed, the processor state is restored and normal execution resumes. In this manner, hardware accesses are transparently replaced with the execution of SMM handler software.

Historically, SMM software was used primarily for the single purpose of facilitating active power management for notebook designs. That software's only function was to manage the power up and down of devices to save power. With high performance processors now available, it is feasible to implement, primarily in SMM software, PC capabilities traditionally provided by hardware. In contrast to power management code, this virtualization software generally has strict performance requirements to prevent application performance from being significantly impacted.

4.7.2.2 Audio SMI Related Registers

The SMI related registers consist of:

- Second Level Audio SMI Status Registers
- I/O Trap SMI and Fast Write Status Register
- I/O Trap SMI Enable Register

The Top SMI Status Mirror and Status Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are at F1BAR+Memory Offset 00h (Status Mirror) and F1BAR+Memory Offset 02h (Status). The registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status.

Second Level Audio SMI Status Registers

The second level of audio SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same (i.e., SMI was caused by an audio related event). The difference between F3BAR+Memory Offset 12h and 10h (mirror) is in the ability to clear the SMI source at 10h.

Figure 4-22 shows an SMI tree for checking and clearing the source of an audio SMI. Only the audio SMI bit is detailed here. For details regarding the remaining bits in the Top SMI Status Mirror and Status Registers refer to Table 5-17 "F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers" on page 181.

I/O Trap SMI and Fast Write Status Register

This 32-bit read-only register (F3BAR+Memory Offset 14h) not only indicates if the enabled I/O trap generated an SMI, but also contains Fast Path Write related bits.

I/O Trap SMI Enable Register

The I/O Trap SMI Enable Register (F3BAR+Memory Offset 18h) allows traps for specified I/O addresses and configures generation for I/O events. It also contains the enabling bit for Fast Path Write/Read features.

If Status Fast Path Read is enabled, the CS5530A intercepts and responds to reads to several status registers. This speeds up operations, and prevents SMI generation for reads to these registers. Status Fast Path Read is enabled via F3BAR+Memory Offset 18h[4].

In Status Fast Path Read the CS5530A responds to reads of the following addresses:

388h-38Bh 2x0h, 2x1h, 2x2h, 2x3h, 2x8h, and 2x9h

Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not possible.

If Fast Path Write is enabled, the CS5530A captures certain writes to several I/O locations. This feature prevents two SMIs from being asserted for write operations that are known to take two accesses (the first access is an index and the second is data). Fast Path Write is enabled via F3BAR+Memory Offset 18h[11].

Fast Path Write captures the data and address bit 1 (A1) of the first access, but does not generate an SMI. A1 is stored in F3BAR+Memory Offset 14h[15]. The second access causes an SMI, and the data and address are captured as in a normal trapped I/O.

In Fast Path Write, the CS5530A responds to writes to the following addresses:

388h, 38Ah, and 38Bh 2x0h, 2x2h, and 2x8h

Table 4-67 on page 127 and Table 4-68 on page 129 show the bit formats of the second and third level SMI status reporting registers, respectively. Table 4-69 on page 130 shows the sound card I/O trap and Fast Path Read/Write programming bits.

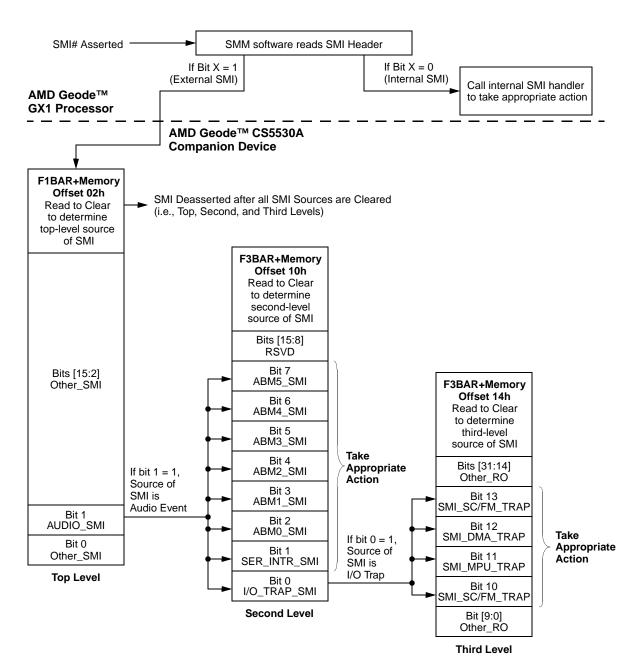


Figure 4-22. Audio SMI Tree Example

Table 4-67	Second	Level SMI	Status	Reporting	Registers
------------	--------	-----------	--------	-----------	-----------

Bit	Description							
F3BAR+M	emory Offset 10h-11h Second Level Audio SMI Status Register (RC)	Reset Value = 0000h						
15:8	Reserved: Set to 0.							
7	Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].							
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h[0 generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- ,						
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurring on 0 = No; 1 = Yes.	Audio Bus Master 4?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C							
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0 generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /						
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurring on 0 = No; 1 = Yes.	Audio Bus Master 3?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C							
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[(generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /						
4	Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0 generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- ,						
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C							
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0 generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- ,						
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurring on 0 = No; 1 = Yes.	Audio Bus Master 0?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C							
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0 generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- ,						
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a serial or $0 = No; 1 = Yes.$	GPIO interrupt from codec						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[1].						
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.							
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes.							
	This is the second level of SMI status reporting. The next level (third level) of SMI status report Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].	ting is at F3BAR+Memory						
	ading this register clears the status bits. Note that bit 0 has another level (third) of SMI status rep	•						
	ead-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value of the r aring the SMI source (and consequently deasserting SMI), the Mirror register may be read instea	•						
F3BAR+M	emory Offset 12h-13h Second Level Audio SMI Status Mirror Register (RO)	Reset Value = 0000h						
15:8	Reserved: Set to 0.							
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	lio Bus Master 5?						
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory C	Offset 00h/02h[1].						
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h[(generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset							

Table 4-67.	Second Level	SMI Status Re	eporting Regi	sters (Continued)
-------------	--------------	---------------	---------------	-------------------

Bit	Description
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
te: Re	ading this register does not clear the status bits. See F3BAR+Memory Offset 10h.

Bit	Description							
F3BAR+N	lemory Offset 14h-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h							
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.							
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.							
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.							
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.							
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)							
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.							
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].							
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].							
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note)							
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].							
	SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].							
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap? 0 = No; 1 = Yes. (Note)							
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].							
	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].							
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I O Trap? 0 = No; 1 = Yes. (Note)							
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write is enabled, the SMI is reported in bit 13 of this register.							
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].							
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].							
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.							
	the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the A, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.							

Table 4-68. Third Level SMI Status Reporting Registers

Bit	Description	
F3BAR+N	emory Offset 18h-19h I/O Trap SMI Enable Register (R/W)	Reset Value = 0000h
15:12	Reserved: Set to 0.	
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certain writes to specif 0 = Disable; 1 = Enable.	ied addresses).
	In Fast Path Write, the CS5530A responds to writes to the following addresses: 388h, 38Ah a 2x8h.	nd 38Bh; 2x0h, 2x2h, and
10:9	Fast Read: These two bits hold part of the response that the CS5530A returns for reads to see	everal I/O locations.
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].	
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[12].	
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.	
C	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].	
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].	
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not generated on reads from 0 = Disable; 1 = Enable.	m specified addresses).
	In Fast Path Read the CS5530A responds to reads of the following addresses: 388h-38Bh; 2:	v0h 2v1h 2v2h 2v3h 2v8h
	and 2x9h.	X011, ZX 111, ZX211, ZX011, ZX011
	Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is no	ot possible.
3	FM I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable	
	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], an SM	II is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
1.0	Third level SMI status is reported at F3BAR+Memory Offset 14h[10].	
1:0	Sound Card Address Range Select: These bits select the address range for the sound card $00 = 1/0$ Part 230b 23Eb	
	00 = I/O Port 220h-22Fh 10 = I/O Port 260h-26Fh 01 = I/O Port 240h-24Fh 11 = I/O Port 280h-28Fh	

Revision 1.1

4.7.2.3 IRQ Configuration Registers

The CS5530A provides the ability to set and clear IRQs internally through software control. If the IRQs are configured for software control, they will not respond to external hardware. There are three registers provided for this feature:

- Internal IRQ Enable Register
- Internal IRQ Mask Register
- Internal IRQ Control Register

Internal IRQ Enable Register

This register configures the IRQs as internal (software) interrupts or external (hardware) interrupts. Any IRQ used

as an internal software driven source must be configured as internal.

Internal IRQ Mask Register

Each bit in the Mask register individually disables the corresponding bit in the Control Register.

Internal IRQ Control Register

This register allows individual software assertion/deassertion of the IRQs that are enabled as internal and unmasked.

The bit formats for these registers are given in Table 4-70.

Bit Description F3BAR+Memory Offset 1Ah-1Bh Internal IRQ Enable Register (R/W) Reset Value = 0000h 15 IRQ15 Internal: Configure IRQ15 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 14 IRQ14 Internal: Configure IRQ14 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 13 Reserved: Set to 0. 12 IRQ12 Internal: Configure IRQ12 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 11 **IRQ11 Internal:** Configure IRQ11 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. IRQ10 Internal: Configure IRQ10 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 10 9 IRQ9 Internal: Configure IRQ9 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 8 Reserved: Set to 0. 7 IRQ7 Internal: Configure IRQ7 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 6 Reserved: Set to 0. 5 IRQ5 Internal: Configure IRQ5 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 4 **IRQ4 Internal:** Configure IRQ4 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 3 **IRQ3 Internal:** Configure IRQ3 for internal (software) or external (hardware) use. 0 = External; 1 = Internal. 2:0 Reserved: Set to 0. Note: Must be read and written as a WORD F3BAR+Memory Offset 1Ch-1Dh Internal IRQ Control Register (R/W) Reset Value = 0000h Assert Masked Internal IRQ15: 0 = Disable; 1 = Enable. 15 14 Assert Masked Internal IRQ14: 0 = Disable; 1 = Enable. 13 Reserved: Set to 0. 12 Assert Masked Internal IRQ12: 0 = Disable; 1 = Enable. 11 Assert masked internal IRQ11: 0 = Disable; 1 = Enable. 10 Assert Masked Internal IRQ10: 0 = Disable; 1 = Enable. 9 Assert Masked Internal IRQ9: 0 = Disable; 1 = Enable. 8 Reserved: Set to 0. 7 Assert Masked Internal IRQ7: 0 = Disable; 1 = Enable. 6 Reserved: Set to 0. Assert Masked Internal IRQ5: 0 = Disable; 1 = Enable. 5 4 Assert Masked Internal IRQ4: 0 = Disable; 1 = Enable.

Table 4-70. IRQ Configuration Registers

Table 4-70. IRQ Configuration Registers (Continued)

Bit	Description							
3	Assert Masked Internal IRQ3: 0 = Disable; 1 = Enable.							
2:0	Reserved: Set to 0.							
F3BAR+	Memory Offset 1Eh-1Fh Internal IRQ Mask Register (Write Only) Reset Value = xxxxh							
15	Mask Internal IRQ15: 0 = Disable; 1 = Enable.							
14	Mask Internal IRQ14: 0 = Disable; 1 = Enable.							
13	Reserved: Set to 0.							
12	Mask Internal IRQ12: 0 = Disable; 1 = Enable.							
11	Mask Internal IRQ11: 0 = Disable; 1 = Enable.							
10	Mask Internal IRQ10: 0 = Disable; 1 = Enable.							
9	Mask Internal IRQ9: 0 = Disable; 1 = Enable.							
8	Reserved: Set to 0.							
7	Mask Internal IRQ7: 0 = Disable; 1 = Enable.							
6	Reserved: Set to 0.							
5	Mask Internal IRQ5: 0 = Disable; 1 = Enable.							
4	Mask Internal IRQ4: 0 = Disable; 1 = Enable.							
3	Mask Internal IRQ3: 0 = Disable; 1 = Enable.							
2:0	Reserved: Set to 0.							

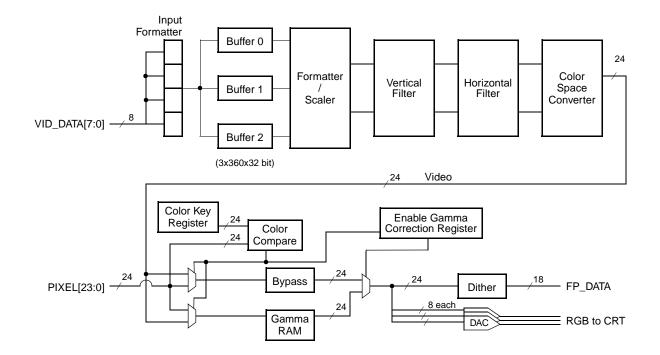
4.8 Display Subsystem Extensions

The CS5530A incorporates extensions to the GX1 processor's' display subsystem. These include:

- Video Interface Configuration Registers
 - Line Buffers
 - Video Port Protocol
 - Video Format
 - X and Y Scaler / Filter
 - Color-Space-Converter
- Video Accelerator
- Gamma RAM
- Display Interface
 - Video DACs
 - VESA DDC2B / DPMS
 - Flat Panel Support

Figure 4-23 shows the data path of the display subsystem extensions.

4.8.1 Video Interface Configuration Registers


Registers for configuring the video interface are accessed through F4 Index 10h, the Base Address Register (F4BAR) in Function 4. F4BAR sets the base address for the Video Interface Configuration Registers as shown in Table 4-71.

Note: All Video Interface Configuration Registers have a 32-bit access granularity (only).

The following subsections describe the video interface and the registers used for programming purposes. However, for complete bit information refer to Section 5.3.5 "Video Controller Registers - Function 4" on page 198.

Bit	Description								
F4 Index 1		Base Address Register — F4BAR (R/W)	Reset Value = 00000000h						
	This register sets the base address of the memory mapped video controller registers. Bits [11:0] are read only (0000 0000 0000), indicating a 4 KB memory address range. Refer to Table 5-23 for the video controller register bit formats and reset values.								
31:12	Video Controller and	Clock Control Base I/O Address							
11:0	Address Range (Read	Only)							

Table 4-71. Base Address Register (F4BAR) for Video Controller Support Registers

elerator Note: All Video Interfac

4.8.2 Video Accelerator

The CS5530A off-loads the processor from several computing-intensive tasks related to the playback of full motion video. By incorporating this level of hardware-assist, a CS5530A/GX1 processor based system can sustain 30 frames-per-second of MPEG quality video.

4.8.2.1 Line Buffers

The CS5530A accepts an 8-bit video stream from the processor and provides three full MPEG resolution line buffers (3x360x32-bit). MPEG source horizontal resolutions up to 720 pixels are supported. By having three line buffers, the display pipeline can read from two lines while the next line of data is being loaded from the processor. This minimizes memory bandwidth utilization by requiring that a source line be transferred only once per frame. Peak bandwidth is also reduced by requiring that the video source line be transferred within the horizontal line time rather than forcing the transfer to occur during the active video window. This efficient utilization of memory bandwidth allows the processor and graphics accelerator an increased opportunity to access the memory subsystem and improves overall system performance during video playback.

4.8.2.2 Video Port Protocol

The video port operates at one-half the processor's core clock rate and utilizes a two-wire handshake protocol. The VID_VAL input signal indicates that valid data has been placed on the VID_DATA[7:0] bus. When the CS5530A is ready to accept data, it asserts VID_RDY to indicate that a line buffer is free to accept the next line. When both VID_VAL and VID_RDY are asserted, VID_DATA advances.

The VID_RDY signal is driven by the CS5530A one clock early to the processor while the VID_VAL signal is driven by the processor coincident with valid data on VID_DATA. A sample timing diagram is shown in Figure 4-24.

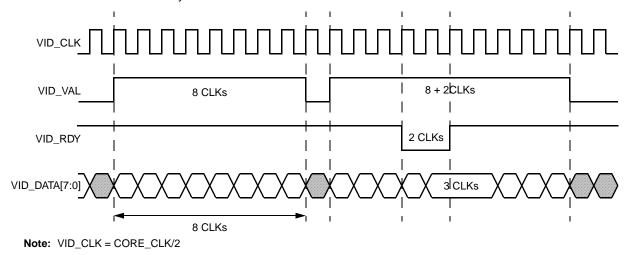


Figure 4-24. Video Port Protocol

4.8.2.3 Video Format

The video input data can be in interleaved YUV 4:2:2 or RGB 5:6:5 format. The sequence of the individual YUV components is selectable to one of four formats via bits [3:2] in the Video Configuration Register (F4BAR+Memory Offset 00h[3:2]). The decode for these bits is shown in Table 4-72.

Table 4-72. Video Input Format Bits

Bit	Description					
F4BAR+N	lemory Offset 00h-03h	Video Configuratio	on Register (R/W)	Reset Value = 00000000h		
31	Reserved: Set to 0					
30	High Speed Timing for Video Interface: High speed timings for the video interface. 0 = Disable; 1= Enable.					
	If bit 30 is enabled, bit 25 should be set to 0.					
29	16-bit Video Interface: Allow video interface to be 16 bits. 0 = Disable; 1= Enable.					
	If bit 29 is enabled, 8 bits of pixel data is used for video. The 24-bit pixel data is then dithered to 16 bits.					
	Note: F4BAR+Memory Offset 04h[25] should be set to the same value as this bit (bit 29).					
28	YUV 4:2:2 or 4:2:0 Mode: 0	= 4:2:2 mode; 1= 4:2:0 mo	ode.			
	If 4:2:0 mode is selected, bit	s [3:2] should be set to 01 t	for 8-bit video mode and 10 f	or 16-bit video mode.		
	Note: The GX1 processor of	loes not support 4:2:0 mod	e.			
27	Video Line Size (DWORDs)	: This is the MSB of the Vi	deo Line Size (DWORDs). S	ee bits [15:8] for description.		
26	Reserved: Set to 0					
25	Early Video Ready: Generate VID_RDY output signal one-half VID_CLK period early to improve the speed of the video por					
	operation. 0 = Disable; 1 = Enable.					
	If bit 30 is enabled, this bit (b	,				
24				ee bits [23:16] for description.		
23:16	Initial Buffer Read Address: This field is used to preload the starting read address for the line buffers at the beginning of each display line. It is used for hardware clipping of the video window at the left edge of the active display. It represents the DWORD address of the source pixel which is to be displayed first. For an unclipped window, this value should be 0.					
15:8	Video Line Size (DWORDs)	: This field represents the	horizontal size of the source	video data in DWORDs.		
7	Y Filter Enable: Vertical filte	er. 0 = Disable; 1= Enable.				
6	X Filter Enable: Horizontal	ilter. 0 = Disable; 1 = Enab	le.			
5	CSC Bypass: Allows color-space-converter to be bypassed. Primarily used for displaying an RGB graphics overlay rather than a YUV video overlay. 0 = Overlay data passes through CSC; 1 = Overlay data bypasses CSC.					
4	GV Select: Selects whether 0 = Video data; 1 = Graphics		be passed through the scale	er hardware.		
3:2	Video Input Format: This fi	eld defines the byte orderin	ig of the video data on the VI	D_DATA bus.		
	8-Bit Mode (Value Byte Ord	ler [0:3])	16-Bit Mode (Value B	yte Order [0:3])		
	00 = U Y0 V Y1 (also used f	or RGB 5:6:5 input)		used for RGB 5:6:5 input)		
	01 = Y1 V Y0 U or 4:2:0		01 = Y0 U Y1 V	.0		
	10 = Y0 U Y1 V 11 = Y0 V Y1 U		10 = Y1 V Y0 U or 4:2 11 = Reserved	:0		
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) should be set to 01 for 8-bit video mode and 10 for 16-bit video mode.					
	Note: $U = Cb$, $V = Cr$					
1	Video Register Update: Allow video position and scale registers to be updated simultaneously on next occurrence of vertical sync. 0 = Disable; 1 = Enable.					
0	Video Enable: Video accele		le: 1 = Enable.			

4.8.2.4 X and Y Scaler / Filter

The CS5530A supports horizontal and vertical scaling of the video stream up to eight times the source resolution. The scaler uses a Digital-Differential-Analyzer (DDA) based upon the values programmed in the Video Scale Register (F4BAR+Memory Offset 10h, see Table 4-73)

The scaled video stream is then passed through horizontal and vertical filters which perform a 2-tap, 8-phase bilinear filter on the resulting stream. The filtering function removes the "blockiness" of the scaled video thereby significantly improving the quality of the displayed image.

By performing the scaling and filtering function in hardware, video performance is substantially improved over pure software implementations by requiring that the decompression software only output the video stream at the native source resolution. This saves both processor overhead and memory bandwidth.

4.8.2.5 Color-Space-Converter

After scaling and filtering have been applied, the YUV video data is passed through the color-space converter to obtain 24-bit RGB video data. The color-space conversion equations are based on the CCIR Recommendation 601-1 as follows:

 $\begin{array}{l} \mathsf{R} = 1.164(\mathsf{Y}{-}16) + 1.596(\mathsf{V}{-}128) \\ \mathsf{G} = 1.164(\mathsf{Y}{-}16) - 0.813(\mathsf{V}{-}128) - 0.391(\mathsf{U}{-}128) \\ \mathsf{B} = 1.164(\mathsf{Y}{-}16) + 2.018(\mathsf{U}{-}128) \end{array}$

The color-space converter clamps inputs to acceptable limits if the data is not well behaved. The color-space converter is bypassed for overlaying 16 bpp RGB graphics data.

Bit	Description					
F4BAR+N	4BAR+Memory Offset 10h-13h Video Scale Register (R/W) Reset Value = xxxxxxxxl					
31:30	Reserved: Set to 0.					
29:16	Video Y Scale Factor: This field represents the video window vertical scale factor according to the following formula. VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1) Where: Ys = Video source vertical size in lines Yd = Video destination vertical size in lines					
15:14	Reserved: Set to 0.					
13:0	Video X Scale Factor: This field represents the video window horizontal scale factor according to the following formula. VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1)					
	Where: Xs = Video source	norizontal size in pixels ion horizontal size in pixels				

Table 4-73. Video Scale Register

Revision 1.1

4.8.3 Video Overlay

The video data from the color-space converter is then mixed with the graphics data based upon the video window position. The video window position is programmable via the Video X and Y Position Registers (F4BAR+Memory Offset 08h and 0Ch). A color-keying mechanism is employed to compare either the source (video) or destination (graphics) color to the color key programmed via the Video Color Key Register (FBAR+Offset 14h) and to select the appropriate pixel for display within the video window. The range of the color key is programmable by setting the appropriate bits in the Video Color Mask Register (F4BAR+Memory Offset 18h). This mechanism greatly reduces the software overhead for computing visible pixels, and ensures that the video display window may be partially occluded by overlapping graphics data. Tables 4-74 and 4-75 show the bit formats for these registers

The CS5530A accepts graphics data over the PIXEL[23:0] interface from the GX1 processor at the screen DOT clock rate. The CS5530A is capable of displaying graphics resolutions up to 1600x1200 at color depths up to 24 bits per pixel (bpp) while simultaneously overlaying a video window. However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings.

Bit	Description				
F4BAR+Memory Offset 08h-0Bh Video X Register (R/W) Reset Value = xxxxxxxh					
31:27	Reserved: Set to 0.				
26:16		d represents the horizontal end position of the view screen position + (H_TOTAL – H_SYNC_END)	5 5		
15:11	Reserved: Set to 0.				
10:0	Video X Start Position: This field represents the horizontal start position of the video window according to the following formula. Position programmed = screen position + (H_TOTAL – H_SYNC_END) – 13.				
F4BAR+M	Memory Offset 0Ch-0Fh	Video Y Register (R/W)	Reset Value = xxxxxxxh		
31:27	Reserved: Set to 0.				
26:16	Video Y End Position: This field represents the vertical end position of the video window according to the following formula. Position programmed = screen position + (V_TOTAL – V_SYNC_END) + 1.				
15:11	Reserved: Set to 0.				
10:0	Video Y Start Position: This field represents the vertical start position of the video window according to the following formula. Position programmed = screen position + (V_TOTAL – V_SYNC_END) + 1.				

Table 4-74. Video X and Y Position Registers

Table 4-75. Video Color Registers

Bit	Description				
F4BAR+Memory Offset 14h-17h Video Color Key Register (R/W) Reset Value = xxxxxxxh					
31:24	Reserved: Set to 0.				
23:0	Video Color Key: This field represents the video color key. It is a 24-bit RGB value. The graphics or video data being compared may be masked prior to the compare by programming the Video Color Mask Register (F4BAR+Memory Offset 18h) appropriately.				
F4BAR+N	lemory Offset 18h-1Bh	Video Color Mask Register (R/W)	Reset Value = xxxxxxxh		
31:24	Reserved: Set to 0.				
23:0	Video Color Mask: This field represents the video color mask. It is a 24-bit RGB value. Zeroes in the mask cause the corresponding bits in the graphics or video stream being compared to be ignored.				

4.8.4 Gamma RAM

Either the graphics or video stream may be routed through an on-chip gamma RAM (3x256x8-bit) which can be used for gamma-correction of either data stream, or contrast/ brightness adjustments in the case of video data.

A bypass path is provided for either the graphics or video stream (depending on which is sent through the gamma RAM). The two streams are merged based on the results of the color key compare.

Configuration for this feature and the display interface are through the Display Configuration Register (F4BAR+Memory Offset 04h). Table 4-76 shows the bit formats for this register.

Table 4-76. Display Configuration Register

Bit	Description				
F4BAR+M	lemory Offset 04h-07h Display Configuration Register (R/W) Reset Value = 00000000h				
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.				
30:28	Reserved: Set to 0.				
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel display is powered on or off. The bit transitions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.				
26	Reserved: Set to 0.				
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface bit at F4BAR+Memory Offset 00h[29] This bit should be set to the same value as the 16-bit Video Interface bit.				
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write data. 0 = DDC_SDA (pin M4) is an input; 1 = DDC_SDA (pin M4) is an output.				
23	DDC Output Data: This is the DDC data bit.				
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.				
21	Palette Bypass: Selects whether graphics or video data should bypass the gamma RAM. 0 = Video data; 1 = Graphics data.				
20	Video/Graphics Color Key Select: Selects whether the video or graphics data stream will be used for color/chroma keying 0 = Graphics data is compared to color key; 1 = Video data is compared to color key.				
19:17	Power Sequence Delay: This field selects the number of frame periods that transpire between successive transitions of the power sequence control lines. Valid values are 001 to 111.				
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew the horizontal and vertical syncs that are sent to the CRT. This field should be programmed to 100 as the baseline. The syncs may be moved forward or backward relative to the pixel data via this register. It is used to compensate for the pipeline delay through the graphics pipeline.				
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp display data to be approximated with an 18-bit flat panel display. 0 = Disable; 1 = Enable.				
12	XGA Flat Panel: This bit enables the FP_CLK_EVEN output signal which can be used to demultiplex the FP_DATA bus into even and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.				
11	Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync polarity.				
	0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval.				
10	Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizontal sync polarity.				
	0 = FP horizontal sync is normally low, transitioning high during sync interval.				
	1 = FP horizontal sync is normally high, transitioning low during sync interval.				
9	CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity.				
	0 = CRT vertical sync is normally low, transitioning high during sync interval. 1 = CRT vertical sync is normally high, transitioning low during sync interval.				
8	CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync polarity.				
Ũ	0 = CRT horizontal sync is normally low, transitioning high during sync interval.				
	1 = CRT horizontal sync is normally high, transitioning low during sync interval.				
7	Flat Panel Data Enable: Enables the flat panel data bus.				
	0 = FP_DATA [17:0] is forced low; 1 = FP_DATA [17:0] is driven based upon power sequence control.				
6	Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up or power-down sequence.				
J	$0 \rightarrow 1 =$ Power-up flat panel;				
	1 -> 0 = Power-down flat panel.				
5	DAC Power-Down (active low): This bit must be set to power-up the video DACs. It can be cleared to power-down the video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powered up.				
4	Reserved: Set to 0.				

Bit	Description
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display control logic. 0 = Reset display control logic; 1 = Enable display control logic.

Table 4-76. Display Configuration Register (Continued)

4.8.5 Display Interface

The CS5530A interfaces directly to a variety of display devices including conventional analog CRT displays, TFT flat panels, or optionally to digital NTSC/PAL encoder devices.

4.8.5.1 Video DACs

The CS5530A incorporates three 8-bit video Digital-to-Analog Converters (DACs) for interfacing directly to CRT displays. The video DACs meet the VESA specification and are capable of operation up to 157.5 MHz for supporting up to 1280x1024 display at a 85 Hz refresh rate and are VESA compliant.

4.8.5.2 VESA DDC2B / DPMS

The CS5530A supports the VESA DDC2B and DPMS standards for enhanced monitor communications and power management support.

4.8.5.3 Flat Panel Support

The CS5530A also interfaces directly to industry standard 18-bit Active Matrix Thin-Film-Transistor (TFT) flat panels. The CS5530A includes 24-bit to 18-bit dithering logic to increase the apparent number of colors displayed on 18-bit flat panels.

In addition, the CS5530A incorporates power sequencing logic to simplify the design of a portable system.

If flat panel support is not required, the flat panel output port may be used to supply digital video data to one of several types of NTSC/PAL encoder devices on the market.

Flat Panel Power-Up/Down Sequence

When the Flat Panel Power Enable bit (F4BAR+Memory Offset 04h[6]) transitions from a 0 to 1, the FP_ENA_VDD signal is enabled. This is followed by the data bus (including syncs and ENA_DISP). Finally, FP_ENA_BKL is enabled. The time between each of these successive stages is set by the value of the Power Sequence Delay bits (F4BAR+Memory Offset 04h[19:17]). The value in these bits refer to the number of graphics frames that will elapse between each successive enabling of the TFT signals. For example, if the Power Sequence Delay is set to 3h (011b), then three frame times will elapse between the time when FP ENA VDD is transitioned and the data bus is transitioned. Likewise, three frame times will elapse between the data bus getting enabled and the FP_ENA_BKL is transitioned. If the panel is being refreshed at 100 Hz, each frame lasts 1 ms. So, if the Power Sequence Delay is set to 3, 3 ms will elapse between transitions. When powering off the panel, the signals are transitioned in the opposite order (FP_ENA_BKL, data bus, FP_ENA_VDD) using the same Power Sequence Delay in the power-down sequence.

4.9 Universal Serial Bus Support

The CS5530A integrates a Universal Serial Bus (USB) controller which supports two ports. The USB controller is OpenHCI compliant, a standard developed by Compaq, Microsoft, and National Semiconductor. The USB core consists of three main interface blocks: the USB PCI interface controller, the USB host controller, and the USB interface controller. Legacy keyboard and mouse controllers are also supported for DOS compatibility with those USB devices.

This document must be used along with the following public domain reference documents for a complete functional description of the USB controller:

- USB Specification Revision 1.0
- OpenHCI Specification, Revision 1.0
- PCI Specification, Version 2.1

4.9.1 USB PCI Controller

The PCI controller interfaces the host controller to the PCI bus. As a master, the PCI controller is responsible for running cycles on the PCI bus on behalf of the host controller. As a target, the PCI controller monitors the cycles on the PCI bus and determines when to respond to these cycles. The USB core is a PCI target when it decodes cycles to its internal PCI configuration registers or to its internal PCI memory mapped I/O registers.

The USB core is implemented as a unique PCI device in the CS5530A. It has its own PCI Header and Configuration space. It is a single-function device, containing only Function #0. Depending on the state of the HOLD_REQ# strap pin at reset, its PCI Device Number for Configuration accesses varies:

If HOLD_REQ# is low, it uses pin AD29 as its IDSEL input, appearing as Device #13h in a Geode system.

If HOLD_REQ# is high, it uses pin AD27 as its IDSEL input, appearing as Device #11h in a Geode system.

The USB core is also affected by some bits in registers belonging to the other (Chipset) device of the CS5530A. In particular, the USB device can be disabled through the Chipset device, F0 Index 43h[0], and its IDSEL can be remapped by changing F0 Index 44h[6] (though this also affects the Chipset device's IDSEL and is not recommended).

All registers can be accessed via 8-, 16-, or 32-bit cycles (i.e., each byte is individually selected by the byte enables). Registers marked as Reserved, and reserved bits within a register are not implemented and should not be modified. These registers are summarized in Table 4-77. For complete bit information, see Table 5-25 "USB Index xxh: USB PCI Configuration Registers" on page 205.

Table 4-77. USB PCI Configuration Registers

USB Index	Туре	Name		
00h-01h RO		Vendor Identification		
02h-03h	RO	Device Identification		
04h-05h	R/W	Command Register		
06h-07h	R/W	Status Register		
08h	RO	Device Revision ID		
09h-0Bh	RO	Class Code		
0Ch	R/W	Cache Line Size		
0Dh	R/W	Latency Timer		
0Eh	RO	Header Type		
0Fh	RO	BIST Register		
10h-13h R/W		Base Address Register (USB BAR): Sets the base address of the memory mapped USB controller registers.		
14h-3Bh		Reserved		
3Ch	R/W	Interrupt Line Register		
3Dh	RO	Interrupt Pin Register		
3Eh	RO	Min. Grant Register		
3Fh	RO	Max. Latency Register		
40h-43h	R/W	ASIC Test Mode Enable Register		
44h-45h	R/W	ASIC Operational Mode Enable		
46h-47h		Reserved		
48h-FFh		Reserved		

4.9.2 USB Host Controller

In the USB core is the operational control block. It is responsible for the host controller's operational states (Suspend, Disable, Enable), special USB signals (Reset, Resume), status, interrupt control, and host controller configuration.

The host controller interface registers are memory mapped registers, mapped by USB F0 Index 10h (Base Address Register). These memory mapped registers are summarized in Table 4-78. For bit definitions, refer to Table 5-26 "USB BAR+Memory Offset xxh: USB Controller Registers" on page 208.

4.9.3 USB Power Management

At this time, USB supports minimal system level power management features. The only power management feature implemented is the disabling of the USB clock generator in USB Suspend state. Additional power management features require slight modifications.

The design supports PCICLK frequencies from 0 to 33 MHz. Synchronization between the PCI and USB clock domains is frequency independent. Remote wakeup of USB is asynchronously implemented from the USB Ports to PCI INTA#.

The design needs USBCLK to be operational at all times. If it is necessary to stop the 48 MHz clock, the system design requires that the signal used to enable/disable the USB clock generators is also used to wake the 48 MHz clock source. Currently, the RemoteWakeupConnected and RemoteWakeupEnable bits in the HcControl register are not implemented. Table 4-78. USB Controller Registers

USB BAR+ Memory Offset	Туре	Name
00h-03h	R/W	HcRevision
04h-07h	R/W	HcControl
08h-0Bh	R/W	HcCommandStatus
0Ch-0Fh	R/W	HcInterruptStatus
10h-13h	R/W	HcInterruptEnable
14h-17h	R/W	HcInterruptDisable
18h-1Bh	R/W	HcHCCA
1Ch-1Fh	R/W	HcPeriodCurrentED
20h-23h	R/W	HcControlHeadED
24h-27h	R/W	HcControlCurrentED
28h-2Bh	R/W	HcBulkHeadED
2Ch-2Fh	R/W	HcBulkCurrentED
30h-33h	R/W	HcDoneHead
34h-37h	R/W	HcFmInterval
38h-3Bh	RO	HcFrameRemaining
3Ch-3Fh	RO	HcFmNumber
40h-43h	R/W	HcPeriodicStart
44h-47h	R/W	HcLSThreshold
48h-4Bh	R/W	HcRhDescriptorA
4Ch-4Fh	R/W	HcRhDescriptorB
50h-53h	R/W	HcRhStatus
54h-57h	R/W	HcRhPortStatus[1]
58h-5Bh	R/W	HcRhPortStatus[2]
5Ch-5Fh		Reserved
60h-9Fh		Reserved
100h-103h	R/W	HceControl
104h-107h	R/W	HceInput
108h-10Dh	R/W	HceOutput
10Ch-10Fh	R/W	HceStatus

AMD Revision 1.1

Register Descriptions

The Geode CS5530A is a multi-function device. Its register space can be broadly divided into four categories in which specific types of registers are located:

- 1) Chipset Register Space (F0-F4)
- 2) USB Controller Register Space (PCIUSB)
- 3) ISA Legacy I/O Register Space (I/O Port)
- 4) V-ACPI I/O Register Space (I/O Port)

The Chipset and the USB Controller Register Spaces are accessed through the PCI interface using the PCI Type One Configuration Mechanism.

The **Chipset Register Space** of the CS5530A is comprised of five separate functions (F0-F4) each with its own register space consisting of PCI header registers and memory or I/O mapped registers.

- F0: Bridge Configuration Registers
- F1: SMI Status and ACPI Timer Registers
- F2: IDE Controller Registers
- F3: XpressAUDIO[™] Subsystem Registers
- F4: Video Controller Registers

The PCI header is a 256-byte region used for configuring a PCI device or function. The first 64 bytes are the same for all PCI devices and are predefined by the PCI specification. These registers are used to configure the PCI for the device. The rest of the 256-byte region is used to configure the device or function itself.

The **USB Controller Register Space** consists of the standard PCI header registers. The USB controller supports two ports and is OpenHCI-compliant. The **ISA Legacy I/O Register Space** contains all the legacy compatibility I/O ports that are internal, trapped, shadowed, or snooped.

The V-ACPI I/O Register Space contains two types of registers: Fixed Feature and General Purpose. These registers are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI-compliant operating system, the SMI-base virtualization is transparent. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the Advanced Control and Power Interface specification.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs
- General Purpose Events Fully programmable GPE0 Event Block registers

The remaining subsections of this chapter are as follows:

- A brief discussion on how to access the registers located in the PCI Configuration Space
- Register summary
- · Detailed bit formats of all registers

5.1 PCI Configuration Space and Access Methods

Configuration cycles are generated in the processor. All configuration registers in the CS5530A are accessed through the PCI interface using the PCI Type One Configuration Mechanism. This mechanism uses two DWORD I/O locations at 0CF8h and 0CFCh. The first location (0CF8h) references the Configuration Address Register. The second location (0CFCh) references the Configuration Data Register.

To access PCI configuration space, write the Configuration Address (0CF8h) Register with data that specifies the CS5530A as the device on PCI being accessed, along with the configuration register offset. On the following cycle, a read or write to the Configuration Data Register (CDR) causes a PCI configuration cycle to the CS5530A. BYTE, WORD, or DWORD accesses are allowed to the CDR at 0CFCh, 0CFDh, 0CFEh, or 0CFFh.

The CS5530A has six configuration register sets, one for each function (F0-F4) and USB (PCIUSB). Base Address Registers (BARs) in the PCI header registers are pointers for additional I/O or memory mapped configuration registers.

Table 4-1 shows the PCI Configuration Address Register (0CF8h) and how to access the PCI header registers.

31	30 24	23 16	15 11	10 8	7 2	1 0
Configuration Space Mapping	RSVD	Bus Number	Device Number	Function	Index	DWORD 00
1 (Enable)	000 0000	0000 0000	xxxx x (Note)	ххх	XXXX XX	00 (Always)
Function 0 (F0): E	Bridge Configuration	on Register Space				
80)h	0000 0000	1001 0 or 1000 0	000	Inc	dex
Function 1 (F1): S	MI Status and AC	PI Timer Register S	Space			
80)h	0000 0000	1001 0 or 1000 0	001	Inc	dex
Function 2 (F2): I	DE Controller Regi	ister Space				
80)h	0000 0000	1001 0 or 1000 0	010	Inc	dex
Function 3 (F3): X	ໃpressAUDIO™ Su	bsystem Register	Space			
80)h	0000 0000	1001 0 or 1000 0	011	Inc	dex
Function 4 (F4): V	ideo Controller Re	egister Space				
80)h	0000 0000	1001 0 or 1000 0	100	Inc	dex
PCIUSB: USB Co	ntroller Register S	расе				
80)h	0000 0000	1001 1 or 1000 1	000	Inc	dex
Strap pin H	26 low: IDSEL = AD	28 for Chipset Regi	pin H26 (HOLD_RE ister Space and AD2 gister Space and AD	9 for USB Register		
The strappi	ng of pin H26 can b	e read back in F0 Ir	ndex 44h[6].			

Table 5-1. PCI Configuration Address Register (0CF8h)

5.2 Register Summary

The tables in this subsection summarize all the registers of the CS5530A. Included in the tables are the register's reset values and page references where the bit formats are found.

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-15)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 155
02h-03h	16	RO	Device Identification Register	0100h	Page 155
04h-05h	16	R/W	PCI Command Register	000Fh	Page 155
06h-07h	16	R/W	PCI Status Register	0280h	Page 155
08h	8	RO	Device Revision ID Register	xxh	Page 156
09h-0Bh	24	RO	PCI Class Code Register	060100h	Page 156
0Ch	8	R/W	PCI Cache Line Size Register	00h	Page 156
0Dh	8	R/W	PCI Latency Timer Register	00h	Page 156
0Eh	8	RO	PCI Header Type Register	80h	Page 156
0Fh	8	RO	PCI BIST Register	00h	Page 156
10h-1Fh			Reserved	xxh	Page 156
20h-3Fh			Reserved	00h	Page 156
40h	8	R/W	PCI Function Control Register 1	89h	Page 156
41h	8	R/W	PCI Function Control Register 2	10h	Page 157
42h	8	R/W	PCI Function Control Register 3	ACh	Page 157
43h	8	R/W	USB Shadow Register	03h	Page 157
44h	8	R/W	Reset Control Register	01h	Page 158
45h-4Fh			Reserved	00h	Page 158
50h	8	R/W	PIT Control/ISA CLK Divider	7Bh	Page 158
51h	8	R/W	ISA I/O Recovery Control Register	40h	Page 159
52h	8	R/W	ROM/AT Logic Control Register	F8h	Page 159
53h	8	R/W	Alternate CPU Support Register	00h	Page 159
54h-59h			Reserved	xxh	Page 160
5Ah	8	R/W	Decode Control Register 1	03h	Page 160
5Bh	8	R/W	Decode Control Register 2	20h	Page 160
5Ch	8	R/W	PCI Interrupt Steering Register 1	00h	Page 160
5Dh	8	R/W	PCI Interrupt Steering Register 2	00h	Page 161
5Eh-6Fh			Reserved	xxh	Page 161
70h-71h	16	R/W	General Purpose Chip Select Base Address Register	0000h	Page 161
72h	8	R/W	General Purpose Chip Select Control Register	00h	Page 161
73h-7Fh			Reserved	xxh	Page 161
80h	8	R/W	Power Management Enable Register 1	00h	Page 161
81h	8	R/W	Power Management Enable Register 2	00h	Page 162
82h	8	R/W	Power Management Enable Register 3	00h	Page 163
83h	8	R/W	Power Management Enable Register 4	00h	Page 164
84h	8	RO	Second Level Power Management Status Mirror Register 1	00h	Page 165
85h	8	RO	Second Level Power Management Status Mirror Register 2	00h	Page 165
86h	8	RO	Second Level Power Management Status Mirror Register 3	00h	Page 166
87h	8	RO	Second Level Power Management Status Mirror Register 4	00h	Page 166
88h	8	R/W	General Purpose Timer 1 Count Register	00h	Page 167
89h	8	R/W	General Purpose Timer 1 Control Register	00h	Page 167
8Ah	8	R/W	General Purpose Timer 2 Count Register	00h	Page 168
8Bh	8	R/W	General Purpose Timer 2 Control Register	00h	Page 168
8Ch	8	R/W	IRQ Speedup Timer Count Register	00h	Page 168
8Dh	8	R/W	Video Speedup Timer Count Register	00h	Page 169
8Eh	8	R/W	VGA Timer Count Register	00h	Page 169

AMD Geode™ CS5530A Companion Device Data Book

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-15)
8Fh			Reserved	xxh	Page 169
90h	8	R/W	GPIO Pin Direction Register 1	00h	Page 169
91h	8	R/W	GPIO Pin Data Register 1	00h	Page 169
92h	8	R/W	GPIO Control Register 1	00h	Page 169
93h	8	R/W	Miscellaneous Device Control Register	00h	Page 170
94h	8	R/W	Suspend Modulation OFF Count Register	00h	Page 170
95h	8	R/W	Suspend Modulation ON Count Register	00h	Page 170
96h	8	R/W	Suspend Configuration Register	00h	Page 171
97h	8	R/W	GPIO Control Register 2	00h	Page 171
98h-99h	16	R/W	Primary Hard Disk Idle Timer Count Register	0000h	Page 172
9Ah-9Bh	16	R/W	Floppy Disk Idle Timer Count Register	0000h	Page 172
9Ch-9Dh	16	R/W	Parallel / Serial Idle Timer Count Register	0000h	Page 172
9Eh-9Fh	16	R/W	Keyboard / Mouse Idle Timer Count Register	0000h	Page 172
A0h-A1h	16	R/W	User Defined Device 1 Idle Timer Count Register	0000h	Page 172
A2h-A3h	16	R/W	User Defined Device 2 Idle Timer Count Register	0000h	Page 172
A4h-A5h	16	R/W	User Defined Device 3 Idle Timer Count Register	0000h	Page 173
A6h-A7h	16	R/W	Video Idle Timer Count Register	0000h	Page 173
A8h-A9h	16	R/W	Video Overflow Count Register	0000h	Page 173
AAh-ABh			Reserved	xxh	Page 173
ACh-ADh	16	R/W	Secondary Hard Disk Idle Timer Count Register	0000h	Page 173
AEh	8	WO	CPU Suspend Command Register	00h	Page 173
AFh	8	WO	Suspend Notebook Command Register	00h	Page 174
B0h-B3h			Reserved	xxh	Page 174
B4h	8	RO	Floppy Port 3F2h Shadow Register	xxh	Page 174
B5h	8	RO	Floppy Port 3F7h Shadow Register	xxh	Page 174
B6h	8	RO	Floppy Port 1F2h Shadow Register	xxh	Page 174
B7h	8	RO	Floppy Port 1F7h Shadow Register	xxh	Page 174
B8h	8	RO	DMA Shadow Register	xxh	Page 174
B9h	8	RO	PIC Shadow Register	xxh	Page 175
BAh	8	RO	PIT Shadow Register	xxh	Page 175
BBh	8	RO	RTC Index Shadow Register	xxh	Page 175
BCh	8	R/W	Clock Stop Control Register	00h	Page 175
BDh-BFh			Reserved	xxh	Page 176
C0h-C3h	32	R/W	User Defined Device 1 Base Address Register	00000000h	Page 176
C4h-C7h	32	R/W	User Defined Device 2 Base Address Register	00000000h	Page 176
C8h-CBh	32	R/W	User Defined Device 3 Base Address Register	00000000h	Page 176
CCh	8	R/W	User Defined Device 1 Control Register	00h	Page 176
CDh	8	R/W	User Defined Device 2 Control Register	00h	Page 176
CEh	8	R/W	User Defined Device 2 Control Register	00h	Page 176
CFh		1\/ \V	Reserved	xxh	Page 177
D0h	8	WO	Software SMI Register	00h	Page 177
D0h D1h-EBh			Reserved	xxh	Page 177 Page 177
ECh	8	 R/W	Timer Test Register	00h	Page 177 Page 177
EDh-F3h			Reserved	xxh	Page 177 Page 177
F4h					Page 177 Page 177
	8	RC	Second Level Power Management Status Register 1	00h	-
F5h	8	RC	Second Level Power Management Status Register 2	00h	Page 177
F6h	8	RC	Second Level Power Management Status Register 3	00h	Page 178
F7h	8	RO/RC	Second Level Power Management Status Register 4	00h	Page 179
F8h-FFh			Reserved	xxh	Page 179

Table 5-2. Function 0: PCI Header and Bridge Configuration Registers Summary (Continued)

F1 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-16)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 180
02h-03h	16	RO	Device Identification Register	0101h	Page 180
04h-05h	16	R/W	PCI Command Register	0000h	Page 180
06h-07h	16	RO	PCI Status Register	0280h	Page 180
08h	8	RO	Device Revision ID Register	00h	Page 180
09h-0Bh	24	RO	PCI Class Code Register	068000h	Page 180
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 180
0Dh	8	RO	PCI Latency Timer Register	00h	Page 180
0Eh	8	RO	PCI Header Type Register	00h	Page 180
0Fh	8	RO	PCI BIST Register	00h	Page 180
10h-13h	32	R/W	Base Address Register (F1BAR): Sets base address for memory mapped SMI status and ACPI timer support regis- ters (summarized in Table 4-4).	00000000h	Page 180
14h-3Fh			Reserved	00h	Page 180
40h-FFh			Reserved	xxh	Page 180

Table 5-3. Function 1: PCI Header Registers for SMI Status and ACPI Timer Summary

Table 5-4. F1BAR: SMI Status and ACPI Timer Registers Summary

F1BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-17)
00h-01h	16	RO	Top SMI Status Mirror Register	0000h	Page 181
02h-03h	16	RC	Top SMI Status Register	0000h	Page 181
04h-05h	16	RO	Second Level General Traps & Timers Status Mirror	0000h	Page 182
06h-07h	16	RC	Second Level General Traps & Timers Status Register	0000h	Page 182
08h-09h	16	Read to Enable	SMI Speedup Disable Register	0000h	Page 183
0Ah-1Bh			Reserved	xxh	Page 183
1Ch-1Fh	32	RO	ACPI Timer Count Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch.	00FFFFFCh	Page 183
20h-4Fh			Reserved	xxh	Page 183
50h-FFh	Image: The registers located at F1BAR+Memory Offset 50h-FFh can also be accessed at F0 Index 50h-FFh. The pre- ferred method is to program these registers through the F0 Register Space. Refer to Table 5-2 "Function 0: PCI Header and Bridge Configuration Registers Summary" on page 145 for summary information.				

Page 184

Reserved

40h-FFh

	Table 5-5. Function 2: PCI Header Registers for IDE Controller Summary							
F2 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-18)			
00h-01h	16	RO	Vendor Identification Register	1078h	Page 184			
02h-03h	16	RO	Device Identification Register	0102h	Page 184			
04h-05h	16	R/W	PCI Command Register	0000h	Page 184			
06h-07h	16	RO	PCI Status Register	0280h	Page 184			
08h	8	RO	Device Revision ID Register	00h	Page 184			
09h-0Bh	24	RO	PCI Class Code Register	010180h	Page 184			
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 184			
0Dh	8	RO	PCI Latency Timer Register	00h	Page 184			
0Eh	8	RO	PCI Header Type Register	00h	Page 184			
0Fh	8	RO	PCI BIST Register	00h	Page 184			
10h-1Fh			Reserved	00h	Page 184			
20h-23h	32	R/W	Base Address Register (F2BAR): Sets base address for I/O mapped IDE controller configuration registers (summarized in Table 4-6).	00000001h	Page 184			
24h-3Fh			Reserved	00h	Page 184			

Table 5-6. F2BAR: IDE Controller Configuration Registers Summary

F2BAR+ I/O Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-19)
00h	8	R/W	IDE Bus Master 0 Command Register: Primary	00h	Page 185
01h			Reserved	xxh	Page 185
02h	8	R/W	IDE Bus Master 0 Status Register: Primary	00h	Page 185
03h			Reserved	xxh	Page 185
04h-07h	32	R/W	IDE Bus Master 0 PRD Table Address: Primary	0000000h	Page 185
08h	8	R/W	IDE Bus Master 1 Command Register: Secondary	00h	Page 185
09h			Reserved	xxh	Page 185
0Ah	8	R/W	IDE Bus Master 1 Status Register: Secondary	00h	Page 185
0Bh			Reserved	xxh	Page 186
0Ch-0Fh	32	R/W	IDE Bus Master 1 PRD Table Address: Secondary	0000000h	Page 186
10h-1Fh			Reserved	xxh	Page 186
20h-23h	32	R/W	Channel 0 Drive 0: PIO Register	0000E132h	Page 186
24h-27h	32	R/W	Channel 0 Drive 0: DMA Control Register	00077771h	Page 187
28h-2Bh	32	R/W	Channel 0 Drive 1: PIO Register	0000E132h	Page 187
2Ch-2Fh	32	R/W	Channel 0 Drive 1: DMA Control Register	00077771h	Page 187
30h-33h	32	R/W	Channel 1 Drive 0: PIO Register	0000E132h	Page 187
34h-37h	32	R/W	Channel 1 Drive 0: DMA Control Register	00077771h	Page 187
38h-3Bh	32	R/W	Channel 1 Drive 1: PIO Register	0000E132h	Page 187
3Ch-3Fh	32	R/W	Channel 1 Drive 1: DMA Control Register	00077771h	Page 187
40h-FFh			Reserved	xxh	Page 187

xxh

F3 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-20)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 188
02h-03h	16	RO	Device Identification Register	0103h	Page 188
04h-05h	16	R/W	PCI Command Register	0000h	Page 188
06h-07h	16	RO	PCI Status Register	0280h	Page 188
08h	8	RO	Device Revision ID Register	00h	Page 188
09h-0Bh	24	RO	PCI Class Code Register	040100h	Page 188
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 188
0Dh	8	RO	PCI Latency Timer Register	00h	Page 188
0Eh	8	RO	PCI Header Type Register	00h	Page 188
0Fh	8	RO	PCI BIST Register	00h	Page 188
10h-13h	32	R/W	Base Address Register (F3BAR): Sets base address for memory mapped XpressAUDIO [™] subsystem configuration registers (summarized in Table 4-8).	00000000h	Page 188
14h-3Fh			Reserved	00h	Page 188
40h-FFh			Reserved	xxh	Page 188

Table 5-7. Function 3: PCI Header Registers for XpressAUDIO™ Subsystem Summary

Table 5-8. F3BAR: XpressAUDIO[™] Subsystem Configuration Registers Summary

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-21)
00h-03h	32	R/W	Codec GPIO Status Register	00100000h	Page 189
04h-07h	32	R/W	Codec GPIO Control Register	0000000h	Page 189
08h-0Bh	32	R/W	Codec Status Register	0000000h	Page 189
0Ch-0Fh	32	R/W	Codec Command Register	0000000h	Page 189
10h-11h	16	RO	Second Level Audio SMI Source Mirror Register	0000h	Page 189
12h-13h	16	RC	Second Level Audio SMI Source Register	0000h	Page 190
14h-17h	32	RO/RC	I/O Trap SMI and Fast Write Status Register	0000000h	Page 191
18h-19h	16	R/W	I/O Trap SMI Enable Register	0000h	Page 192
1Ah-1Bh	16	R/W	Internal IRQ Enable Register	0000h	Page 193
1Ch-1Dh	16	R/W	Internal IRQ Control Register	0000h	Page 193
1Eh-1Fh	16	WO	Internal IRQ Mask Register	xxxxh	Page 193
20h	8	R/W	Audio Bus Master 0 Command Register	00h	Page 194
21h	8	RC	Audio Bus Master 0 SMI Status Register	00h	Page 194
22h-23h			Reserved	xxh	Page 194
24h-27h	32	R/W	Audio Bus Master 0 PRD Table Address	0000000h	Page 194
28h	8	R/W	Audio Bus Master 1 Command Register	00h	Page 194
29h	8	RC	Audio Bus Master 1 SMI Status Register	00h	Page 194
2Ah-2Bh			Reserved	xxh	Page 195
2Ch-2Fh	32	R/W	Audio Bus Master 1 PRD Table Address	0000000h	Page 195
30h	8	R/W	Audio Bus Master 2 Command Register	00h	Page 195
31h	8	RC	Audio Bus Master 2 SMI Status Register	00h	Page 195
32h-33h			Reserved	xxh	Page 195
34h-37h	32	R/W	Audio Bus Master 2 PRD Table Address	0000000h	Page 195
38h	8	R/W	Audio Bus Master 3 Command Register	00h	Page 195
39h	8	RC	Audio Bus Master 3 SMI Status Register	00h	Page 196
3Ah-3Bh			Reserved	xxh	Page 196
3Ch-3Fh	32	R/W	Audio Bus Master 3 PRD Table Address	0000000h	Page 196

AMD Geode™ CS5530A Companion Device Data Book

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-21)
40h	8	R/W	Audio Bus Master 4 Command Register	00h	Page 196
41h	8	RC	Audio Bus Master 4 SMI Status Register	00h	Page 196
42h-43h			Reserved	xxh	Page 196
44h-47h	32	R/W	Audio Bus Master 4 PRD Table Address	0000000h	Page 197
48h	8	R/W	Audio Bus Master 5 Command Register	00h	Page 197
49h	8	RC	Audio Bus Master 5 SMI Status Register	00h	Page 197
4Ah-4Bh			Reserved	xxh	Page 197
4Ch-4Fh	32	R/W	Audio Bus Master 5 PRD Table Address	00000000h	Page 197
50h-FFh			Reserved	xxh	Page 197

Table 5-8. F3BAR: XpressAUDIO™ Subsystem Configuration Registers Summary (Continued)

Table 5-9. Function 4: PCI Header Registers for Video Controller Summary

F4 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-22)
00h-01h	16	RO	Vendor Identification	1078h	Page 198
02h-03h	16	RO	Device Identification	0104h	Page 198
04h-05h	16	R/W	PCI Command	0000h	Page 198
06h-07h	16	RO	PCI Status	0280h	Page 198
08h	8	RO	Device Revision ID	00h	Page 198
09h-0Bh	24	RO	PCI Class Code	030000h	Page 198
0Ch	8	RO	PCI Cache Line Size	00h	Page 198
0Dh	8	RO	PCI Latency Timer	00h	Page 198
0Eh	8	RO	PCI Header Type	00h	Page 198
0Fh	8	RO	PCI BIST Register	00h	Page 198
10h-13h	32	R/W	Base Address Register (F4BAR): Sets base address for memory mapped video controller configuration registers (summarized in Table 4-10).	00000000h	Page 198
14h-3Fh			Reserved	00h	Page 198
40h-FFh			Reserved	xxh	Page 198

Table 5-10. F4BAR: Video Controller Configuration Registers Summary

F4BAR+ Memory Offset	Width (Bits)	Туре	Register Name	Reset Value	Reference (Table 5-23)
00h-03h	32	R/W	Video Configuration Register	0000000h	Page 199
04h-07h	32	R/W	Display Configuration Register	x0000000h	Page 200
08h-0Bh	32	R/W	Video X Register	xxxxxxxh	Page 201
0Ch-0Fh	32	R/W	Video Y Register	xxxxxxxh	Page 201
10h-13h	32	R/W	Video Scale Register	xxxxxxxh	Page 201
14h-17h	32	R/W	Video Color Key Register	xxxxxxxh	Page 201
18h-1Bh	32	R/W	Video Color Mask Register	xxxxxxxh	Page 201
1Ch-1Fh	32	R/W	Palette Address Register	xxxxxxxh	Page 201
20h-23h	32	R/W	Palette Data Register	xxxxxxxh	Page 201
24h-27h	32	R/W	Dot Clock Configuration Register	0000000h	Page 202
28h-2Bh	32	R/W	CRC Signature and TFT/TV Configuration Register	00000100h	Page 203
2Ch-FFh			Reserved	xxh	Page 203

USB Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-25)
00h-01h	16	RO	Vendor Identification	0E11h	Page 205
02h-03h	16	RO	Device Identification	A0F8h	Page 205
04h-05h	16	R/W	Command Register	0000h	Page 205
06h-07h	16	R/W	Status Register	0280h	Page 205
08h	8	RO	Device Revision ID	06h	Page 206
09h-0Bh	24	RO	Class Code	0C0310h	Page 206
0Ch	8	R/W	Cache Line Size	00h	Page 206
0Dh	8	R/W	Latency Timer	00h	Page 206
0Eh	8	RO	Header Type	00h	Page 206
0Fh	8	RO	BIST Register	00h	Page 206
10h-13h	32	R/W	Base Address Register (USB BAR): Sets the base address of the memory mapped USB controller registers. Refer to Table 5-26 for the USB controller register bit formats and reset values.	00000000h	Page 206
14h-3Bh			Reserved	xxh	Page 206
3Ch	8	R/W	Interrupt Line Register	00h	Page 206
3Dh	8	RO	Interrupt Pin Register	01h	Page 206
3Eh	8	RO	Min. Grant Register	00h	Page 206
3Fh	8	RO	Max. Latency Register	50h	Page 206
40h-43h	32	R/W	ASIC Test Mode Enable Register	000F0000h	Page 206
44h-45h	16	R/W	ASIC Operational Mode Enable	0000h	Page 206
46h-47h			Reserved	00h	Page 207
48h-FFh			Reserved	xxh	Page 207

Table 5-11. USB PCI Configuration Registers Summary

Table 5-12. USB BAR: USB Controller Registers Summary

USB BAR+ Memory	Width				Reference
Offset	(Bits)	Туре	Name	Reset Value	(Table 5-26)
00h-03h	32	R/W	HcRevision	00000110h	Page 208
04h-07h	32	R/W	HcControl	00000000h	Page 208
08h-0Bh	32	R/W	HcCommandStatus	00000000h	Page 208
0Ch-0Fh	32	R/W	HcInterruptStatus	00000000h	Page 208
10h-13h	32	R/W	HcInterruptEnable	00000000h	Page 209
14h-17h	32	R/W	HcInterruptDisable	C000006Fh	Page 209
18h-1Bh	32	R/W	HcHCCA	00000000h	Page 209
1Ch-1Fh	32	R/W	HcPeriodCurrentED	0000000h	Page 209
20h-23h	32	R/W	HcControlHeadED	00000000h	Page 209
24h-27h	32	R/W	HcControlCurrentED	00000000h	Page 209
28h-2Bh	32	R/W	HcBulkHeadED	00000000h	Page 209
2Ch-2Fh	32	R/W	HcBulkCurrentED	00000000h	Page 209
30h-33h	32	R/W	HcDoneHead	00000000h	Page 210
34h-37h	32	R/W	HcFmInterval	00002EDFh	Page 210
38h-3Bh	32	RO	HcFrameRemaining	00002Exxh	Page 210
3Ch-3Fh	32	RO	HcFmNumber	0000000h	Page 210
40h-43h	32	R/W	HcPeriodicStart	0000000h	Page 210
44h-47h	32	R/W	HcLSThreshold	00000628h	Page 210
48h-4Bh	32	R/W	HcRhDescriptorA	01000002h	Page 210

AMD Geode™ CS5530A Companion Device Data Book

USB BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 5-26)
4Ch-4Fh	32	R/W	HcRhDescriptorB	0000000h	Page 211
50h-53h	32	R/W	HcRhStatus	00000000h	Page 211
54h-57h	32	R/W	HcRhPortStatus[1]	00000628h	Page 212
58h-5Bh	32	R/W	HcRhPortStatus[2]	01000002h	Page 213
5Ch-5Fh	32		Reserved	00000000h	Page 213
60h-9Fh			Reserved	xxh	Page 213
100h-103h	32	R/W	HceControl	00000000h	Page 214
104h-107h	32	R/W	HceInput	000000xxh	Page 214
108h-10Dh	32	R/W	HceOutput	000000xxh	Page 214
10Ch-10Fh	32	R/W	HceStatus	0000000h	Page 214

Table 5-12. USB BAR: USB Controller Registers Summary (Continued)

Table 5-13. ISA Legacy I/O Registers Summary

I/O Port	Туре	Name	Reference
DMA Channe	I Control Regis	ters (Table 5-27)	
000h	R/W	DMA Channel 0 Address Register	Page 215
001h	R/W	DMA Channel 0 Transfer Count Register	Page 215
002h	R/W	DMA Channel 1 Address Register	Page 215
003h	R/W	DMA Channel 1 Transfer Count Register	Page 215
004h	R/W	DMA Channel 2 Address Register	Page 215
005h	R/W	DMA Channel 2 Transfer Count Register	Page 215
006h	R/W	DMA Channel 3 Address Register	Page 215
007h	R/W	DMA Channel 3 Transfer Count Register	Page 215
008h	Read	DMA Status Register, Channels 3:0	Page 215
	Write	DMA Command Register, Channels 3:0	Page 215
009h	WO	Software DMA Request Register, Channels 3:0	Page 216
00Ah	R/W	DMA Channel Mask Register, Channels 3:0	Page 216
00Bh	WO	DMA Channel Mode Register, Channels 3:0	Page 216
00Ch	WO	DMA Clear Byte Pointer Command, Channels 3:0	Page 216
00Dh	WO	DMA Master Clear Command, Channels 3:0	Page 216
00Eh	WO	DMA Clear Mask Register Command, Channels 3:0	Page 216
00Fh	WO	DMA Write Mask Register Command, Channels 3:0	Page 216
0C0h	R/W	DMA Channel 4 Address Register (Not used)	Page 216
0C2h	R/W	DMA Channel 4 Transfer Count Register (Not Used)	Page 216
0C4h	R/W	DMA Channel 5 Address Register	Page 216
0C6h	R/W	DMA Channel 5 Transfer Count Register	Page 216
0C8h	R/W	DMA Channel 6 Address Register	Page 216
0CAh	R/W	DMA Channel 6 Transfer Count Register	Page 216
0CCh	R/W	DMA Channel 7 Address Register	Page 216
0CEh	R/W	DMA Channel 7 Transfer Count Register	Page 216
0D0h	Read	DMA Status Register, Channels 7:4	Page 217
	Write	DMA Command Register, Channels 7:4	Page 217
0D2h	WO	Software DMA Request Register, Channels 7:4	Page 217
0D4h	R/W	DMA Channel Mask Register, Channels 7:0	Page 217
0D6h	WO	DMA Channel Mode Register, Channels 7:4	Page 217
0D8h	WO	DMA Clear Byte Pointer Command, Channels 7:4	Page 217

I/O Port	Туре	Name	Reference
0DAh	WO	DMA Master Clear Command, Channels 7:4	Page 217
0DCh	WO	DMA Clear Mask Register Command, Channels 7:4	Page 217
0DEh	WO	DMA Write Mask Register Command, Channels 7:4	Page 217
DMA Page Reg	isters (Table	5-28)	
081h	R/W	DMA Channel 2 Low Page Register	Page 218
082h	R/W	DMA Channel 3 Low Page Register	Page 218
083h	R/W	DMA Channel 1 Low Page Register	Page 218
087h	R/W	DMA Channel 0 Low Page Register	Page 218
089h	R/W	DMA Channel 6 Low Page Register	Page 218
08Ah	R/W	DMA Channel 7 Low Page Register	Page 218
08Bh	R/W	DMA Channel 5 Low Page Register	Page 218
08Fh	R/W	ISA Refresh Low Page Register	Page 218
481h	R/W	DMA Channel 2 High Page Register	Page 218
482h	R/W	DMA Channel 3 High Page Register	Page 218
483h	R/W	DMA Channel 1 High Page Register	Page 218
487h	R/W	DMA Channel 0 High Page Register	Page 218
489h	R/W	DMA Channel 6 High Page Register	Page 218
48Ah	R/W	DMA Channel 7 High Page Register	Page 218
48Bh	R/W	DMA Channel 5 High Page Register	Page 218
Programmable	Interval Time	r Registers (Table 5-29)	
040h	Write	PIT Timer 0 Counter	Page 219
	Read	PIT Timer 0 Status	Page 219
041h	Write	PIT Timer 1 Counter (Refresh)	Page 219
	Read	PIT Timer 1 Status (Refresh)	Page 219
042h	Write	PIT Timer 2 Counter (Speaker)	Page 219
	Read	PIT Timer 2 Status (Speaker)	Page 219
043h	Write	PIT Mode Control Word Register	Page 219
043h	R/W	PIT Read-Back Command	
		Read Status Command	
		Counter Latch Command	
Programmable	Interrupt Cor	troller Registers (Table 5-30)	
020h / 0A0h	WO	Master / Slave PCI IWC1	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW2	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW3	Page 220
021h / 0A1h	WO	Master / Slave PIC ICW4	Page 220
021h / 0A1h	R/W	Master / Slave PIC OCW1	Page 220
020h / 0A0h	WO	Master / Slave PIC OCW2	Page 220
020h / 0A0h	WO	Master / Slave PIC OCW3	Page 221
020h / 0A0h	RO	Master / Slave PIC Interrupt Request and Service Registers for OCW3 Commands	Page 221
Keyboard Cont	troller Registe	ers (Table 5-31)	
060h	R/W	External Keyboard Controller Data Register	Page 222
061h	R/W	Port B Control Register	Page 222
062h	R/W	External Keyboard Controller Mailbox Register	Page 222
064h	R/W	External Keyboard Controller Command Register	Page 222
066h	R/W	External Keyboard Controller Mailbox Register	Page 222
092h	R/W	Port A Control Register	Page 222

Table 5-13. ISA Legacy I/O Registers Summary (Continued)

I/O Port	Туре	Name	Reference
Real Time Cloc	k Registers (Table 5-32)	
070h	WO	RTC Address Register	Page 222
071h	R/W	RTC Data Register	Page 222
Miscellaneous	Registers (Ta	ble 5-33)	
170h-177h/ 376h	R/W	Secondary IDE Registers	Page 223
1F0h-1F7h/ 3F6h	R/W	Primary IDE Registers	Page 223
4D0h	R/W	Interrupt Edge/Level Select Register 1	Page 223
4D1h	R/W	Interrupt Edge/Level Select Register 2	Page 223
121Ch-121Fh	RO	ACPI Timer Count Register Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch. Oth- erwise use F1BAR+Offset 1Ch.	Page 223

Table 5-13. ISA Legacy I/O Registers Summary (Continued)

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 5-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 224
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 224
05h		1	1	Reserved	00h	Page 224
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 224
07h		1	1	Reserved	00h	Page 225
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 225
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 225
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 225
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 226
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 226
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 226
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 227
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 227

Table 5-14. V-ACPI I/O Register Space Summary

5.3 Chipset Register Space

The Chipset Register Space of the CS5530A is comprised of five separate functions (Function 0 through 4, F0-F4), each with its own register space and PCI header registers. F1-F4 have memory or I/O mapped registers from a Base Address Register (BAR). The PCI header registers in all functions are very similar.

- F0: Bridge Configuration Register Space
- F1: SMI Status and ACPI Timer Register Space
- F2: IDE Controller Register Space
- F3: XpressAUDIO[™] Subsystem Register Space
- F4: Video Controller Register Space

5.3.1 Bridge Configuration Registers - Function 0

The register space designated as Function 0 (F0) contains registers used to configure features (e.g., power management) and functionality unique to the CS5530A. All registers in Function 0 are directly accessed (i.e., there are no memory or I/O mapped registers in F0). Table 5-15 gives the bit formats for these registers.

The registers at F0 Index 50h-FFh can also be accessed at F1BAR+Memory Offset 50h-FFh. The preferred method is to program these registers through the F0 register space.

If the F0 PCI Configuration Trap bit (F0 Index 41h[0]) is enabled and an access is attempted to any of the F0 PCI header and bridge configuration registers except F0 Index 40h-43h, an SMI is generated instead.

Bit	Description				
Index 00h	-01h Vendor Identification Register (RO)	Reset Value = 1078h			
15:0	Vendor Identification Register (Read Only)				
Index 02h	-03h Device Identification Register (RO)	Reset Value = 0100h			
15:0	Device Identification Register (Read Only)				
ndex 04h	-05h PCI Command Register (R/W)	Reset Value = 000Fh			
15:10	Reserved: Set to 0.				
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS5530A is a master. It is always disabled (always reads 0).				
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Defa	ault); 1 = Enable.			
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).				
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a target, and to assert PERR# when a parity error is detected. 0 = Disable (Default); 1 = Enable.				
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).				
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate cycles, if the PCI Cache Line Size Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.				
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1	= Enable (Default) .			
	This bit must be enabled to allow the CPU Warm Reset internal signal to be trigg	ered from a CPU Shutdown cycle.			
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Ena	able (Default) .			
	This bit must be set to 1.				
1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI	bus. 0 = Disable; 1 = Enable (Default).			
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Dis	sable; 1 = Enable (Default) .			
ndex 06h	-07h PCI Status Register (R/W)	Reset Value = 0280h			
15	Detected Parity Error: This bit is set whenever a parity error is detected. Write 1 to clear.				
14	Signaled System Error: This bit is set whenever the CS5530A asserts SERR# a Write 1 to clear.	active.			
13	Received Master Abort: This bit is set whenever a master abort cycle occurs whe abort occurs when a PCI cycle is not claimed, except for special cycles. Write 1 to clear.	hile the CS5530A is the master. A master			

Bit	Description				
12	Received Target Abort: This bit is set whenever a target abort is received while the CS553 cycle.	0A is the master for the PCI			
	Write 1 to clear.				
11	Signaled Target Abort: This bit is set whenever the CS5530A signals a target abort. This c error occurs for an address that hits in the active address decode space of the CS5530A.	ccurs when an address parity			
10:9	Write 1 to clear. DEVSEL# Timing (Read Only): These bits are always 01, as the CS5530A always respondence active target with medium DEVSEL# timing. 00 = Fast; 01 = Medium; 10 = Slow; 11 = Reserved.	-			
8	Data Parity Detected: This bit is set when:				
	 The CS5530A asserted PERR# or observed PERR# asserted. The CS5530A is the master for the cycle in which a parity error occurred and the Parity = 1). 	Error bit is set (F0 Index 04h[6]			
7	Write 1 to clear. Fast Back-to-Back Capable (Read Only): As a target, the CS5530A is capable of accepting fast back-to-back transactions. 0 = Disable; 1 = Enable.				
6:0	This bit is always set to 1. Reserved: Set to 0.				
Index 08h	Device Revision ID Register (RO)	Reset Value = xxh			
7:0	Device Revision ID (Read Only): Device revision level. 20h for revision A; 30h for revision				
Index 09h-		Reset Value = 060100h			
Index 0Ch	PCI Cache Line Size Register (R/W)	Reset Value = 00h			
7:0	PCI Cache Line Size Register: This register sets the size of the PCI cache line, in increme write and invalidate cycles, the PCI cache line size must be set to 16 bytes (04h), and the M must be set (F0 Index $04h[4] = 1$).				
Index 0Dh	PCI Latency Timer Register (R/W)	Reset Value = 00h			
7:4	Reserved: Set to 0.				
3:0	PCI Latency Timer Value: The PCI Latency Timer Register prevents system lockup when a cycle that the CS5530A masters. If the value is set to 00h (default), the timer is disabled. If th value, bits [3:0] become the four most significant bytes in a timer that counts PCI clocks for s reset on each valid data transfer. If the timer expires before the next assertion of TRDY# is re transaction with a master abort and asserts SERR#, if enabled to do so (F0 Index 04h[8] =	e timer is written with any other slave response. The timer is ceived, the CS5530A stops the			
Index 0Eh	PCI Header Type Register (RO)	Reset Value = 80h			
7:0	PCI Header Type Register (Read Only): This register defines the format of this header. Th Additionally, bit 7 defines whether this PCI device is a multifunction device (bit 7 = 1) or not (
Index 0Fh	PCI BIST Register (RO)				
		Reset Value = 00h			
7	BIST Capable (Read Only): Is device capable of running a built-in self-test (BIST)? 0 = No;				
7 6	BIST Capable (Read Only): Is device capable of running a built-in self-test (BIST)? 0 = No; Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bit pleted. (Not supported.)	1 = Yes,			
6 5:4	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bi pleted. (Not supported.) Reserved (Read Only)	1 = Yes, t when the BIST has been com-			
6	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bi pleted. (Not supported.)	1 = Yes, t when the BIST has been com- stored in these bits. A comple-			
6 5:4	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indicates indicates the BIST has successfully been completed.	1 = Yes, t when the BIST has been com- stored in these bits. A comple-			
6 5:4 3:0	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indices 1Fh Reserved	1 = Yes, t when the BIST has been com- stored in these bits. A comple- ate some type of BIST failure.			
6 5:4 3:0 Index 10h-	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indices 1Fh Reserved	1 = Yes, t when the BIST has been com- stored in these bits. A comple- ate some type of BIST failure. Reset Value = xxh			
6 5:4 3:0 Index 10h- Index 20h-	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indices 1Fh Reserved 3Fh Reserved	1 = Yes, t when the BIST has been com- stored in these bits. A comple- ate some type of BIST failure. Reset Value = xxh 00h Reset Value = 89h			
6 5:4 3:0 Index 10h- Index 20h- Index 40h	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indices 1Fh Reserved 3Fh Reserved PCI Function Control Register 1 (R/W) PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI interrupt	1 = Yes, t when the BIST has been com- stored in these bits. A comple- ate some type of BIST failure. Reset Value = xxh 00h Reset Value = 89h pt acknowledge cycles.			
6 5:4 3:0 Index 10h- Index 20h- Index 40h 7	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this bipleted. (Not supported.) Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code is tion code of zero indicates the BIST has successfully been completed. All other values indices 17 minutes indices 17 minutes 18 minutes	1 = Yes, t when the BIST has been com- stored in these bits. A comple- ate some type of BIST failure. Reset Value = xxh 00h Reset Value = 89h pt acknowledge cycles. e PCI bus and performs a target e.			

Bit	Description						
3	Write Buffer: PCI slave write buffer. 0 = Disable; 1 = Enable.						
2:1	Reserved: Set to 0.						
0	BS8/16: This bit can not be written. Always = 1.						
Note: Bits	6 and 5 emulate the behavior of first generation SIO devices developed for PCI. They should normally remain cleared.						
Index 41h	PCI Function Control Register 2 (R/W) Reset Value = 10h						
7	Burst to Beat: If this bit is set to 1, the CS5530A performs a single access from the PCI bus. If set to 0, burst accesses are enabled.						
6	F2 IDE Configuration Trap: 0 = Disable; 1 = Enable.						
	If this bit is enabled and an access is attempted to one of the F2 PCI header registers, an SMI is generated instead.						
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].						
5	PERR# Signals SERR#: Assert SERR# any time that PERR# is asserted or detected active by the CS5530A (allows PERR# assertion to be cascaded to NMI (SMI) generation in the system). 0 = Disable; 1 = Enable.						
4	Write Buffer Enable: Allow 16-byte buffering for X-Bus to PCI bus writes. 0 = Disable; 1 = Enable.						
3	F1 Power Management Configuration Trap: 0 = Disable; 1 = Enable.						
	If this bit is enabled and an access occurs to one of the F1 PCI configuration header registers, an SMI is generated.						
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].						
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by anothe device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively.						
	00 = Default sample (4th clock from FRAME# active)						
	01 = Slow sample (3rd clock from FRAME# active)						
0	01 = Slow sample (3rd clock from FRAME# active) 1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable.						
0	1x = No subtractive decode						
	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].						
	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable;						
Index 42h	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory						
Index 42h 7	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable.						
Index 42h 7 6 5	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1].						
Index 42h 7 6	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus						
Index 42h 7 6 5 4 3	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable.						
Index 42h 7 6 5 4	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus						
Index 42h 7 6 5 4 3	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e.,						
Index 42h 7 6 5 4 3 2	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly.						
Index 42h 7 6 5 4 3 2	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable.						
Index 42h 7 6 5 4 3 2	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. <						
Index 42h 7 6 5 4 3 2 1	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. MA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: A						
Index 42h 7 6 5 4 3 2 1	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled a						
Index 42h 7 6 5 4 3 2 1	1x = No subtractive decode F0 PCI Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Index 40h-43h, an SMI is generated instead. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5]. PCI Function Control Register 3 (R/W) Reset Value = ACh USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low). USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Register, F1BAR+Memory Offset 00h/02h[14]. 0 = Disable; 1 = Enable. Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1]. DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable. No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transactions without X-Bus arbitration. 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable. Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., enabled, set to 1) for non-preemptive arbitration to operate correctly. F4 Video Configuration Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is generated instead. Top level SMI status is reported at F1						

AMD Geode™ CS5530A Companion Device Data Book

Bit	Description				
6	Enable SA20: Pin AD22 configuration. 0 = GPIO4; 1 = SA20. If bit 6 or bit 2 is set to 1, then pin				
5	Legacy Cycles Assert HOLD_REQ#: Allow legacy cycles to cause HOLD_REQ# to be asserte Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset				
4	Read Cycles Assert HOLD_REQ#: Allow read cycles to cause HOLD_REQ# to be asserted. 0 Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset	*			
3	Any Cycle Asserts HOLD_REQ#: Allow any cycle to cause HOLD_REQ# to be asserted. 0 = D Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset	visable; 1 = Enable.			
2	Enable SA[23:20]: Pins AF23, AE23, AC21, and AD22 configuration. $0 = GPIO[7:4]$; $1 = SA[23:.]$ If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.				
1	PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allow the PCI bus to retry cycles. 0 = Disable; 1 = Enable.				
	This bit works in conjunction with PCI bus delayed transactions bit. F0 Index 42h[5] must = 1 for	this bit to be valid.			
0	USB Core: 0 = Disable; 1 = Enable.				
Index 44h	Reset Control Register (R/W)	Reset Value = 01h			
7	ISA Mode: This bit is set to read back the strap value of the INTR pin (pin P26) during POR. 0 = ISA Limited; 1 = ISA Master.				
	This bit can be written after POR# deasserts to change the ISA mode selected. However, writing mended due to the actual strapping done on the board.	to this bit is not recom-			
6	IDSEL Mode: This bit is set to read back the strap value of the HOLD_REQ# pin (pin H26) durin 0 = AD28 is IDSEL for Chipset Register Space and AD29 is IDSEL for USB Register Space; 1 = AD26 is IDSEL for Chipset Register Space and AD27 is IDSEL for USB Register Space.	g POR.			
	This bit can be written after POR# deasserts to change the IDSEL settings. However, writing to the due to the actual strapping done on the board.	nis bit is not recommende			
5:4	Clock 32K Control: Controls the source of the CLK_32K pin (AE3). 00 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is not output on pin AE3 (Default) 01 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is output on pin AE3 10 = CLK_32K is an input 11 = Invalid				
3	IDE Controller Reset: Reset both of the CS5530A IDE controllers' internal state machines. 0 = This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.	Run; 1 = Reset.			
2	IDE Reset: Reset IDE bus. 0 = Deassert IDE bus reset signal; 1 = Assert IDE bus reset signal.				
1	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset. PCI Reset: Reset PCI bus. 0 = Disable; 1 = Enable.				
1	When set, the CS5530A PCI_RST# output signal (pin C14) is asserted and all devices on the PC are reset. No other function within the CS5530A is affected by this bit. It does not reset PCI regis				
	Write 0 to clear. This bit is level-sensitive and must be cleared after the reset is enabled.				
0	X-Bus Warm Start: Reading and writing this bit has two different meanings/functions. Reading this bit: Has a warm start occurred since power-up? 0 = Yes; 1 = No Writing this bit: 0 = NOP; 1 = Execute system wide reset (used only for clock configuration at pow	wer-up)			
	Note: X-Bus warm start will toggle the CPU_RST and PCI_RST# lines.				
ndex 45h-		Reset Value = 00h			
ndex 50h	PIT Control/ISA CLK Divider (R/W)	Reset Value = 7Bh			
7	PIT Control/ISA CER Divider (R/W) PIT Software Reset: 0 = Disable; 1 = Enable.				
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (OUT1 Port 061h[4].) to pass to I/O			
5					
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high. PIT Counter 0: 0 = Forces Counter 0 output (OUT0) to zero; 1 = Allows Counter 0 output (OUT0))) to pass to IRQ0.			

Bit	Description				
2:0	ISA Clock Divisor: Determines the divisor of the PCI clock used to make the ISA clock, which is typically programmed for				
	approximately 8 MHz.				
	000 = Reserved 001 = Divide by two	100 = Divide by 101 = Divide by			
	010 = Divide by two	110 = Divide by			
	011 = Divide by four	111 = Divide by			
	If 25 MHz PCI clock, use	setting of 010 (divide by 3). If 3	30 or 33 MHz PCI clock, use a s	etting of 011 (divide by 4).	
ndex 51h	h ISA I/O Recovery Control Register (R/W) Reset Value = 40				
7:4	8-Bit I/O Recovery: These bits determine the number of ISA bus clocks between back-to-back 8-bit I/O read cycles. This count is in addition to a preset one-clock delay built into the controller.				
	0000 = 1 ISA clock	0100 = 5 ISA clocks	1000 = 9 ISA clocks	1100 = 13 ISA clocks	
	0000 = 1 ISA clock 0001 = 2 ISA clocks	0100 = 6 ISA clocks	1000 = 313A clocks 1001 = 10 ISA clocks	1101 = 14 ISA clocks	
	0010 = 3 ISA clocks	0110 = 7 ISA clocks	1010 = 11 ISA clocks	1110 = 15 ISA clocks	
	0011 = 4 ISA clocks	0111 = 8 ISA clocks	1011 = 12 ISA clocks	1111 = 16 ISA clocks	
3:0	•	ese bits determine the number reset one-clock delay built into		k-to-back 16-bit I/O cycles. This	
	0000 = 1 ISA clock	0100 = 5 ISA clocks	1000 = 9 ISA clocks	1100 = 13 ISA clocks	
	0001 = 2 ISA clocks	0101 = 6 ISA clocks	1001 = 10 ISA clocks	1101 = 14 ISA clocks	
	0010 = 3 ISA clocks	0110 = 7 ISA clocks	1010 = 11 ISA clocks	1110 = 15 ISA clocks	
	0011 = 4 ISA clocks	0111 = 8 ISA clocks	1011 = 12 ISA clocks	1111 = 16 ISA clocks	
ndex 52h		ROM/AT Logic Contr	ol Register (R/W)	Reset Value = F8I	
7		ate A20 and Fast Reset: Enal able; 1 = Enable (snooping).	bles the snoop logic associated	with keyboard commands for A20	
	If disabled, the keyboard	controller handles the comman	nds.		
6	Game Port GPORT_CS# 201h). 0 = Disable; 1 = E		6# to be asserted for writes to th	e game port (I/O Port 200h and	
5	Game Port GPORT_CS# 201h). 0 = Disable; 1 = E		6# to be asserted for reads to th	e game port (I/O Port 200h and	
4		tion on Warm Reset: Force A2 state of A20). 0 = Disable; 1 = E		t (guarantees that A20M# is deas-	
3	Enable I/O Port 092h De	code (Port A): I/O Port 092h c	decode and the logical functions	. 0 = Disable; 1 = Enable.	
2		Inge: KBROMCS# is asserted FFh (256 KB, Default); 1 = FF0	for ISA memory read accesses 000000h-FFFFFFFh (16 MB)		
	Note: PCI Positive decod	ding for the ROM space is enab	oled at F0 Index 5Bh[5]).		
1		Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]). ROM Write Enable: Assert KBROMCS# during writes to configured ROM space (configured in bits 2 and 0), ellewing Fleeb programming 0. Dirable:			
	allowing Flash programming. 0 = Disable; 1 = Enable. Lower ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = 000F0000h-000FFFFFh (64 KB, Default); 1 = 000E0000h-000FFFFFh (128 KB).				
0		inge: KBROMCS# is asserted			
0	0 = 000F0000h-000FFFF	inge: KBROMCS# is asserted	0000h-000FFFFFh (128 KB).		
	0 = 000F0000h-000FFFF	Fh (64 KB, Default); 1 = 000E	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]).	Reset Value = 00ł	
	0 = 000F0000h-000FFFF	inge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enab	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]).		
ndex 53h	0 = 000F0000h-000FFFF Note: PCI Positive decord Reserved: Set to 0.	Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Suppo	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]).	Reset Value = 00ł	
ndex 53h 7	0 = 000F0000h-000FFFF Note: PCI Positive decod Reserved: Set to 0. Game Port Write Blocks	Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Suppo	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]). brt Register (R/W)	Reset Value = 00ł	
ndex 53h 7 6	0 = 000F0000h-000FFFF Note: PCI Positive decod Reserved: Set to 0. Game Port Write Blocks	Fh (64 KB, Default); 1 = 000E0 Gling for the ROM space is enable Alternate CPU Supports SISA: Block ISA cycle on game	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]). brt Register (R/W)	Reset Value = 00ł	
ndex 53h 7 6	0 = 000F0000h-000FFFF Note: PCI Positive decor Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enabl This bit must be set to 0.	ringe: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Supports ISA: Block ISA cycle on game e: 0 = Disable; 1 = Enable.	0000h-000FFFFFh (128 KB). bled at F0 Index 5Bh[5]). brt Register (R/W)	Reset Value = 00 write. 0 = Disable; 1 = Enable.	
ndex 53h 7 6 5	0 = 000F0000h-000FFFF Note: PCI Positive decod Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enabl This bit must be set to 0. Game Port Read Block	 inge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Support iSA: Block ISA cycle on game iSA: Block ISA cycle on game 	0000h-000FFFFFh (128 KB). oled at F0 Index 5Bh[5]). ort Register (R/W) e port (I/O Port 200h and 201h) port (I/O Port 200h and 201h) m	Reset Value = 00 write. 0 = Disable; 1 = Enable. ead. 0 = Disable; 1 = Enable.	
ndex 53h 7 6 5 4	0 = 000F0000h-000FFFF Note: PCI Positive decod Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enabl This bit must be set to 0. Game Port Read Block I Game Port Write SMI: A Top level SMI status is rep	 inge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Supports iSA: Block ISA cycle on game e: 0 = Disable; 1 = Enable. iSA: Block ISA cycle on game llow SMI generation on writes t ported at F1BAR+Memory Offs 	0000h-000FFFFFh (128 KB). oled at F0 Index 5Bh[5]). ort Register (R/W) e port (I/O Port 200h and 201h) port (I/O Port 200h and 201h) m to game port (I/O Port 200h and set 00h/02h[0].	Reset Value = 00 write. 0 = Disable; 1 = Enable.	
ndex 53h 7 6 5 4	0 = 000F0000h-000FFFF Note: PCI Positive decod Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enable This bit must be set to 0. Game Port Read Block I Game Port Write SMI: A Top level SMI status is re Second level SMI status i	 inge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Supports iSA: Block ISA cycle on game e: 0 = Disable; 1 = Enable. iSA: Block ISA cycle on game Illow SMI generation on writes t ported at F1BAR+Memory Offs s reported at F0 Index 84h/F4h 	0000h-000FFFFFh (128 KB). oled at F0 Index 5Bh[5]). ort Register (R/W) e port (I/O Port 200h and 201h) port (I/O Port 200h and 201h) m to game port (I/O Port 200h and set 00h/02h[0].	Reset Value = 00 write. 0 = Disable; 1 = Enable. ead. 0 = Disable; 1 = Enable.	
ndex 53h 7 6 5 4	0 = 000F000h-000FFFF Note: PCI Positive decor Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enable This bit must be set to 0. Game Port Read Block I Game Port Write SMI: A Top level SMI status is rep Second level SMI status i For "Game Port Read SM RTC Enable/RTC Pin Co	 inge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Supports iSA: Block ISA cycle on game e: 0 = Disable; 1 = Enable. iSA: Block ISA cycle on game llow SMI generation on writes t ported at F1BAR+Memory Offs s reported at F0 Index 84h/F4h II", see F0 Index 83h[4]. infiguration: 0 = SMEMW# (Page 1) 	0000h-000FFFFFh (128 KB). oled at F0 Index 5Bh[5]). ort Register (R/W) e port (I/O Port 200h and 201h) port (I/O Port 200h and 201h) re to game port (I/O Port 200h and set 00h/02h[0]. h[4]. in AF3) and SMEMR# (Pin AD4	Reset Value = 00 write. 0 = Disable; 1 = Enable. ead. 0 = Disable; 1 = Enable. 1 201h). 0 = Disable; 1 = Enable.	
ndex 53h 7 6 5 4 3	0 = 000F0000h-000FFFF Note: PCI Positive decor Reserved: Set to 0. Game Port Write Blocks Bidirectional SMI Enable This bit must be set to 0. Game Port Read Block I Game Port Write SMI: A Top level SMI status is re Second level SMI status i For "Game Port Read SM RTC Enable/RTC Pin Co 1 = RTCCS# (Pin AF3) an	KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E0 ding for the ROM space is enable Alternate CPU Suppo SISA: Block ISA cycle on game e: 0 = Disable; 1 = Enable. ISA: Block ISA cycle on game IISA: Block ISA cycle on game IISA: Block ISA cycle on game III IIII IIII IIII SMI generation on writes the ported at F1BAR+Memory Offsel s reported at F0 Index 84h/F4hr III , see F0 Index 83h[4]. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0000h-000FFFFFh (128 KB). oled at F0 Index 5Bh[5]). ort Register (R/W) e port (I/O Port 200h and 201h) port (I/O Port 200h and 201h) re to game port (I/O Port 200h and set 00h/02h[0]. h[4]. in AF3) and SMEMR# (Pin AD4	Reset Value = 00 write. 0 = Disable; 1 = Enable. ead. 0 = Disable; 1 = Enable. 201h). 0 = Disable; 1 = Enable.	

Bit	Description			
0	Generate SMI on A20	M# toggle: 0 = Disable; 1 =	Enable. This bit must be set to 1	
	SMI status is reported	in F1BAR+Memory Offset 0)h/02h[7] (only).	
Index 54h-	59h	R	eserved	Reset Value = xxh
Index 5Ah		Decode Cont	ol Register 1 (R/W)	Reset Value = 03h
7		ositive Decode: Selects PCI 377h. 0 = Subtractive; 1 = F	positive or subtractive decoding ositive.	for accesses to I/O Port
6		ive Decode: Selects PCI po 1 3F7h. 0 = Subtractive; 1 = F	sitive or subtractive decoding for Positive.	accesses to I/O Port
5	COM4 Positive Decor 0 = Subtractive; 1 = Po	•	ubtractive decoding for accesses	to I/O Port 2E8h-2EFh.
4	COM3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3E8h-3EFh. 0 = Subtractive; 1 = Positive.			
3	COM2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 2F8h-2FFh. 0 = Subtractive; 1 = Positive.			
2	COM1 Positive Decor 0 = Subtractive; 1 = Po	•	ubtractive decoding for accesses	to I/O Port 3F8h-3FFh.
1	060h and 064h (and 06	62h/066h if enabled). 0 = Su		
0	Real Time Clock Position 070h-7Fh. 0 = Subtraction		ositive or subtractive decoding fo	r accesses to I/O Port
	0,	5530A speeds up the I/O cy d, the port exists on the ISA I		exist in the CS5530A. It is assumed that
ndex 5Bh		Decode Cont	ol Register 2 (R/W)	Reset Value = 20h
7	Keyboard I/O Port 062h/066h Decode: This alternate port to the keyboard controller is provided in support of the 8051S notebook keyboard controller mailbox. 0 = Disable; 1 = Enable.			
6	Reserved: Set to 0.			
5	0 = Subtractive; $1 = $ Po	sitive.	or subtractive decoding for acce	esses to the configured ROM space.
	ROM configuration is a			
4	177h and 376h. 0 = Su	ubtractive; 1 = Positive.	•	ecoding for accesses to I/O Port 170h-
				y register references to the ISA bus.
3	 Primary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 1F0h-1F7 and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register references to the ISA bus. 			
2			btractive decoding for accesses t	
2	0 = Subtractive; $1 = $ Po	sitive.	Ŭ	
4		7BCh-7BEh, which is alway	,	
1	0 = Subtractive; 1 = Po		btractive decoding for accesses t	10 1/0 Port 378n-37Fn.
0		· · · · ·	btractive decoding for accesses t	to I/O Port 3BCh-3BEh
U	0 = Subtractive; $1 = $ Po	•	Ŭ	
	tive decoding by the CS	5530A speeds up the I/O cy	•	PT2, and LPT1 I/O Ports do not exist in
Index 5Ch			ering Register 1 (R/W)	Reset Value = 00h
7:4	INTB# Target Interrup	ot: Selects target interrupt for		
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
			1010 10010	1110 10011
	0010 = RSVD 0011 = IRQ3	0110 = IRQ6 0111 = IRQ7	1010 = IRQ10 1011 = IRQ11	1110 = IRQ14 1111 = IRQ15

Bit	Description				
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.		
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12	
	0000 = Disable 0001 = IRQ1	0100 = IRQ5	1000 = IRQ9	1101 = RSVD	
	0010 = RSVD	0101 = IRQ6	1010 = IRQ10	1110 = IRQ14	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15	
Note: The				n in order to maintain PCI interrupt	
con	npatibility.	-			
Index 5Dh	1	PCI Interrupt Stee	ring Register 2 (R/W)	Reset Value = 00h	
7:4		ot: Selects target interrupt for I			
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12	
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD	
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15	
3:0	INTC# Target Interrup	ot: Selects target interrupt for I	NTC#.		
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12	
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD	
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14	
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15	
	e target interrupt must fire	st be configured as level sensi	tive via I/O Port 4D0h and 4D1	n in order to maintain PCI interrupt	
Index 5Eh		Res	served	Reset Value = xxh	
Index 70h	-71h	General Purpose Chip Selec	t Base Address Register (R/V	V) Reset Value = 0000h	
15:0	-	-	This 16-bit value represents the	I/O base address used to enable the	
	assertion of the GPCS	# signal.			
			elect Control Register (F0 Index	72h) is used to configure the	
	operation of the GPCS	# pin.			
Index 72h		General Purpose Chip Se	elect Control Register (R/W)	Reset Value = 00h	
7	General Purpose Chi	p Select: GPCS# (pin AF26).	0 = Disable; 1 = Enable.		
	If the GPCS# signal is	disabled (i.e., this bit = 0) its o	utput is permanently driven hig	h.	
6		Select: Writes to configured luses GPCS# signal to be asse		figured in F0 Index 70h and range con	
5				onfigured in F0 Index 70h and range	
				configured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable.	
4:0	•				
4:0	00000 = 1 byte		This 5-bit field selects the range	ge of GPCS# signal.	
4:0		01111 = 16 bytes	I his 5-bit field selects the rang	ge of GPCS# signal.	
4:0	00001 = 2 bytes	01111 = 16 bytes 11111 = 32 bytes		ge of GPCS# signal.	
4:0		01111 = 16 bytes		ge of GPCS# signal.	
Note: This	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with 0	01111 = 16 bytes 11111 = 32 bytes All other combinations	are reserved.	ge of GPCS# signal. ex 70h) is used to configure the opera-	
Note: This tion	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with of the GPCS# pin.	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select B	are reserved.		
Note: This tion Index 73h	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with of the GPCS# pin.	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select I	are reserved. Base Address Register (F0 Inde	ex 70h) is used to configure the opera- Reset Value = xxh	
Note: This tion Index 73h	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with of the GPCS# pin.	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select I	are reserved. Base Address Register (F0 Inde served	ex 70h) is used to configure the opera- Reset Value = xxh	
Note: This tion Index 73h	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with 0 of the GPCS# pin. -7Fh Reserved: Set to 0.	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select B Res Power Management I I: Allow AC97 codec to general	are reserved. Base Address Register (F0 Inde served Enable Register 1 (R/W)	ex 70h) is used to configure the opera- Reset Value = xxh	
Note: This tion Index 73h Index 80h 7:6	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with 0 of the GPCS# pin. •7Fh Reserved: Set to 0. Codec SDATA_IN SM 0 = Disable; 1 = Enable Top level SMI status is	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select B Res Power Management I I: Allow AC97 codec to general	are reserved. Base Address Register (F0 Inde served Enable Register 1 (R/W) Ite an SMI due to codec produc Offset 00h/02h[0].	ex 70h) is used to configure the opera- Reset Value = xxh Reset Value = 00h	
Note: This tion Index 73h Index 80h 7:6	00001 = 2 bytes 00011 = 4 bytes 00111 = 8 bytes s register, together with 0 of the GPCS# pin. 7Fh Reserved: Set to 0. Codec SDATA_IN SM 0 = Disable; 1 = Enable Top level SMI status is Second level SMI status Video Speedup: Any sor disables clock thro	01111 = 16 bytes 11111 = 32 bytes All other combinations General Purpose Chip Select B Res Power Management I I: Allow AC97 codec to genera e. reported at F1BAR+Memory (is is reported at F0 Index 87h/ video activity, as decoded from	are reserved. Base Address Register (F0 Inde served Enable Register 1 (R/W) Ite an SMI due to codec produc Offset 00h/02h[0]. F7h[2]. In the serial connection (PSERIA Indshake) for a configurable dura	ex 70h) is used to configure the opera Reset Value = xxh Reset Value = 00h	

Bit	Description
3	IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# hand-shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable.
	The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch).
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable.
	This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at their current counts. This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the General Purpose (UDEFx) Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# feature to function (see F0 Index AEh).
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.
	This bit must be set (1) immediately after POST for some power management resources to function. Until this is done, the command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trigger events listed for F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register is a '1', but only prevents them from generating an SMI# interrupt. It also has no effect on the UDEF traps.
Index 81h	Power Management Enable Register 2 (R/W) Reset Value = 00h
7	Video Access Idle Timer Enable: Load timer from Video Idle Timer Count Register (F0 Index A6h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL register) the timer is reloaded with the programmed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].
6	User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register (F0 Index A4h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].
5	User Defined Device 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer Count Register (F0 Index A2h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].
4	User Defined Device 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Count Register (F0 Index A0h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the programmed address range the timer is reloaded with the programmed count. UDEF1 address programming is at F0 Index C0h (base address register) and CCh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[4].
3	Keyboard/Mouse Idle Timer Enable: Load timer from Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].

Bit	Description
2	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2].
1	Floppy Disk Idle Timer Enable: Load timer from Floppy Disk Idle Timer Count Register (F0 Index 9Ah) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed count. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].
0	Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle Timer Count Register (F0 Index 98h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded with the programmed count. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].
Index 82h	Power Management Enable Register 3 (R/W) Reset Value = 00h
7	Video Access Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the video address range (sets bit 0 of the GX1 processor's PSERIAL
	register) an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[7].
6	User Defined Device 3 (UDEF3) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
5	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable.
5	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4].
5	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address
5	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable.
	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register).
	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address
	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].
4	programming is at F0 Index C8h (base address register) and CEh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4]. User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 04h/06h[3]. User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[2].

Bit	Description			
2	Parallel/Serial Trap: 0 = Disable; 1 = Enable.			
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)			
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[2].			
1	Floppy Disk Trap: 0 = Disable; 1 = Enable.			
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, or 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, or 377h			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[1].			
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.			
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[5], an SMI is generated. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].			
Index 83h	Power Management Enable Register 4 (R/W) Reset Value = 00h			
7	Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer Count Register (F0 Index ACh) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.			
	If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded with the programmed count.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].			
6	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable.			
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4], an SMI is generated.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].			
5	ACPI Timer SMI: Allow SMI generation for MSB toggles on the ACPI Timer (F1BAR+Memory Offset 1Ch or I/O Port 121Ch). 0 = Disable; 1 = Enable.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[0].			
4	Game Port Read SMI: Allow SMI generation on reads to game port (I/O Port 200h and 201h). 0 = Disable; 1 = Enable.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 84h/F4h[4].			
2	For "Game Port Write SMI" see F0 Index 53h[3].			
3	VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disable; 1 = Enable. VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6].			
	To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7:0], and reenable it before enabling power management.			
	SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only).			
	Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. The VGA Timer counts whether power management is enabled or disabled.			
2	Video Retrace Interrupt SMI: Allow SMI generation whenever video retrace occurs. 0 = Disable; 1 = Enable. This information is decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor. This function is			
	normally not used for power management but for softVGA routines. SMI status reporting is at F1BAR+Memory Offset 00h/02h[5] (only).			
1	General Purpose Timer 2 (GP Timer 2) Enable: Turn on GP Timer 2 and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.			
	This idle timer is reloaded from the assertion of GPIO7 (if programmed to do so). GP Timer 2 programming is at F0 Index 8Ah and 8Bh[5,3,2].			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[1].			

Downloaded from Elcodis.com electronic components distributor

Bit Description Λ General Purpose Timer 1 (GP Timer 1) Enable: Turn on GP Timer 1 and generate an SMI when the timer expires. 0 = Disable; 1 = Enable. This idle timer's load is multi-sourced and is reloaded any time an enabled event (F0 Index 89h[6:0]) occurs. GP Timer 1 programming is at F0 Index 88h and 8Bh[4]. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[0] Second Level Power Management Status Mirror Register 1 (RO) Index 84h Reset Value = 00h 7:5 Reserved 4 Game Port SMI Status (Read Only): SMI was caused by R/W access to game port (I/O Port 200h and 201h)? $0 = No^{-1} = Yes.$ This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3]. 3 GPIO7 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO7 pin? 0 = No: 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[3]. GPIO5 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO5 pin? 2 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[2]. 1 GPIO4 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO4 pin? 0 = No: 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[1]. GPIO3 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO3 pin? 0 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 97h[0]. Note: Properly-configured means that the GPIO pin must be enabled as a GPIO (if multiplexed pin), as an input, and to cause an SMI. This register provides status on various power management SMI events to the SMI handler. It is called a Mirror register since an identical register exists at F0 Index F4h. Reading this register does not clear the status, while reading its counterpart at F0 Index F4h does clear the status. Index 85h Second Level Power Management Status Mirror Register 2 (RO) Reset Value = 00h 7 Video Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Video Idle Timer Count Register (F0 Index A6h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[7]. User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF3 Idle 6 Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[6]. User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF2 Idle 5 Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[5]. User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read Only): SMI was caused by expiration of the UDEF1 Idle 4 Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[4]. 3 Keyboard/Mouse Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Keyboard/Mouse Idle Timer

This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].

Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.

SMI generation enabling is at F0 Index 81h[3].

٦	Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)	
	Description	

Bit	Description	
2	Parallel/Serial Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Parallel	/Serial Port Idle Timer
	Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[2].	
1	Floppy Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Floppy Di ister (F0 Index 9Ah)? 0 = No; 1 = Yes.	-
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[1].	
0	Primary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Prin Count Register (F0 Index 98h)? 0 = No; 1 = Yes.	-
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs SMI generation enabling is at F0 Index 81h[0].	et 00h/02h[0].
dura regi	register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that i ation configured in the Idle Timer Count register for that device, causing an SMI. It is called a Mirror ster exists at F0 Index F5h. Reading this register does not clear the status, while reading its counter r the status.	register since an identica
Index 86h	Second Level Power Management Status Mirror Register 3 (RO)	Reset Value = 00h
7	Video Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the Vi	deo I/O Trap?
	0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[7].	
6	Reserved (Read Only)	
5	Secondary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O secondary hard disk? 0 = No; 1 = Yes.	access to the
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[6].	
4	Secondary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of Ha Register (F0 Index ACh)? 0 = No; 1 = Yes.	rd Disk Idle Timer Count
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[7].	
3	Keyboard/Mouse Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O acce mouse? 0 = No; 1 = Yes.	-
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs SMI generation enabling is at F0 Index 82h[3].	et 00h/02h[0].
2	Parallel/Serial Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access parallel ports? 0 = No; 1 = Yes.	to either the serial or
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[2].	
1	Floppy Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to 0 = No; 1 = Yes.	the floppy disk?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[1].	
0	Primary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O acc disk? 0 = No; 1 = Yes.	cess to the primary hard
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	et 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].	
dev	register provides status on the Device Traps to the SMI handler. A bit set here indicates that an ac ce while the trap was enabled, causing an SMI. It is called a Mirror register since an identical regist ding this register does not clear the status, while reading its counterpart at F0 Index F6h does clear	er exists at F0 Index F6h
Index 87h	Second Level Power Management Status Mirror Register 4 (RO)	Reset Value = 00h
7	GPIO2 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO2 p	oin? 0 = No; 1 = Yes.
-	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offs	

	Table 5-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)
Bit	Description
6	GPIO1 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
F	SMI generation enabling is at F0 Index 92h[1].
5	GPIO0 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 92h[0].
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the lid switch indicator, this bit reflects the state of the pin.
3	Lid Switch SMI Status (Read Only): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.
Ū	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch
	(F0 Index 92h[6] =1).
2	Codec SDATA_IN SMI Status (Read Only): SMI was caused by AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes.
	This is the second level of status is reporting. The top level status is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 80h[5].
1	RTC Alarm (IRQ8) SMI Status (Read Only): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes.
	This SMI event can only occur while in 3V Suspend and an RTC interrupt occurs.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
0	ACPI Timer SMI Status (Read Only): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].
	SMI generation configuration is at F0 Index 83h[5].
the	Lid Switch. It is called a Mirror register since an identical register exists at F0 Index F7h. Reading this register does not clear status, while reading its counterpart at F0 Index F7h does clear the status.
Index 88h	
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This value can represent either an 8 bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enabled (F0 Index 83h[0] =1). Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer. The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, an SMI is generated an the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMI status is reported at
	F1BAR+Memory Offset 04h/06h[0]). Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new count value here.
	This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7].
Index 89h	
Index 89h	
	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h
	General Purpose Timer 1 Control Register (R/W) Reset Value = 00H Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec.
7	General Purpose Timer 1 Control Register (R/W) Reset Value = 00H Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address
7 6	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
7 6	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address Enable.
7 6 5	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF3 address programming is at F0 Index C4h (base address register) and CDh (control register).
7 6 5	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. UDEF1 address
7 6 5 4	General Purpose Timer 1 Control Register (R/W) Reset Value = 00h Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 sec; 1 = 1 msec. Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register). Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 = Enable. Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. UDEF1 address programming is at F0 Index C0h (base address register) and CCh (control register)

Bit	Description				
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Enable.				
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Timer 1.				
	LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah				
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)				
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)				
	COM3: I/O Port 3E8h-3EFh				
	COM4: I/O Port 2E8h-2EFh				
1	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1.				
	Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h				
0	The active floppy drive is configured via F0 Index 93h[7].				
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Tir				
ndex 8Ah	General Purpose Timer 2 Count Register (R/W)	Reset Value = 00h			
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.				
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, a the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reporte Offset 04h/06h[1]).				
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new co	unt value here.			
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be configured as an input (F0 Index 90h[7]).				
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].				
ndex 8Bh	General Purpose Timer 2 Control Register (R/W)	Reset Value = 00h			
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enable.				
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP	Timer 1.			
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 µs.				
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit	pit.			
	As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah).				
	As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the low zero, and this 16-bit value is used as the count for GP Timer 2.	wer eight bits become			
4	General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit	pit.			
	As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h).				
	As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become				
		el elgili bils become			
	zero, and this 16-bit value is used as the count for GP Timer 1.	er eight bits become			
3		_			
3	zero, and this 16-bit value is used as the count for GP Timer 1.	ec; 1 = 1 msec.			
	zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 se Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GP	ec; 1 = 1 msec. IO7 pin reloads GP			
	zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 se Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GP Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable. F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to w	ec; 1 = 1 msec. IO7 pin reloads GP			
2	zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 set Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GP Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable. F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to w configured as an input (F0 Index 90h[7] = 0).	ec; 1 = 1 msec. IO7 pin reloads GP			
2	zero, and this 16-bit value is used as the count for GP Timer 1. Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 second Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GP Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable. F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to w configured as an input (F0 Index 90h[7] = 0). Reserved: Set to 0.	ec; 1 = 1 msec. IO7 pin reloads GP ork here, it must first be Reset Value = 00h ed into the timer when scurs. When the event			

7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logi is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allow instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 8Eh VGA Timer Count Register (R/W) Reset Value = 00 7:0 VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded into the timer when the time is enabled (F0 Index 85H) = 1.) The time is decremented with each clock of the configured timebase (F0 Index 85H) (Ondex 85H)] = 0.0 and then enabling it (F0 Index 85H)] = 0.0 and then enabling it (F0 Index 85H)] = 0.0 and then enabling it (F0 Index 85H)] = 0.0 and then enabling it (F0 Index 85H)] = 0.0 and then enabling it (F0 Index 85H) = 0.0 and then enabling it (F0 Index 85H)] = 0.0 and then enabling it (F0 Index 85H). Note: Although grouped with the power Management Idle Timers, the VGA Timer is not a power management function. It not affected by the Global Power Management Enable setting at F0 Index 80H(0). 7 GPIO7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output. 6 GPIO6 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 7 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output.	Bit	Description	
when Suspend Modulation is enabled. (¹⁰ Index 96H0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation begins again. The video spectup timer's timebase is 1 ms. This speedup metanetism allows instantaneous responses to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 8Eh VGA Timer Court Register (RW) Reset Value = 00 7.0 VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded in to the time when the time is enabled (¹⁰ Index 88H)[1]. Upon expirate holds the load value for the VGA timer. The value is loaded in to the timer value to 1 loaded. 83(3)[3] = 1). When the count value is changed in this register, the timer must be re-initialized by disabiling it (¹⁰ Index 88h)]. Nois: Although grouped with the power management tide Timers, the VGA Timer is not a power management function. It not affected by the Global Power Management Enable setting at P0 Index 88h). Nois: Although grouped with the power management tide Timers, the VGA Timer is not a power management function. It not affected by the Global Power Management Enable setting at P0 Index 80h(0). Index 8bh Reserval Reserval Reset Value = 00 7 GPIO7 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output. GPIO5 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output. 6 GPIO5 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output. GPIO1 Dinection: Selects if GPIO5 is an input or output. 0 =	Index 8Dh	Video Speedup Timer Count Register (R/W)	Reset Value = 00h
 VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded into the timer when the timer is enabled (FD Index 83h[3] = 1). The timer is decremented with each clock of the configured timebase (FD Index 83h[3] = 1). The timer is decremented with each clock of the configured timebase (FD Index 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value to 1 loaded. This timer's timebase is selectable as 1 ms (default) or 32 µs. (FO Index 83h[3] = 0) and then enabling it (FO Index 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value to 1 loaded. This timer's timebase is selectable as 1 ms (default) or 32 µs. (FO Index 8Bh). Note: Although grouped with the power management tlate setting at FO Index 8Dh(0]. Index 8Ph Reserved Reserved Reset Value = xx index 90h GPIO Pin Direction Register 1 (RW) Reset Value = 00 GPIO7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output. GPIO5 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output.	7:0	when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics contr access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's tim This speedup mechanism allows instantaneous response to video activity for full speed during v	roller occurs. When a video of the CPU. Upon expira- ebase is 1 ms.
timer is enabled (FD Index SB)(3) ^{[=} 1). The timer is decremented with each clock of the configured timebase (FD Index BB)(B). Upon expired, this timer must be re-initialized by disabling it (FD Index B3h(3) = 0) and then enabling it (FD Index S3h(3) = 1). When the count value is changed in this register, the timer must be re-initialized in order for the new value to 1 loaded. This timer's timebase is selectable as 1 ms (default) or 32 µs. (FD Index B3h). Note: Although grouped with the power management to Eable setting at FD Index B3h). Note: Although grouped with the power management to Eable setting at FD Index B3h). Reset Value = xx Index B5h Reserved Reset Value = xx Index 95h GPIO7 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output. 6 G GPIO5 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output. 6 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 4 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6 3 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6 4 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6 6 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6 6 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 6	Index 8Eh	VGA Timer Count Register (R/W)	Reset Value = 00h
Note: Although grouped with the power management Idle Timers, the VGA Timer is not a power management function. It not affected by the Global Power Management Enable setting at F0 Index 80h[0]. Index 8Fh Reserved Reset Value = xx Index 90h GPIO 7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output. Reset Value = 00 7 GPIO5 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output. GPIO5 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output. 3 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO1 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO1 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO2 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 0 GPIO0 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as th alternate function. Index 91h GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High. 6 GPIO6 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 7 GPIO2 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 8	7:0	timer is enabled (F0 Index $83h[3] = 1$). The timer is decremented with each clock of the configure $8Bh[6]$). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+ (only). Once expired, this timer must be re-initialized by disabling it (F0 Index $83h[3] = 0$) and the $83h[3] = 1$). When the count value is changed in this register, the timer must be re-initialized in our statement of the timer must be re-initialized in our statement.	ed timebase (F0 Index Memory Offset 00h/02h[6] en enabling it (F0 Index
Index 8Fh Reserved Reset Value = xx Index 8Fh Reset Value = 00 7 GPIO7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output. 6 GPIO6 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output. 5 GPIO5 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 4 GPIO4 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 3 GPIO3 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 4 GPIO4 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 2 GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 1 GPIO1 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 0 GPIO0 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 1 GPIO1 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 0 GPIO0 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 1 GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 0 GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 1 GPIO2 Directis: Selects if GPIO2 is an input or output. 0 = Inp			
Index 90h GPIO Pin Direction Register 1 (R/W) Reset Value = 00 7 GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 6 5 GPI06 Direction: Selects if GPI06 is an input or output. 0 = Input; 1 = Output. 7 4 GPI04 Direction: Selects if GPI04 is an input or output. 0 = Input; 1 = Output. 7 3 GPI03 Direction: Selects if GPI03 is an input or output. 0 = Input; 1 = Output. 7 2 GPI02 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 7 4 GPI00 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 7 4 GPI00 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 7 6 GPI00 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 7 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 7 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 7 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 7 10 GPI00 Direction: Selects if GPI07. 0 = Low; 1 = High. 7 10 GPI07 Data: Reflects the level of GPI05. 0 = Lo			management function. It is
7 GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 6 GPI06 Direction: Selects if GPI06 is an input or output. 0 = Input; 1 = Output. 5 GPI05 Direction: Selects if GPI04 is an input or output. 0 = Input; 1 = Output. 3 GPI03 Direction: Selects if GPI03 is an input or output. 0 = Input; 1 = Output. 3 GPI03 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 1 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI02. 0 = Low; 1 = High. <th>Index 8Fh</th> <th>Reserved</th> <th>Reset Value = xxh</th>	Index 8Fh	Reserved	Reset Value = xxh
6 GPI06 Direction: Selects if GPI06 is an input or output. 0 = Input; 1 = Output. 5 GPI04 Direction: Selects if GPI05 is an input or output. 0 = Input; 1 = Output. 3 GPI03 Direction: Selects if GPI03 is an input or output. 0 = Input; 1 = Output. 2 GPI02 Direction: Selects if GPI03 is an input or output. 0 = Input; 1 = Output. 1 GPI01 Direction: Selects if GPI01 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 0 GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 1 GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 1 GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output. 1 GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI07 Data: Reflects the level of GPI05. 0 = Low; 1 = High. 6 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 3 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GP	Index 90h	GPIO Pin Direction Register 1 (R/W)	Reset Value = 00h
5 GPIO5 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output. 4 GPIO4 Direction: Selects if GPIO4 is an input or output. 0 = Input; 1 = Output. 3 GPIO3 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output. 1 GPIO2 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO1 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 0 GPIO2 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 0 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 0 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 0 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output. 1 GPIO4 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 6 GPIO4 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 3 GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 1 GPIO4 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. <td< td=""><td>7</td><td>GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output.</td><td></td></td<>	7	GPI07 Direction: Selects if GPI07 is an input or output. 0 = Input; 1 = Output.	
4 GPI04 Direction: Selects if GPI04 is an input or output. 0 = Input; 1 = Output. 3 GPI03 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 2 GPI02 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 1 GPI01 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 1 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 1 GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI05 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 3 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GP	6	GPIO6 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output.	
3 GPI03 Direction: Selects if GPI03 is an input or output. 0 = Input; 1 = Output. 2 GPI02 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 1 GPI01 Direction: Selects if GPI01 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as the alternate function. Index 91h GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI05 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 5 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 3 GPI02 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of	5	GPIO5 Direction: Selects if GPIO5 is an input or output. 0 = Input; 1 = Output.	
2 GPI02 Direction: Selects if GPI02 is an input or output. 0 = Input; 1 = Output. 1 GPI01 Direction: Selects if GPI01 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as the alternate function. Index 91h GPI07 Data: Reflects the level of GPI07.0 = Low; 1 = High. 6 GPI05 Data: Reflects the level of GPI06.0 = Low; 1 = High. 5 GPI05 Data: Reflects the level of GPI03.0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI02.0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02.0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI00.0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI00.0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI01.0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI01.0 = Low; 1 = High. 1 GPI02 Data: Reflects the level of GPI02.0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI00.0 =	4	GPIO4 Direction: Selects if GPIO4 is an input or output. 0 = Input; 1 = Output.	
1 GPI01 Direction: Selects if GPI01 is an input or output. 0 = Input; 1 = Output. 0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as th alternate function. Index 91h GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI05 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 5 GPI05 Data: Reflects the level of GPI04. 0 = Low; 1 = High. 4 GPI04 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High.	3	GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output.	
0 GPI00 Direction: Selects if GPI00 is an input or output. 0 = Input; 1 = Output. Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as the alternate function. Index 91h GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI07 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 6 GPI05 Data: Reflects the level of GPI05. 0 = Low; 1 = High. 5 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 1 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 0 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI02 Data: Reflects the level of GPI02.	2	GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output.	
Note: Several of these pins have specific alternate functions. The direction configured here must be consistent with the pins' use as the alternate function. Index 91h GPIO Pin Data Register 1 (R/W) Reset Value = 00 7 GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High. 6 6 GPIO5 Data: Reflects the level of GPIO6. 0 = Low; 1 = High. 6 5 GPIO4 Data: Reflects the level of GPIO5. 0 = Low; 1 = High. 6 4 GPIO4 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 7 3 GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 7 4 GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 7 GPIO1 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 8 GPIO1 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 9 GPIO1 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 0 GPIO1 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. 7 8 0 GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High. 7 8 0 GPIO1 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 8 0 GPIO1 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7	1	GPIO1 Direction: Selects if GPIO1 is an input or output. 0 = Input; 1 = Output.	
alternate function. GPIO Pin Data Register 1 (R/W) Reset Value = 00 7 GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High. 6 6 GPIO6 Data: Reflects the level of GPIO6. 0 = Low; 1 = High. 5 5 GPIO5 Data: Reflects the level of GPIO5. 0 = Low; 1 = High. 6 4 GPIO4 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 7 3 GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High. 7 2 GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 1 GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High. 7 2 GPIO1 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. 7 3 GPIO1 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. 7 4 GPIO1 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. 7 5 GPIO2 Data: Reflects the level of GPIO1. 0 = Low; 1 = High. 7 6 GPIO0 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 6 GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 7 GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 7 8 GPIO2 Control Register 1 (R/W) Reset Value = 00 </td <td>0</td> <td>GPIO0 Direction: Selects if GPIO0 is an input or output. 0 = Input; 1 = Output.</td> <td></td>	0	GPIO0 Direction: Selects if GPIO0 is an input or output. 0 = Input; 1 = Output.	
7 GPI07 Data: Reflects the level of GPI07. 0 = Low; 1 = High. 6 GPI06 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 5 GPI05 Data: Reflects the level of GPI05. 0 = Low; 1 = High. 4 GPI04 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI07.00 = Low; 1 = High. 1 GPI00 Data: Reflects the level of GPI07.00 = Low; 1 = High. Note: This register contains the direct values of GPI0[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPI0 Control Register 1 (R/W) Reset Value = 00 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 6 GPI06 Enabled as Lid Switch: Allow GPI06 to act as the lid switch input. 0 = GPI06; 1 = Lid switch. When enabled, every transition of the GPI06 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is repor			ent with the pins' use as the
6 GPI06 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 5 GPI05 Data: Reflects the level of GPI05. 0 = Low; 1 = High. 4 GPI04 Data: Reflects the level of GPI04. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Control Register 1 (R/W) Note: This register contains the direct values of GPI07[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register 1 (R/W) Index 92h GPI0 Control Register 1 (R/W) Reset Value = 00 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Time	Index 91h	GPIO Pin Data Register 1 (R/W)	Reset Value = 00h
6 GPI06 Data: Reflects the level of GPI06. 0 = Low; 1 = High. 5 GPI05 Data: Reflects the level of GPI05. 0 = Low; 1 = High. 4 GPI04 Data: Reflects the level of GPI04. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Control Register 1 (R/W) Note: This register contains the direct values of GPI07[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register 1 (R/W) Index 92h GPI0 Control Register 1 (R/W) Reset Value = 00 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Time	7	GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High.	
4 GPI04 Data: Reflects the level of GPI04. 0 = Low; 1 = High. 3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI07:0] pins. Write operations are valid only for bits defined as output. Reads from this register contains the direct values of GPI0[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPI0 Control Register 1 (R/W) 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPI06 Enabled as Lid Switch: Allow GPI06 to act as the lid switch input. 0 = GPI06; 1 = Lid switch. When enabled, every transition of the GPI06 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPI06 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPI02 Edge Sense for SMI: Selects which edge transition of the GPI02 pin generates an SMI. 0 = Rising; 1 = Falling.	6		
3 GPI03 Data: Reflects the level of GPI03. 0 = Low; 1 = High. 2 GPI02 Data: Reflects the level of GPI02. 0 = Low; 1 = High. 1 GPI01 Data: Reflects the level of GPI01. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI00. 0 = Low; 1 = High. 0 GPI00 Data: Reflects the level of GPI0[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register contains the direct values of GPI0[7:0] pins. Write operations are configured as inputs or outputs in F0 Index 90h. Index 92h GPI0 Control Register 1 (R/W) 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPI06 Enabled as Lid Switch: Allow GPI06 to act as the lid switch input. 0 = GPI06; 1 = Lid switch. When enabled, every transition of the GPI06 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPI06 is enabled as the lid switch, F0 Index 87h/F7h[3]. If GPI06 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPI02 Edge Sense for SMI: Selects which edge transition of the GPI02 pin generates an SMI. 0 = Rising; 1 = Falling.	5	GPI05 Data: Reflects the level of GPIO5. 0 = Low; 1 = High.	
2 GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High. 1 GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High. 0 GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. 0 GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. Note: This register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPIO Control Register 1 (R/W) 7 GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	4	GPIO4 Data: Reflects the level of GPIO4. 0 = Low; 1 = High.	
1 GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High. 0 GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. Note: This register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPIO Control Register 1 (R/W) Reset Value = 00 7 GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. 8 GPIO6 Enabled as Lid Switch: Allow GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	3	GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High.	
0 GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High. Note: This register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPIO Control Register 1 (R/W) Reset Value = 00 7 GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	2	GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High.	
Note: This register contains the direct values of GPI0[7:0] pins. Write operations are valid only for bits defined as output. Reads from this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPIO Control Register 1 (R/W) Reset Value = 00 7 GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	1	GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High.	
this register read the last written value if the pin is an output. The pins are configured as inputs or outputs in F0 Index 90h. Index 92h GPIO Control Register 1 (R/W) Reset Value = 00 7 GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPIO7 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	0	GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High.	
Index 92h GPIO Control Register 1 (R/W) Reset Value = 00 7 GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPI06 Enabled as Lid Switch: Allow GPI06 to act as the lid switch input. 0 = GPI06; 1 = Lid switch. When enabled, every transition of the GPI06 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPI06 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPI02 Edge Sense for SMI: Selects which edge transition of the GPI02 pin generates an SMI. 0 = Rising; 1 = Falling.			
GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	Index 92h	GPIO Control Register 1 (R/W)	Reset Value = 00h
When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	7	•	GPIO7 causes
The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.	6	GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid s	switch.
Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.			erate an SMI.
If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.			
5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Falling.			
	5		0 = Kising; 1 = Falling.

Bit	Description
4	GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.
3	GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.
2	Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI on either a
	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7].
1	Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI on either a rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6].
0	Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI on either a rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3)
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5].
	or any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).
	PIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both.
	GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the ystem from Suspend when the clocks are stopped.
Index 93h	Miscellaneous Device Control Register (R/W) Reset Value = 00h
7	Floppy Drive Port Select: All system resources used to power manage the floppy drive use the primary or secondary FDC addresses for decode. 0 = Primary; 1 = Primary and Secondary.
6	Reserved: This bit must always be set to 1.
5	Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are decoded as primary hard disk accesses.
	0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 = Power management monitors only writes to I/O Port 1F6h and 1F7h
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are decoded as secondary hard Disk accesses.
	0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h
3:2	Reserved: Set to 0.
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2. (Note)
mon mou Thes	1 and 0 - If a mouse is attached to a serial port (bit 1 = 1), that port is removed from the serial device list being used to itor serial port access for power management purposes and added to the keyboard/mouse decode. This is done because a se, along with the keyboard, is considered an input device and is used only to determine when to blank the screen. se bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh) as well as the Parallel/ al Port Idle Timer Count Register (F0 Index 9Ch).
Index 94h	Suspend Modulation OFF Count Register (R/W) Reset Value = 00h
7:0	Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX1 processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video
	speedups.
Index 95h	Suspend Modulation ON Count Register (R/W) Reset Value = 00h
7:0	Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption.
	This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups.

Bit	Description			
Index 96h	Suspend Configuration Register (R/W)	Reset Value = 00h		
7:5	Reserved: Set to 0.			
4	Power Savings Mode: 0 = Enable; 1 = Disable.			
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock included.			
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down the G pend. 0 = Disable; 1 = Enable.	<1 processor during Sus-		
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI occ	curs.		
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspend M occurs.	lodulation when an SMI		
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Re Offset 08h).	egister (F1BAR+Memory		
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Manager technology and power management operations occur at full speed. Two methods for accomplishin the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable S the SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The lattee The IRQ speedup method is provided for software compatibility with earlier revisions of the CS553 if the Suspend Modulation feature is disabled (bit $0 = 0$).	g this are either to map uspend Modulation until r is the preferred method.		
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.			
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed in t OFF/ON Count Registers (F0 Index 94h/95h).	he Suspend Modulation		
Index 97h	GPIO Control Register 2 (R/W)	Reset Value = 00h		
7	GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling. Bit 3 must be set to enable this bit.			
6	GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. C) = Rising; 1 = Falling.		
	Bit 2 must be set to enable this bit.	0. 0		
5	GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. C) = Rising; 1 = Falling.		
	Bit 1 must be set to enable this bit.			
4	GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. C) = Rising; 1 = Falling.		
	Bit 0 must be set to enable this bit.			
3	Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI on eithrising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3].			
2	Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to get rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable.	nerate an SMI on either a		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2].			
1	Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to get rising- or falling-edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable.	nerate an SMI on either a		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[1].			
0	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and to get rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable.	nerate an SMI on either a		
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[0].			
Note: For	any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).		

Bit	Description	
Index 98h	-99h Primary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
 15:0 Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine who disk is not in use so that it can be powered down. The 16-bit value programmed here represents the per disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the ever an access occurs to the configured primary hard disk's data port (configured in F0 Index 93h[5]). T second timebase. To enable this timer set F0 Index 81h[0] = 1. 		esents the period of primary harc aded with the count value when-
	Top level SMI status is reported at F1BAR+Memory Offset $00h/02h[0]$.	
	Second level SMI status is reported at PDAtchieffory Onset 001/021[0].	
Index 9Ah	-9Bh Floppy Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determ not in use so that it can be powered down. The 16-bit value programmed here represents inactivity after which the system is alerted via an SMI. The timer is automatically reloaded access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 3 timer uses a 1 second timebase.	the period of floppy disk drive with the count value whenever an
	To enable this timer set F0 Index $81h[1] = 1$.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	
Index 9Ch		Reset Value = 0000h
15:0	Parallel / Serial Idle Timer Count: The idle timer loaded from this register is used to determine when the parallel and serial ports are not in use so that the ports can be power managed. The 16-bit value programmed here represents the period of nactivity for these ports after which the system is alerted via an SMI. The timer is automatically reloaded with the count alue whenever an access occurs to the parallel (LPT) or serial (COM) I/O address spaces. If the mouse is enabled on a erial port, that port is not considered here. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[2] = 1.	
Index 9Eh	-9Fh Keyboard / Mouse Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Keyboard / Mouse Idle Timer Count: The idle timer loaded from this register determines when the keyboard and mou are not in use so that the LCD screen can be blanked. The 16-bit value programmed here represents the period of inact for these ports after which the system is alerted via an SMI. The timer is automatically reloaded with the count value we ever an access occurs to either the keyboard or mouse I/O address spaces, including the mouse serial port address sp when a mouse is enabled on a serial port. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[3] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].	
Index A0h	-A1h User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	User Defined Device 1 (UDEF1) Idle Timer Count: The idle timer loaded from this register determines when the device configured as UDEF1 is not in use so that it can be power managed. The 16-bit value programmed here represents the period of inactivity for this device after which the system is alerted via an SMI. The timer is automatically reloaded with th count value whenever an access occurs to memory or I/O address space configured at F0 Index C0h (base address register) and F0 Index CCh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[4] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status is reported at F0 Index 85h/F5h[4].	
Index A2h		Reset Value = 0000h
15:0	User Defined Device 2 (UDEF2) Idle Timer Count: The idle timer loaded from this regist configured as UDEF2 is not in use so that it can be power managed. The 16-bit value progperiod of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at FC ter) and F0 Index CDh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[5] = 1.	grammed here represents the s automatically reloaded with the
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].	

Bit	Description		
Index A4h-	A5h User Defined Device 3 Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	User Defined Device 3 (UDEF3) Idle Timer Count: The idle timer loaded from this regist configured as UDEF3 is not in use so that it can be power managed. The 16-bit value properiod of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at Fitter) and F0 Index CEh (control register). The timer uses a 1 second timebase.	ogrammed here represents the is automatically reloaded with the	
	To enable this timer set F0 Index 81h[6] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].		
Index A6h-	· · · · · · · · · · · · · · · · · · ·	Reset Value = 0000h	
Index Abn-A/n Video Idle Timer Count Register (R/W) Reset 15:0 Video Idle Timer Count: The idle timer loaded from this register determines when the graphics subsystem part of the Suspend determination algorithm. The 16-bit value programmed here represents the period of vafter which the system is alerted via an SMI. The count in this timer is automatically reset whenever an according raphics controller space. The timer uses a 1 second timebase. In a GX1 processor based system the graphics controller is embedded in the CPU, so video activity is com CS5530A via the serial connection (PSERIAL register, bit 0) from the processor. The CS5530A also detect standard VGA space on PCI (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) in the event an external VGA controller To enable this timer set F0 Index 81h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].		aphics subsystem has been idle as nts the period of video inactivity	
		5530A also detects accesses to	
Index A8h-	Second level SMI status is reported at F0 Index 85h/F5h[7]. A9h Video Overflow Count Register (R/W)	Reset Value = 0000h	
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 100 ms timer is started. If the 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count Register increments and the 100 ms timer re-triggers. Software clears the overflow register when new evaluations are to begin. The count contained in this register may be combined with other data to determine the type of video accesses present in the system.		
Index AAh	-ABh Reserved	Reset Value = xxh	
Index ACh	ADh Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h	
15:0	Secondary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine when the secondar hard disk is not in use so that it can be powered down. The 16-bit value programmed here represents the period of secon ary hard disk inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with the count value whenever an access occurs to the configured secondary hard disk's data port (configured in F0 Index 93h[4]). The timer uses a 1 second timebase. To enable this timer set F0 Index 83h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].		
Index AEh	n CPU Suspend Command Register (WO) Reset Value = 00		
7:0	Software CPU Suspend Command (Write Only): If bit 0 in the Clock Stop Control Regi 0) and all SMI status bits are 0, a write to this register causes a SUSP#/SUSPA# handsha in a low-power state. The data written is irrelevant. Once in this state, any unmasked IRQ dition. If F0 Index BCh[0] = 1, writing to this register invokes a full system Suspend. In this case, t	ake with the CPU, placing the CPU or SMI releases the CPU halt con-	
	the SUSP#/SUSPA# halt. Upon a Resume event (see Note), the PLL delay programmed in allowing the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin.	h the F0 Index BCh[7:4] is invoked,	
	Note: If the clocks are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR- only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS up the system from Suspend when the clocks are stopped. As long as the 32 KHz events are also Resume events.	are enabled as an external SMI S5530A pins can be used to wake-	

Bit	it Description		
Index AFh	Suspend Notebook Command Register (WO)	Reset Value = 00h	
7:0 Software CPU Stop Clock Suspend (Write Only): A write to this register causes a SUSP#/S CPU, placing the CPU in a low-power state. Following this handshake, the SUSP_3V pin is as intended to be used to stop all system clocks. Upon a Resume event (see Note), the SUSP_3V pin is deasserted. After a slight delay, the CS		ed. The SUSP_3V pin is	
	signal. Once the clocks are stable, the processor deasserts SUSPA# and system operation resume Note: If the clocks are stopped the external IRQ4 and IRQ3 pins, when enabled (F3BAR+Memory only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 are enabled	es. Offset 1Ah[4:3]), are the	
	source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS5530A pi up the system from Suspend when the clocks are stopped.	ins can be used to wake-	
Index B0h-	B3h Reserved	Reset Value = xxh	
Index B4h	Floppy Port 3F2h Shadow Register (RO)	Reset Value = xxh	
7:0	Floppy Port 3F2h Shadow (Read Only): Last written value of I/O Port 3F2h. Required for support and Save-to-Disk/RAM coherency.		
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not the register is being read. It is provided here to assist in a Save-to-Disk operation.	ot deterministic of when	
Index B5h	Floppy Port 3F7h Shadow Register (RO)	Reset Value = xxh	
7:0	Floppy Port 3F7h Shadow (Read Only): Last written value of I/O Port 3F7h. Required for support of FDC power ON/OFF and Save-to-Disk/RAM coherency.		
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not the register is being read. It is provided here to assist in a Save-to-Disk operation.	ot deterministic of when	
Index B6h	Floppy Port 1F2h Shadow Register (RO)	Reset Value = xxh	
7:0	Floppy Port 1F2h Shadow (Read Only): Last written value of I/O Port 1F2h. Required for support and Save-to-Disk/RAM coherency.	t of FDC power ON/OFF	
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not the register is being read. It is provided here to assist in a Save-to-Disk operation.	ot deterministic of when	
Index B7h	Floppy Port 1F7h Shadow Register (RO)	Reset Value = xxh	
7:0	Floppy Port 1F7h Shadow (Read Only): Last written value of I/O Port 1F7h. Required for support and Save-to-Disk/RAM coherency.	t of FDC power ON/OFF	
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is not the register is being read. It is provided here to assist in a Save-to-Disk operation.	ot deterministic of when	
Index B8h	DMA Shadow Register (RO)	Reset Value = xxh	
7:0 DMA Shadow (Read Only): This 8-bit port sequences through the following list of shadowed DMA (power on, a pointer starts at the first register in the list and consecutively reads incrementally throug ister resets the read sequence to the first register. Each shadow register in the sequence contains the that location.		igh it. A write to this reg-	
	The read sequence for this register is: 1. DMA Channel 0 Mode Register		
	2. DMA Channel 1 Mode Register		
	 DMA Channel 2 Mode Register DMA Channel 3 Mode Register 		
	5. DMA Channel 4 Mode Register		
	6. DMA Channel 5 Mode Register		
	7. DMA Channel 6 Mode Register		
	9 DMA Chapped 7 Mode Pergister		
	 DMA Channel 7 Mode Register DMA Channel Mask Register (bit 0 is channel 0 mask, etc.) 		

Bit Description Index B9h Reset Value = xxh **PIC Shadow Register (RO)** 7:0 PIC Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Programmable Interrupt Controller registers. At power on, a pointer starts at the first register in the list and consecutively reads incrementally through it. A write to this register resets the read sequence to the first register. Each shadow register in the sequence contains the last data written to that location. The read sequence for this register is: 1. PIC1 ICW1 2. PIC1 ICW2 3. PIC1 ICW3 4. PIC1 ICW4 - Bits [7:5] of ICW4 are always 0 5. PIC1 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) 6. PIC1 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 7. PIC2 ICW1 8. PIC2 ICW2 9. PIC2 ICW3 10. PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 11. PIC2 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) 12. PIC2 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 Note: To restore OCW2 to shadow register value, write the appropriate address twice. First with the shadow register value, then with the shadow register value ORed with C0h. Index BAh PIT Shadow Register (RO) Reset Value = xxh 7:0 PIT Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Programmable Interval Timer registers. At power on, a pointer starts at the first register in the list and consecutively reads to increment through it. A write to this register resets the read sequence to the first register. Each shadow register in the sequence contains the last data written to that location. The read sequence for this register is: 1. Counter 0 LSB (least significant byte) 2. Counter 0 MSB 3. Counter 1 LSB 4. Counter 1 MSB 5. Counter 2 LSB 6. Counter 2 MSB 7. Counter 0 Command Word 8. Counter 1 Command Word 9. Counter 2 Command Word Note: The LSB/MSB of the count is the Counter base value, not the current value. Bits [7:6] of the command words are not used. Index BBh **RTC Index Shadow Register (RO)** Reset Value = xxh 7:0 RTC Index Shadow (Read Only): The RTC Shadow register contains the last written value of the RTC Index register (I/O Port 070h) Index BCh Reset Value = 00h Clock Stop Control Register (R/W) 7:4 PLL Delay: The programmed value in this field sets the delay (in milliseconds) after a break event occurs before the SUSP# pin is deasserted to the CPU. This delay is designed to allow the clock chip and CPU PLL to stabilize before starting execution. This delay is only invoked if the STP_CLK bit (bit 0) was set. The four-bit field allows values from 0 to 15 ms. 0000 = 0 ms0100 = 4 ms1000 = 8 ms1100 = 12 ms0001 = 1 ms0101 = 5 ms1001 = 9 ms1101 = 13 ms 0010 = 2 ms1010 = 10 ms1110 = 14 ms0110 = 6 ms1111 = 15 ms 0011 = 3 ms0111 = 7 ms1011 = 11 ms3:1 Reserved: Set to 0.

CPU Clock Stop: 0 = Normal SUSP#/ SUSPA# handshake; 1 = Full system Suspend.		
upport a 3 Volt Suspend. Setting bit 0 causes the S n clocks. A delay of 0 to 15 ms is programmable (bi an event Resumes the system.		
gister (F0 Index AEh) with bit 0 written as:		
ne CPU is put into a low-power state, and the syste CPU halt condition. d the SUSP_3V pin is asserted, thus invoking a ful event occurs, the SUSP_3V pin will deassert, the F and CPU PLL to stabilize before deasserting the S	I system Suspend (both CPU and PLL delay programmed in bits [7:4	
Reserved	Reset Value = xxh	
ed Device 1 Base Address Register (R/W)	Reset Value = 00000000h	
e Address [31:0]: This 32-bit register supports po some other device in the system. The value written device can be memory or I/O mapped (configured	n is used as the address compara	
ed Device 2 Base Address Register (R/W)	Reset Value = 00000000h	
e Address [31:0]: This 32-bit register supports po some other device in the system. The value written device can be memory or I/O mapped (configured	n is used as the address compara-	
ed Device 3 Base Address Register (R/W)	Reset Value = 00000000h	
e Address [31:0]: This 32-bit register supports po some other device in the system. The value written device can be memory or I/O mapped (configured	n is used as the address compara	
efined Device 1 Control Register (R/W)	Reset Value = 00h	
d Device 1 is: 0 = I/O; 1 = Memory.		
cycle tracking cycle tracking		
cycle tracking cycle tracking		
bits A[4:0]		
memory bits A[15:9] (512 bytes min. and 64 KB m	nax.) and A[8:0] are ignored.	
the address bit is ignored for comparison.		
efined Device 2 Control Register (R/W)	Reset Value = 00h	
d Device 2 is: $0 = I/O$; $1 =$ Memory.		
cycle tracking cycle tracking		
cycle tracking cycle tracking cycle tracking		
bits A[4:0]		
-		
memory bits A[15:9] (512 bytes min. and 64 KB m	ax.) and A[8:0] are ignored.	
the address bit is ignored for comparison.		
efined Device 3 Control Register (R/W)	Reset Value = 00h	
e	ed Device 3 is: 0 = I/O; 1 = Memory.	

Bit	Description			
6:0	Mask			
	If bit $7 = 0$ (I/O):			
	Bit 6 0 = Disable write cycle tracking			
	1 = Enable write cycle tracking			
	Bit 5 0 = Disable read cycle tracking			
	1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0]			
	If bit $7 = 1$ (M/IO):			
	Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and	A[8:0] are ignored.		
	Note: A "1" in a mask bit means that the address bit is ignored for comparison.	, [oro] are ignorear		
Index CFh	Reserved	Reset Value = xxh		
Index D0h	Software SMI Register (WO)	Reset Value = 00h		
7:0	Software SMI (Write Only): A write to this location generates an SMI. The data written is irreleva	ant. This register allows		
	software entry into SMM via normal bus access instructions.	-		
ndex D1h-		Reset Value = xxh		
Index ECh	Timer Test Register (R/W)	Reset Value = 00h		
7:0	Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is no ational timebases.	t intended for setting oper		
Index EDh	F3h Reserved	Reset Value = xxh		
Index F4h	Second Level Power Management Status Register 1 (RC)	Reset Value = 00h		
7:5	Reserved			
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game port (I/O Po 0 = No; 1 = Yes.	ort 200h and 201h)?		
		et 00b/02b[0]		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. Game Port Read SMI generation enabling is at F0 Index 83h[4].			
	Game Port Write SMI generation enabling is at F0 Index 53h[3].			
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO7 pin? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].			
	SMI generation enabling is at F0 Index 97h[3].			
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	D5 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].			
	SMI generation enabling is at F0 Index 97h[2].			
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	O4 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].			
	SMI generation enabling is at F0 Index 97h[1].			
0	GPIO3 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	•		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].			
	SMI generation enabling is at F0 Index 97h[0].			
	erly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an S			
	register provides status on various power-management SMI events. Reading this register clears t (mirror) version of this register exists at F0 Index 84h.	he SMI status bits. A read		
Index F5h	Second Level Power Management Status Register 2 (RC)	Reset Value = 00h		
7	Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Video Idle T	ïmer Count Register		
	(F0 Index A6h)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offs	set 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[7].			
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was caused by ex	piration of the UDEF3 Idle		
0	Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.			
0	Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offs	set 00h/02h[0].		

Bit	Description		
5			
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF2 Idle Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[5].		
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF1 Idle Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[4].		
3	Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Keyboard/Mouse Idle Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
2	SMI generation enabling is at F0 Index 81h[3].		
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Parallel/Serial Port Idle Timer Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[2].		
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Disk Idle Timer Count Register (F0 Index 9Ah)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	SMI generation enabling is at F0 Index 81h[1].		
0	Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Primary Hard Disk Idle Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
	······································		
	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the		
d b			
d b	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead.		
d b tł	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap?		
d b th Index F(SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h		
d b th Index F(SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.		
d b th Index F(SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. 0h/02h[0].		
d b th Index F(SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7].		
d b tł Index F(7 6	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Reserved (Read Only) Reserved (Read Only)		
d b tł Index F(7 6	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
d b tt 7 7 6 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the second any hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6].		
d b tł Index F(7 6	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes.		
d b tt 7 7 6 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI		
d b tt 7 7 6 5 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI S		
d b tt 7 7 6 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI S		
d b tt 7 7 6 5 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI		
d b tt 7 7 6 5 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. SM Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear		
d b tt 7 7 6 5 5	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Cle		
d bt 1Index F(7 6 5 5 4 3	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register and the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register (and consequently deasserting SMI), F0 Index 85h. If the value of the register 10 Caccess to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory O		
d bt 1Index F(7 6 5 4 4	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing be SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the keyboard or mouse? 0 = No; 1 = Yes. </td		
d bt 1Index F(7 6 5 5 4 3	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].		
d b tt 7 6 5 4 4 3 2	SMI generation enabling is at F0 Index 81h[0]. his register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for the uration configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status its. A read-only (mirror) version of this register visits at F0 Index 85h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead. Sh Second Level Power Management Status Register 3 (RC) Reset Value = 00h Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7]. Reserved (Read Only) Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6]. Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes. This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[7]. Keyboard/Mouse Access Trap SMI Statu		

Table 5-15.	. F0 Index xxh: PCI Header	r and Bridge Configurat	ion Redisters (Continued)
		and Bridge comigatat	

Bit	Description			
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the primary hard disk? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
	SMI generation enabling is at F0 Index 82h[0].			
dev of t	s register provides status on the Device Traps to the SMI handler. A bit set here indicates that an acc rice while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A re his register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI s asserting SMI), F0 Index 86h may be read instead.	ead-only (mirror) versior		
Index F7h	Second Level Power Management Status Register 4 (RO/RC)	Reset Value = 00h		
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO2	2 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
	SMI generation enabling is at F0 Index 92h[2].			
6	GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	1 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
	SMI generation enabling is at F0 Index 92h[1].			
5	GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	0 pin? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
	SMI generation enabling is at F0 Index 92h[0].			
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pir switch indicator, this bit reflects the state of the pin.	is configured as the lid		
3	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.		
	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and a 92h[6] =1).	s the lid switch (F0 Inde		
2	Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a p SDATA_IN? 0 = No; 1 = Yes.	positive edge on		
	This is the second level of status is reporting. The top level status is reported in F1BAR+Memory 0 SMI generation enabling is at F0 Index 80h[5].	Offset 00h/02h[0].		
1	RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1	= Yes.		
	This SMI event can only occur while in 3V Suspend and RTC interrupt occurs.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
0	ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No	; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].		
	SMI generation configuration is at F0 Index 83h[5].			
Note: Pro	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SI	MI.		
the	s register provides status on several miscellaneous power management events that generate SMIs, Lid Switch. Reading this register clears the SMI status bits. A read-only (mirror) version of this regis Index 87h.			

5.3.2 SMI Status and ACPI Timer Registers - Function 1

The register space for the SMI status and ACPI Timer registers is divided into two sections. The first section is used to configure the PCI portion of this support hardware. A Base Address Register at F1 Index 10h (F1BAR) points to the base address of where the second portion of the register space is located. This second section contains the SMI status and ACPI timer support registers.

Note: The ACPI Timer Count Register is accessible through F1BAR+Memory Offset 1Ch and I/O Port 121Ch.

Table 5-16 shows the PCI header registers of F1. The memory mapped registers accessed through F1BAR are shown in Table 5-17.

If the Power Management Configuration Trap bit (F0 Index 41h[3]) is enabled, an access to the PCI header registers causes an SMI. Access through F1BAR is not affected by this bit.

Table 5-16. F1 Index xxh: PCI Header Registers for SMI Status and ACPI Timer

Bit	Description		
Index 00h	1-01h	Vendor Identification Register (RO)	Reset Value = 1078h
Index 02h-03h		Device Identification Register (RO)	Reset Value = 0101h
Index 04h	1-05h	PCI Command Register (R/W)	Reset Value = 0000h
15:2	Reserved (Read Only)	
1	Memory Space: Allow	CS5530A to respond to memory cycles from the PCI bus. $0 = E$	Disable; 1 = Enable.
	This bit must be enable	ed to access memory offsets through F1BAR (F1 Index 10h).	
0	Reserved (Read Only	()	
Index 06ł	ו-07h	PCI Status Register (RO)	Reset Value = 0280h
Index 08h	ı	Device Revision ID Register (RO)	Reset Value = 00h
Index 09ł	ו-0Bh	PCI Class Code Register (RO)	Reset Value = 068000h
Index 0C	h	PCI Cache Line Size Register (RO)	Reset Value = 00h
Index 0D	h	PCI Latency Timer Register (RO)	Reset Value = 00h
Index 0El	h	PCI Header Type (RO)	Reset Value = 00h
Index 0Fł	า	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	1-13h	Base Address Register — F1BAR (R/W)	Reset Value = 00000000h
indicating ues. The u	a 256-byte memory addi upper 16 bytes are alway	s of the memory mapped SMI status and ACPI timer related regi ress range. Refer to Table 5-17 for the SMI status and ACPI time s mapped to the ACPI timer, and are always memory mapped. ister is accessible through F1BAR+Memory Offset 1Ch and I/O	er registers bit formats and reset val
31:8	SMI Status/Power Ma	nagement Base Address	
7:0		Address Range (Read Only)	
Index 14h	U V	Reserved	Reset Value = 00h
	n-FFh	Reserved	Reset Value = xxh

Bit	Description			
Offset 00I	n-01h Top Level SMI Status Mirror Register (RO)	Reset Value = 0000h		
15	Suspend Modulation Enable Mirror (Read Only): This bit mirrors the Suspend Mode Config It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Mem cleared on exit.			
14	SMI Source is USB (Read Only): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].			
13	SMI Source is Warm Reset Command (Read Only): SMI was caused by Warm Reset comm	and? 0 = No; 1 = Yes.		
12	SMI Source is NMI (Read Only): SMI was caused by NMI activity? 0 = No; 1 = Yes.			
11:10	Reserved (Read Only): Always reads 0.			
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (Read Only): SMI was caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 or ISA Legacy Register Space? 0 = No; 1 = Yes.			
	The next level of status is found at F1BAR+Memory Offset 04h/06h.			
8	SMI Source is Software Generated (Read Only): SMI was caused by software? 0 = No; 1 =			
7	SMI on an A20M# Toggle (Read Only): SMI was caused by an access to either Port 092h or the initiates an A20M# SMI? 0 = No; 1 = Yes.	ne keyboard command which		
	This method of controlling the internal A20M# in the GX1 processor is used instead of a pin. SMI generation enabling is at F0 Index 53h[0].			
6	SMI Source is a VGA Timer Event (Read Only): SMI was caused by the expiration of the VGA Timer (F0 Index 8Eh)? 0 = No; 1 = Yes.			
	SMI generation enabling is at F0 Index 83h[3].			
5	SMI Source is Video Retrace (IRQ2) (Read Only): SMI was caused by a video retrace event as decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 = Yes.			
	SMI generation enabling is at F0 Index 83h[2].			
4:2	Reserved (Read Only): Always reads 0.			
1	SMI Source is Audio Interface (Read Only): SMI was caused by the audio interface? 0 = No	; 1 = Yes.		
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.			
0	SMI Source is Power Management Event (Read Only): SMI was caused by one of the power 0 = No; 1 = Yes.	r management resources?		
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.			
	Note: The status for the General Purpose Timers and the User Device Defined Traps are che	cked separately in bit 9.		
Note: Re	ading this register does not clear the status bits. See F1BAR+Memory Offset 02h.			
Offset 02	1-03h Top Level SMI Status Register (RC)	Reset Value = 0000h		
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode Cor 96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BA be cleared on exit.	-		
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].			
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset command? 0 = No; 1 = Yes.			
12	SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.			
11:10	Reserved (Read to Clear): Always reads 0.			
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (Read to Clear): SMI was caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 or ISA Legacy Register Space? 0 = No; 1 = Yes.			
0	The next level of status is found at F1BAR+Memory Offset 04h/06h.			
8	SMI source is Software Generated (Read to Clear): SMI was caused by software? 0 = No; 7			
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to either Port 092h which initiates an A20M# SMI? 0 = No; 1 = Yes.	or the keyboard command		
	This method of controlling the internal A20M# in the GX1 processor is used instead of a pin.			
	SMI generation enabling is at F0 Index 53h[0].			

Table 5-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Bit	Description			
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the expiration of the VGA Timer (F0 Index 8Eh)? 0 = No; 1 = Yes.			
	SMI generation enabling is at F0 Index 83h[3].			
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a video retrace event as decoded from the serial connection (PSERIAL register, bit 7) from the GX1 processor? 0 = No; 1 = Yes.			
	SMI generation enabling is at F0 Index 83h[2].			
4:2	Reserved (Read to Clear): Always reads 0.			
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio interface? 0 = No; 1 = Yes.			
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.			
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by one of the power 0 = No; 1 = Yes.	er management resources		
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.			
	Note: The status for the General Purpose Timers and the User Device Defined Traps are check			
	ading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have another level (seco			
	ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If the value of the re aring the SMI source (and consequently deasserting SMI), the Mirror register may be read instead			
Offset 04h		Reset Value = 0000h		
15:6	Reserved (Read Only)			
5	PCI Function Trap (Read Only): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].			
	Trapped access to F0 PCI header registers other than F0 Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3].			
	Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41n[3].			
	Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0].			
	Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[1].			
4	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.	a trapped I/O or memory		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Of	fset 00h/02h[9].		
	SMI generation enabling is at F0 Index 82h[6].			
3	SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].			
	SMI generation enabling is at F0 Index 82h[5].			
2	SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.	a trapped I/O or memory		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Of	fset 00h/02h[9].		
	SMI generation enabling is at F0 Index 82h[4].			
1	SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expirat Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.	ation of General		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Of	fset 00h/02h[9].		
	SMI generation enabling is at F0 Index 83h[1].			
0	SMI Source is Expired General Purpose Timer 1 (Read Only): SMI was caused by the expirat Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Of	tset 00h/02h[9].		
	SMI generation enabling is at F0 Index 83h[0].			
	ading this register does not clear the status bits. See F1BAR+Memory Offset 06h.			
Offset 06h	-07h Second Level General Traps & Timers SMI Status Register (RC)	Reset Value = 0000h		
15:6	Reserved (Read to Clear)			

Table 5-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Bit	Description			
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+	Memory Offset 00h/02h[9].		
	Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 4 Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 4 Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 4 Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 4	on enabling is at F0 Index 41h[0]. 41h[3]. 41h[6]. 42h[0].		
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI w access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.	as caused by a trapped I/O or memor		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+ SMI generation enabling is at F0 Index 82h[6].	Memory Offset 00h/02h[9].		
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI w access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.	ras caused by a trapped I/O or memor		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+ SMI generation enabling is at F0 Index 82h[5].	Memory Offset 00h/02h[9].		
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI w	as caused by a trapped I/O or memor		
2	access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.			
	This is the second level of SMI status reporting. The top level is reported in F1BAR+ SMI generation enabling is at F0 Index 82h[4].	Memory Offset 00h/02h[9].		
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was cause Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.	ed by the expiration of General		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+	Memory Offset 00h/02h[9].		
	SMI generation enabling is at F0 Index 83h[1].			
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was cause Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.	ed by the expiration of General		
	This is the second level of SMI status reporting. The top level is reported in F1BAR+ SMI generation enabling is at F0 Index 83h[0].	Memory Offset 00h/02h[9].		
Note: Rea	ading this register clears all the SMI status bits.			
	ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the val aring the SMI source (and consequently deasserting SMI), the Mirror register may be r	0		
Offset 08ł	n-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000h		
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Inde invokes the SMI handler to re-enable Suspend Modulation.	ex 96h[1] = 1), a read of this register		
	The data read from this register can be ignored. If the Suspend Modulation feature is no effect.	s disabled, reading this I/O location ha		
Offset 0A	h-1Bh Reserved	Reset Value = xxh		
Offset 1C	h-1Fh (Note) ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh		
_	UNT (Read Only): This read-only register provides the current value of the ACPI timer MHz). If SMI generation is enabled via F0 Index 83h[5], an SMI is generated when the onds.			
	SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. vel SMI status is reported at F0 Index 87h/F7h[0].			
31:24	Reserved: Always returns 0.			
23:0	Counter			
	ACPI Timer Count Register is also accessible through I/O Port 121Ch.			
lote: Ine				
Offset 20	n-4Fh Reserved	Reset Value = xxh		

AMD Rev

5.3.3 IDE Controller Registers - Function 2

The register space for the IDE controllers is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F2 Index 20h points to the base address of where the second portion of the register space is located. This second section contains the registers used by the IDE controllers to carry out operations. Table 5-18 shows the PCI header registers of F2. The I/O mapped registers, accessed through F2BAR, are shown in Table 5-19.

If the IDE Configuration Trap bit (F0 Index 41h[6]) is set, access to the PCI header registers causes an SMI. Access through F2BAR is not affected by this bit.

Bit	Description		
Index 00h	n-01h	Vendor Identification Register (RO)	Reset Value = 1078h
Index 02h-03h		Device Identification Register (RO)	Reset Value = 0102
Index 04h-05h		PCI Command Register (R/W)	Reset Value = 0000h
15:3	Reserved (Read On	y)	
2	Reserved		
1	Reserved (Read On	y)	
0	-	5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 bled to access I/O offsets through F2BAR (F2 Index 20h).	= Enable.
Index 06h	n-07h	PCI Status Register (RO)	Reset Value = 0280h
Index 08h	1	Device Revision ID Register (RO)	Reset Value = 00h
Index 09h	o-0Bh	PCI Class Code Register (RO)	Reset Value = 010180h
Index 0CI	า	PCI Cache Line Size Register (RO)	Reset Value = 00h
Index 0DI	า	PCI Latency Timer Register (RO)	Reset Value = 00h
Index 0Eł	ı	PCI Header Type (RO)	Reset Value = 00h
Index 0Fł	1	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	o-1Fh	Reserved	ReservedReset Value = 00h
Index 20h	n-23h	Base Address Register - F2BAR (R/W)	Reset Value = 00000001h
•		ss of the I/O mapped bus mastering IDE and controller registers. range. Refer to Table 5-19 for the IDE configuration registers bit	
31:7	Bus Mastering IDE	Base Address	
6:0	Address Range (Rea	ad Only)	
ndex 24h	n-3Fh	Reserved	Reset Value = 00h
Index 40h	-FFh	Reserved	Reset Value = xxh

Bit Description			
Offset 00h	IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00h	
7:4	Reserved: Set to 0. Must return 0 on reads.		
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F	CI writes performed.	
	This bit should not be changed when the bus master is active.		
2:1	Reserved: Set to 0. Must return 0 on reads.		
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master	•	
	Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, it ca is set to 0 while a bus master operation is active, the command is aborted and the data transferred		
	carded. This bit should be reset after completion of data transfer.		
Offset 01h	Reserved	Reset Value = xxh	
Offset 02h	IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00h	
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode).	1?	
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.		
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.		
4:3	Reserved: Set to 0. Must return 0 on reads.		
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.		
1	Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes.		
	Write 1 to clear.		
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.		
0			
Offset 03h	Reserved	Reset Value = xxh	
		Reset Value = xxh set Value = 0000000h	
Offset 03h		set Value = 00000000h	
Offset 03h Offset 04h	-07h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re	set Value = 00000000h us Master 0.	
Offset 03h Offset 04h	O7hIDE Bus Master 0 PRD Table Address — Primary (R/W)RePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE BuWhen written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.	set Value = 00000000h us Master 0.	
Offset 03h Offset 04h 31:2	O7hIDE Bus Master 0 PRD Table Address — Primary (R/W)RePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	set Value = 00000000h us Master 0.	
Offset 03h Offset 04h	O7hIDE Bus Master 0 PRD Table Address — Primary (R/W)RePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE BuWhen written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.	set Value = 00000000h us Master 0.	
Offset 03h Offset 04h 31:2	O7hIDE Bus Master 0 PRD Table Address — Primary (R/W)RePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabler 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.Reserved: Set to 0.	set Value = 00000000h us Master 0.	
Offset 03h Offset 04h 31:2 1:0	O7hIDE Bus Master 0 PRD Table Address — Primary (R/W)RePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabler 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.Reserved: Set to 0.	set Value = 00000000h us Master 0. d (Command Register bit	
Offset 03h Offset 04h 31:2 1:0 Offset 08h	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bu When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W)	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads.	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable: 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. IDE PRICE	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed.	
Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed.	
Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed.	
Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer.	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed.	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bu When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable: 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. PCI writes performed.	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 0 Offset 09h	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bu When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable: 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. n not be resumed. If bit 0 d from the drive is dis- Reset Value = xxh Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 2:1 0 Offset 09h Offset 0Ah	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. n not be resumed. If bit 0 d from the drive is dis- Reset Value = xxh Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 2:1 0 Offset 09h Offset 0Ah 7	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Registe	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. n not be resumed. If bit 0 d from the drive is dis- Reset Value = xxh Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h Offset 0Ah 7 6	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bu When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable: 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. n not be resumed. If bit 0 d from the drive is dis- Reset Value = xxh Reset Value = 00h	
Offset 03h Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 2:1 0 0 Offset 09h Offset 09h 7 6 5	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Re Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enable: 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. PCI reads performed; 1 = F This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Secondary (R/W) Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can is set to 0 while a bus master operation is active, the command is aborted and the data transferred carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently 0 = Yes; 1 = No (simplex mode). Dive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable;	set Value = 00000000h us Master 0. d (Command Register bit Reset Value = 00h PCI writes performed. n not be resumed. If bit 0 d from the drive is dis- Reset Value = xxh Reset Value = 00h	

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Bit	Description		
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.		
Offset 0Bh	Reserved	Reset Value = xxh	
Offset 0Ch	-0Fh IDE Bus Master 1 PRD Table Address — Secondary (R/W)	Reset Value = 00000000h	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table point When written, this register points to the first entry in a PRD table. Once IDE Bus Maste $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.		
1:0	Reserved: Set to 0.		
Offset 10h	-1Fh Reserved	Reset Value = xxh	
Offset 20h	-23h Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)	
	ettings for: PIO Mode 0 = 00009172h PIO Mode 1 = 00012171h PIO Mode 2 = 00020080h PIO Mode 3 = 00032010h PIO Mode 4 = 00040010h		
31:20	Reserved: Set to 0.		
19:16	PIOMODE: PIO mode		
15:12	t2l: Recovery time (value + 1 cycle)		
11:8	t3: IDE_IOW# data setup time (value + 1 cycle)		
7:4	t2W: IDE_IOW# width minus t3 (value + 1 cycle)		
3:0	t1: Address Setup Time (value + 1 cycle)		
	<pre>Ih[31] = 1, Format 1: Allows independent control of command and data. ettings for: PIO Mode 0 = 9172D132h PIO Mode 1 = 21717121h PIO Mode 2 = 00803020h PIO Mode 3 = 20102010h PIO Mode 4 = 00100010h</pre>		
31:28	t2IC: Command cycle recovery time (value + 1 cycle)		
27:24	t3C: Command cycle IDE_IOW# data setup (value + 1 cycle)		
23:20	t2WC: Command cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)		
19:16	t1C: Command cycle address setup time (value + 1 cycle)		
15:12	t2ID: Data cycle recovery time (value + 1 cycle)		
11:8	t3D: Data cycle IDE_IOW# data setup (value + 1 cycle)		
7:4	t2WD: Data cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)		
3:0	t1D: Data cycle address Setup Time (value + 1 cycle)		
Note: The	reset value of this register is not a valid PIO Mode.		

Table 5-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Bit	Description	
Offset 24h	-27h Channel 0 Drive 0 DMA Control Register (R/W)	Reset Value = 00077771h
If bit 20 =), Multiword DMA	
Settings fo	: Multiword DMA Mode 0 = 00077771h	
	Multiword DMA Mode 1 = 00012121h Multiword DMA Mode 2 = 00002020h	
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.	
30:21	Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.	
19:16	tKR: IDE IOR# recovery time (4-bit) (value + 1 cycle)	
15:12	tDR: IDE_IOR# pulse width (value + 1 cycle)	
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)	
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)	
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DAC	CK1#
	I, Ultra DMA	
	: Ultra DMA Mode 0 = 00921250h	
0	Ultra DMA Mode 1 = 00911140h	
	Ultra DMA Mode 2 = 00911030h	
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.	
30:21	Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.	
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = th	/ILI + tSS)
15:12	tSS: UDMA out (value + 1 cycle)	
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)	
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.	
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)	
Offset 28h	-2Bh Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel 0	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit descriptio	ns.
Offset 2Ch	-2Fh Channel 0 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771h
Channel 0	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
Note: One	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 30h	-33h Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h
Channel 1	Drive 0 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit descriptio	ns.
Offset 34h		Reset Value = 00077771h
	Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 38h	-3Bh Channel 1 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel 1	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit descriptio	ns.
Offset 3Cl	-3Fh Channel 1 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771h
Channel 1	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defin	ed as reserved, read only.
Offset 40h	-FFh Reserved	Reset Value = xxh

5.3.4 XpressAUDIO[™] Subsystem Registers - Function 3

The register space for the XpressAUDIO[™] subsystem is divided into two sections. The first section is used to configure the PCI portion of the audio interface hardware. A Base Address Register at F3 Index 10h (F3BAR) points to the base address of where the second portion of the register space is located. This second section contains the control and data registers of the audio interface. Table 5-20 shows the PCI header registers of F3. The memory mapped registers accessed through F3BAR are shown in Table 5-21.

If the F3 Audio Configuration Trap bit (F0 Index 42h[0]) is enabled, an access to the PCI header registers causes an SMI. Access through F3BAR is not affected by this bit.

Table 5-20	F3 Index xxh· PCI	Header Register	s for XpressAUDIO ¹	[™] Subsystem
Table J-20.		i neauei negisteis	S IOI APIESSAUDIO	Subsystem

Bit	Description		
Index 00h	-01h	Vendor Identification Register (RO)	Reset Value = 1078h
Index 02h-03h		Device Identification Register (RO)	Reset Value = 0103h
Index 04h-05h		PCI Command Register (R/W)	Reset Value = 0000h
15:3	Reserved (Read Only)		
2	Reserved (Read/Write)		
1		S5530A to respond to memory cycles from the PCI bus. $0 = I$ to access memory offsets through F3BAR (F3 Index 10h).	Disable; 1 = Enable.
0	Reserved (Read Only)		
Index 06h	-07h	PCI Status Register (RO)	Reset Value = 0280h
Index 08h	i de la constante de	Device Revision ID Register (RO)	Reset Value = 00h
Index 09h	-0Bh	PCI Class Code Register (RO)	Reset Value = 040100h
Index 0Cł	1	PCI Cache Line Size Register (RO)	Reset Value = 00h
Index 0Dł	1	PCI Latency Timer Register (RO)	Reset Value = 00h
Index 0Eh	1	PCI Header Type (RO)	Reset Value =00h
Index 0Fh	l	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	-13h	Base Address Register - F3BAR (R/W)	Reset Value = 00000000h
used to co (0000000)	ntrol the audio FIFO and co	the memory mapped audio interface control register block. T odec interface, as well as to support SMIs produced by VSA to nory address range. Refer to Table 5-21 for the bit formats and	echnology. Bits [6:0] are read only
31:7	Audio Interface Base A	ddress	
6:0	Address Range (Read 0	Dnly)	
Index 14h	-3Fh	Reserved	Reset Value = 00h
Index 40h		Reserved	Reset Value = xxh

-03h Codec GPIO Status Register (R/W) Codec GPIO Interface: 0 = Disable; 1 = Enable.	Reset Value = 00100000h
Codec GPIO Interface: 0 = Disable: 1 = Enable.	
Codec GPIO SMI: Allow codec GPIO interrupt to generate an SMI. 0 = Disable; 1= Enab	le.
Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
Reserved: Set to 0.	
Codec GPIO Status Valid (Read Only): Is the status read valid? 0 = Yes; 1 = No.	
Codec GPIO Pin Status (Read Only): This is the GPIO pin status that is received from t signal.	he codec in slot 12 on SDATA_IN
-07h Codec GPIO Control Register (R/W)	Reset Value = 00000000h
Reserved: Set to 0.	
Codec GPIO Pin Data: This is the GPIO pin data that is sent to the codec in slot 12 on the	he SDATA_OUT signal.
-0Bh Codec Status Register (R/W)	Reset Value = 00000000h
Codec Status Address (Read Only): Address of the register for which status is being returned. This address comes from	
Codec Serial INT SMI: Allow codec serial interrupt to generate an SMI. 0 = Disable; 1= E	Enable.
Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
SYNC Pin: Selects SYNC pin level. 0 = Low; 1 = High.	
Enable SDATA_IN2: Pin AE24 function selection. 0 = GPIO1; 1 = SDATA_IN2.	
For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0).	
Audio Bus Master 5 AC97 Slot Select: Selects slot for Audio Bus Master 5 to receive data. 0 = Slot 6; 1 = Slot 11.	
Audio Bus Master 4 AC97 Slot Select: Selects slot for Audio Bus Master 4 to transmit data. 0 = Slot 6; 1 = Slot 11.	
Reserved: Set to 0.	
Status Tag (Read Only): Determines if the status in bits [15:0] is new or not. 0 = Not new; 1 = New.	
Codec Status Valid (Read Only): Is the status in bits [15:0] valid? 0 = No; 1 = Yes.	
Codec Status (Read Only): This is the codec status data that is received from the codec [19:4] are used from slot 2.	c in slot 2 on SDATA_IN. Only bits
-0Fh Codec Command Register (R/W)	Reset Value = 00000000h
Codec Command Address: Address of the codec control register for which the command in slot 1 bits [19:12] on SDATA_OUT.	d is being sent. This address goe
CS5530A Codec Communication: Selects which codec to communicate with.	
Reserved: Set to 0.	
This bit is set by hardware when a command is loaded. It remains set until the command	has been sent to the codec.
Codec Command: This is the command being sent to the codec in bits [19:12] of slot 2 of	on SDATA_OUT.
-11h Second Level Audio SMI Status Register (RC)	Reset Value = 0000h
Reserved: Set to 0.	
Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	ig on Audio Bus Master 5?
This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1]. Reserved: Set to 0. Codec GPIO Status Valid (Read Only): Is the status read valid? 0 = Yes; 1 = No. Codec GPIO Pin Status (Read Only): This is the GPIO pin status that is received from ts ignal07h Codec GPIO Control Register (R/W) Reserved: Set to 0. Codec Status Address (Read Only): Address of the register for which status is being re slot 1 bits [19:12]. Codec Status Address (Read Only): Address of the register for which status is being re slot 1 bits [19:12]. Codec Status Address (Read Only): Address of the register for which status is being re slot 1 bits [19:12]. Codec Status Address (Nead Only): Address of the register for which status is being re slot 1 bits [19:12]. Codec Status Address (Nead Only): Address of the register 10h/12h[1]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1]. SYNC Pin: Selects SYNC pin level. 0 = Low; 1 = High. Enable SDATA_IN2: Pin AE24 function selection. 0 = GPIO1; 1 = SDATA_IN2. For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90 Audio Bus Master 5 AC97 Slot Select: Selects slot for Audio Bus Master 5 to receive d Audio Bus Master 4 AC97 Slot Select: Selects slot for Audio Bus Master 4 to transmit of Reserved: Set to 0. Status Tag (Read Only): Determines if the status in bits [15:0] valid? 0 = No; 1 = Yes. Codec Command Address: Address of the codec control register for which the comman in slot 1 bits [19:12] on SDATA_OUT. CS5530A Codec Communication: Selects which codec to communicate with. 00 = Primary codec 11 = Fourth codec Note: 00 and 01 are the only valid settings for these bits. Reserved: Set to 0. Codec Command Valid: Is the command in bits [15:0] valid? 0 = No; 1 = Yes. This bit is set by hardware when a command is loaded. It remains set until the command Codec Command: This is the command being sent to the codec in bits [19:12] of slot 2 of 11 Second Level Audio

Bit	Description		
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).		
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then		
4	generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1). Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).		
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).		
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).		
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.		
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
A	ading this register clears the status bits. Note that bit 0 has another level (third) of SMI status reporting. ead-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value of the register must be read withou aring the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.		
Offset 12	h-13h Second Level Audio SMI Status Mirror Register (RO) Reset Value = 0000h		
15:8	Reserved: Set to 0.		
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 49h[0] = 1).		
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).		
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.		
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).		

Table 5-21. F3BAR+Memory Offset xxh: XpressAUDIO™ Subsystem Configuration Registers (Contin-

Bit	Description
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
Note: Re	ading this register does not clear the status bits. See F3BAR+Memory Offset 10h.
Offset 14	n-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/ O Trap? 0 = No; 1 = Yes. (Note)
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note)
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	The top level is reported at F1BAR+Memory Offset 00h/02h[1]. SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap? 0 = No; 1 = Yes. (Note)
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].

Table 5-21 F3BAR+Memory	y Offset xxh: XpressAUDIO™ Su	hsystem Configuration R	aristers (Contin-
Tuble C ET. TOBARTMENTO		boyotom oonngulution n	

Bit	Description
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/ O Trap? 0 = No; 1 = Yes. (Note)
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write is enabled, the SMI is reported in bit 13 of this register.
	This is the third level of SMI status reporting.
	The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.
	the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the A, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.
Offset 18h	-19h I/O Trap SMI Enable Register (R/W) Reset Value = 0000h
15:12	Reserved: Set to 0.
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certain writes to specified addresses). 0 = Disable; 1 = Enable.
	In Fast Path Write, the CS5530A responds to writes to the following addresses: 388h, 38Ah and 38Bh; 2x0h, 2x2h, and 2x8h.
10:9	Fast Read: These two bits hold part of the response that the CS5530A returns for reads to several I/O locations.
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[12].
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.
1	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not generated on reads from specified addresses). 0 = Disable; 1 = Enable.
	In Fast Path Read the CS5530A responds to reads of the following addresses: 388h-38Bh; 2x0h, 2x1h, 2x2h, 2x3h, 2x8h
	and 2x9h.
	Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not possible.
3	FM I/O Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable
	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[10].
1:0	Sound Card Address Range Select: These bits select the address range for the sound card I/O trap.
1.0	00 = I/O Port 220h - 22Fh $10 = I/O Port 260h - 26Fh$
	01 = I/O Port 240h-24Fh $11 = I/O Port 280h-28Fh$

Bit	Description	
Offset 1Ah	-1Bh Internal IRQ Enable Register (R/W)	Reset Value = 0000h
15	IRQ15 Internal: Configure IRQ15 for internal (software) or external (hardware) use. 0 = External;	I = Internal.
14	IRQ14 Internal: Configure IRQ14 for internal (software) or external (hardware) use. 0 = External; 1	I = Internal.
13	Reserved: Set to 0.	
12	IRQ12 Internal: Configure IRQ12 for internal (software) or external (hardware) use. 0 = External;	I = Internal.
11	IRQ11 Internal: Configure IRQ11 for internal (software) or external (hardware) use. 0 = External; 1	I = Internal.
10	IRQ10 Internal: Configure IRQ10 for internal (software) or external (hardware) use. 0 = External; 1	I = Internal.
9	IRQ9 Internal: Configure IRQ9 for internal (software) or external (hardware) use. 0 = External; 1 =	Internal.
8	Reserved: Set to 0.	
7	IRQ7 Internal: Configure IRQ7 for internal (software) or external (hardware) use. 0 = External; 1 =	Internal.
6	Reserved: Set to 0.	
5	IRQ5 Internal: Configure IRQ5 for internal (software) or external (hardware) use. 0 = External; 1 =	Internal.
4	IRQ4 Internal: Configure IRQ4 for internal (software) or external (hardware) use. 0 = External; 1 =	Internal.
3	IRQ3 Internal: Configure IRQ3 for internal (software) or external (hardware) use. 0 = External; 1 =	Internal.
2:0	Reserved: Set to 0.	
Note: Mus	t be read and written as a WORD.	
Offset 1Ch	-1Dh Internal IRQ Control Register (R/W)	Reset Value = 0000h
15	Assert Masked Internal IRQ15: 0 = Disable; 1 = Enable.	
14	Assert Masked Internal IRQ14: 0 = Disable; 1 = Enable.	
13	Reserved: Set to 0.	
12	Assert Masked Internal IRQ12: 0 = Disable; 1 = Enable.	
11	Assert masked internal IRQ11: 0 = Disable; 1 = Enable.	
10	Assert Masked Internal IRQ10: 0 = Disable; 1 = Enable.	
9	Assert Masked Internal IRQ9: 0 = Disable; 1 = Enable.	
8	Reserved: Set to 0.	
7	Assert Masked Internal IRQ7: 0 = Disable; 1 = Enable.	
6	Reserved: Set to 0.	
5	Assert Masked Internal IRQ5: 0 = Disable; 1 = Enable.	
4	Assert Masked Internal IRQ4: 0 = Disable; 1 = Enable.	
3	Assert Masked Internal IRQ3: 0 = Disable; 1 = Enable.	
2:0	Reserved: Set to 0.	
Offset 1Eh		Reset Value = xxxxh
15	Mask Internal IRQ15: 0 = Disable; 1 = Enable.	
14	Mask Internal IRQ14: 0 = Disable; 1 = Enable.	
13	Reserved: Set to 0.	
12	Mask Internal IRQ12: 0 = Disable; 1 = Enable.	
11	Mask Internal IRQ11: 0 = Disable; 1 = Enable.	
10	Mask Internal IRQ10: 0 = Disable; 1 = Enable.	
9	Mask Internal IRQ9: 0 = Disable; 1 = Enable.	
8	Reserved: Set to 0.	
7	Mask Internal IRQ7: 0 = Disable; 1 = Enable. Reserved: Set to 0.	
6 5		
5	Mask Internal IRQ5: 0 = Disable; 1 = Enable.	
4	Mask Internal IRQ4: 0 = Disable; 1 = Enable.	
3	Mask Internal IRQ3: 0 = Disable; 1 = Enable.	
2:0	Reserved: Set to 0.	

Bit	Description	
Offset 20h	Audio Bus Master 0 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:4	eserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 0. 0 = PCI reads performed; 1 = PCI writes performed.	
	This bit must be set to 0 (read) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0 Bus Master Control: Controls the state of the Audio Bus Master 0. 0 = Disable; 1 = Enable.		
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must either paused or reach EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior; including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.	
Note: Mus	t be read and written as a BYTE.	
Offset 21h	Audio Bus Master 0 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has 0 = No; 1 = Yes.	cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it caus until this register is read to clear the error.	ses the bus master to pause
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.	
Note: Mus	t be read and written as a BYTE.	
Offset 22h	-23h Reserved	Reset Value = xxh
Offset 24h	-27h Audio Bus Master 0 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Aud	io Bus Master 0.
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is e bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	nabled (Command Register
1:0	Reserved: Set to 0.	
		Deset Malass 00h
Offset 28h		Reset Value = 00h
	Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads perform 1 = PCI writes performed.	ned;
	This bit must be set to 1 (write) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 1. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredict	
	possibility of the bus master state machine crashing. The only recovery from this condition is a	
Note: Mus	t be read and written as a BYTE.	
Offset 29h	Audio Bus Master 1 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:2	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has	cleared the first?
	0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it cause	

Bit	Description		
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.		
Note: Mus	t be read and written as a BYTE.		
Offset 2Ah	-2Bh Reserved	Reset Value = xxh	
Offset 2Ch	-2Fh Audio Bus Master 1 PRD Table Address (R/W)	Reset Value = 00000000h	
Audio Bus	Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.		
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for When written, this register points to the first entry in a PRD table. Once Audio Bus Master bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0.		
Offset 30h	Audio Bus Master 2 Command Register (R/W)	Reset Value = 00h	
	Master 2: Output to Codec; 16-Bit; Slot 5.		
7:4	Reserved: Set to 0. Must return 0 on reads.		
3	Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads pr 1 = PCI writes performed.	erformed;	
	This bit must be set to 0 (read) and should not be changed when the bus master is active.		
2:1	Reserved: Set to 0. Must return 0 on reads.		
0	Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eith paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.		
Note: Mus	t be read and written as a BYTE.		
Offset 31h	Audio Bus Master 2 SMI Status Register (RC)	Reset Value = 00h	
	Master 2: Output to Codec; 16-Bit; Slot 5.		
7:4	Reserved (Read to Clear)		
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before softwar 0 = No; 1 = Yes.	e has cleared the first?	
	If hardware encounters a second EOP (end of page) before software has cleared the first, i until this register is read to clear the error.	it causes the bus master to pause	
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in 0 = No; 1 = Yes.	the PRD table (bit 30)?	
Note: Mus	t be read and written as a BYTE.		
Offset 32h	-33h Reserved	Reset Value = xxh	
Offset 34h	37h Audio Bus Master 2 PRD Table Address (R/W)	Reset Value = 00000000h	
Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.		
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.		
1:0	Reserved: Set to 0.		
Offset 38h	Audio Bus Master 3 Command Register (R/W)	Reset Value = 00h	
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.		
7:4	Reserved: Set to 0. Must return 0 on reads.		
3	Read or Write Control: Set the transfer direction of Audio Bus Master 3. 0 = PCI reads por 1 = PCI writes performed.		
	This bit must be set to 1 (write) and should not be changed when the bus master is active		
2:1	Reserved: Set to 0. Must return 0 on reads.		

Bit Description 0 Bus Master Control: Controls the state of the Audio Bus Master 3, 0 = Disable: 1 = Enable

0	 until this register is read to clear the error. End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PF 0 = No; 1 = Yes. Ist be read and written as a BYTE. 	
	until this register is read to clear the error.	
I		
I	 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it cause 	es the hus master to have
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has o	cleared the first?
7:4	Reserved (Read to Clear)	
	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	
Offset 41	h Audio Bus Master 4 SMI Status Register (RC)	Reset Value = 00h
Note: Mu	Ist be read and written as a BYTE.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredicta possibility of the bus master state machine crashing. The only recovery from this condition is a P	able behavior including th
0	Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
	1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads performed	ed;
7:4	Reserved: Set to 0. Must return 0 on reads.	
	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	
Offset 40		Reset Value = 00h
1:0	bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0.	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 3 is en	
	Master 3: Input from Codec; 16-Bit; Slot 5.	-
Offset 3C		eset Value = 00000000h
Offset 3A	h-3Bh Reserved	Reset Value = xxh
	ist be read and written as a BYTE.	
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PF 0 = No; 1 = Yes.	RD table (bit 30)?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it cause until this register is read to clear the error.	es the bus master to paus
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has a 0 = No; 1 = Yes.	cleared the first?
7:4	Reserved (Read to Clear)	
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.	
Offset 39	h Audio Bus Master 3 SMI Status Register (RC)	Reset Value = 00h
Note: Mu	ist be read and written as a BYTE.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be either paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.	
	Bus Master Control: Controls the state of the Audio Bus Master 3. 0 = Disable; 1 = Enable.	
0		

Bit	Description	
Offset 44	h-47h Audio Bus Master 4 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects s	slot).
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 4. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 4 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 48h	h Audio Bus Master 5 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects	slot).
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 5. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 5. 0 = Disable; 1 = En	able.
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit paused or reached EOT. Writing this bit to 0 while the bus master is operating results in u possibility of the bus master state machine crashing. The only recovery from this conditional statematic condition	unpredictable behavior including the
Note: Mu	st be read and written as a BYTE.	
Offset 49h	h Audio Bus Master 5 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects	slot).
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before softw 0 = No; 1 = Yes.	vare has cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first until this register is read to clear the error.	t, it causes the bus master to pause
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.	
Note: Mu	ist be read and written as a BYTE.	
Offset 4A	h-4Bh Reserved	Reset Value = xxh
Offset 4C	h-4Fh Audio Bus Master 5 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects	slot).
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 5. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 5 is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	
	Reserved: Set to 0.	
1:0	Reserved: Set to 0.	

5.3.5 Video Controller Registers - Function 4

The register space for the video controller is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F4 Index 10h (F4BAR) points to the base address of where the second portion of the register space is located. The second section contains the registers used by the video controller to carry out video operations. Table 5-22 shows the PCI header registers of F4. The memory mapped registers accessed through F4BAR, and shown in Table 5-23, must be accessed using DWORD operations. When writing to one of these 32-bit registers, all four bytes must be written.

If the F4 Video Configuration Trap bit (F0 Index 42h[1]) is set, access to the PCI header registers causes an SMI. Access through F4BAR is not affected by this bit.

Table 5-22. F4 Index xxh: PCI Header Registers for Video Controller Configuration

Bit	Description	
Index 00h	-01h Vendor Identification Register (RO)	Reset Value = 1078h
Index 02h	-03h Device Identification Register (RO)	Reset Value = 0104h
Index 04h	-05h PCI Command Register (R/W)	Reset Value = 0000h
15:2	Reserved (Read Only)	
1	Memory Space: Allow CS5530A to respond to memory cycles from the PC This bit must be enabled to access memory offsets through F4BAR (F4 Ind	-
0	Reserved (Read Only)	
Index 06h	-07h PCI Status Register (RO)	Reset Value = 0280h
Index 08h	Device Revision ID Register (RO)	Reset Value = 00h
Index 09h	-0Bh PCI Class Code Register (RO)	Reset Value = 030000h
Index 0Ch	PCI Cache Line Size Register (RO)	Reset Value = 00h
Index 0Dh	PCI Latency Timer Register (RO)	Reset Value = 00h
Index 0Eh	PCI Header Type (RO)	Reset Value = 00h
Index 0Fh	PCI BIST Register (RO)	Reset Value = 00h
Index 10h	-13h Base Address Register - F4BAR (R/W)	Reset Value = 00000000h
0	ter sets the base address of the memory mapped video controller registers. B a 4 KB memory address range. Refer to Table 5-23 for the video controller reg	
31:12	Video Controller and Clock Control Base I/O Address	
11:0	Address Range (Read Only)	
Index 14h	-3Fh Reserved	Reset Value = 00h
Index 40h	-FFh Reserved	Reset Value = xxh

Bit	Description			
Offset 00h-	-03h Video Configurati	on Register (R/W)	Reset Value = 00000000h	
31	Reserved: Set to 0			
30	High Speed Timing for Video Interface: High speed timings for the video interface. 0 = Disable; 1= Enable.			
	If bit 30 is enabled, bit 25 should be set to 0.			
29	16-bit Video Interface: Allow video interface to be 16	bits. 0 = Disable; 1= Enable.		
	If bit 29 is enabled, 8 bits of pixel data is used for video	o. The 24-bit pixel data is then	dithered to 16 bits.	
	Note: F4BAR+Memory Offset 04h[25] should be set t	to the same value as this bit (b	oit 29).	
28	YUV 4:2:2 or 4:2:0 Mode: 0 = 4:2:2 mode; 1= 4:2:0 m	node.		
	If 4:2:0 mode is selected, bits [3:2] should be set to 01	for 8-bit video mode and 10 f	or 16-bit video mode.	
	Note: The GX1 processor does not support 4:2:0 mo	de.		
27	Video Line Size (DWORDs): This is the MSB of the V	'ideo Line Size (DWORDs). Se	ee bits [15:8] for description.	
26	Reserved: Set to 0			
25	Early Video Ready: Generate VID_RDY output signal one-half VID_CLK period early to improve the speed of the video port operation. 0 = Disable; 1 = Enable.			
	If bit 30 is enabled, this bit (bit 25) should be set to 0.			
24	Initial Buffer Read Address: This is the MSB of the Initial Buffer Read Address. See bits [23:16] for description.			
23:16	Initial Buffer Read Address: This field is used to preload the starting read address for the line buffers at the beginning of each display line. It is used for hardware clipping of the video window at the left edge of the active display. It represents the DWORD address of the source pixel which is to be displayed first. For an unclipped window, this value should be 0.			
15:8	Video Line Size (DWORDs): This field represents the	horizontal size of the source	video data in DWORDs.	
7	Y Filter Enable: Vertical filter. 0 = Disable; 1= Enable.			
6	X Filter Enable: Horizontal filter. 0 = Disable; 1 = Enable.			
5	CSC Bypass: Allows color-space-converter to be bypassed. Primarily used for displaying an RGB graphics overlay rather than a YUV video overlay. 0 = Overlay data passes through CSC; 1 = Overlay data bypasses CSC.			
4	GV Select: Selects whether graphics or video data will be passed through the scaler hardware. 0 = Video data; 1 = Graphics data.			
3:2	Video Input Format: This field defines the byte orderi	ng of the video data on the VI	D_DATA bus.	
	8-Bit Mode (Value Byte Order [0:3])	16-Bit Mode (Value B	yte Order [0:3])	
	00 = U Y0 V Y1 (also used for RGB 5:6:5 input)		used for RGB 5:6:5 input)	
	01 = Y1 V Y0 U or 4:2:0 10 = Y0 U Y1 V	01 = Y0 U Y1 V	.0	
	11 = Y0 V Y1 U	10 = Y1 V Y0 U or 4:2: 11 = Reserved	.0	
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) should be set to 01 for 8-bit video mode and 10 for 16-bit video mode.			
	Note: $U = Cb$, $V = Cr$			
1	Video Register Update: Allow video position and sca vertical sync. 0 = Disable; 1 = Enable.	le registers to be updated sim	ultaneously on next occurrence of	
0	Video Enable: Video acceleration hardware. 0 = Disa	ble: 1 – Enable		

Bit	Bit Description			
Offset 04h-	-07h Display Configuration Register (R/W) Reset Value = 0000000h			
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.			
30:28	Reserved: Set to 0.			
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel display is powered on or off. The bit trans tions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.			
26	Reserved: Set to 0.			
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface bit at F4BAR+Memory Offset 00h[29] This bit should be set to the same value as the 16-bit Video Interface bit.			
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write data. 0 = DDC_SDA (pin M4) is an input; 1 = DDC_SDA (pin M4) is an output.			
23	DDC Output Data: This is the DDC data bit.			
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.			
21	Palette Bypass: Selects whether graphics or video data should bypass the gamma RAM. 0 = Video data; 1 = Graphics data.			
20	Video/Graphics Color Key Select: Selects whether the video or graphics data stream will be used for color/chroma keying 0 = Graphics data is compared to color key; 1 = Video data is compared to color key.			
19:17	Power Sequence Delay: This field selects the number of frame periods that transpire between successive transitions of the power sequence control lines. Valid values are 001 to 111.			
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew the horizontal and vertical syncs that are sent to the CRT. This field should be programmed to 100 as the baseline. The syncs may be moved forward or backward re ative to the pixel data via this register. It is used to compensate for the pipeline delay through the graphics pipeline.			
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp display data to be approximated 18-bit flat panel display. 0 = Disable; 1 = Enable.			
12	XGA Flat Panel: This bit enables the FP_CLK_EVEN output signal which can be used to demultiplex the FP_DATA be even and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.			
11	 Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync polarity. 0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval. 			
10	Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizontal sync polarity. 0 = FP horizontal sync is normally low, transitioning high during sync interval. 1 = FP horizontal sync is normally high, transitioning low during sync interval.			
9	CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity.			
	 0 = CRT vertical sync is normally low, transitioning high during sync interval. 1 = CRT vertical sync is normally high, transitioning low during sync interval. 			
8	CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync polarity. 0 = CRT horizontal sync is normally low, transitioning high during sync interval. 1 = CRT horizontal sync is normally high, transitioning low during sync interval.			
7	Flat Panel Data Enable: Enables the flat panel data bus. 0 = FP_DATA [17:0] is forced low; 1 = FP_DATA [17:0] is driven based upon power sequence control.			
6	 Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up or power-down sequence. 0 -> 1 = Power-up flat panel; 1 -> 0 = Power-down flat panel. 			
5	 DAC Power-Down (active low): This bit must be set to power-up the video DACs. It can be cleared to power-down the video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powered up. 			
4	Reserved: Set to 0.			
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.			
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.			
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.			
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display control logic. 0 = Reset display control logic; 1 = Enable display control logic.			

Bit	Description			
Offset 08I	h-0Bh Video X Register (R/W)	Reset Value = xxxxxxxh		
31:27	Reserved: Set to 0.			
26:16	Video X End Position: This field represents the horizontal end position of the video window according to the following formula. Position programmed = screen position + (H_TOTAL – H_SYNC_END) – 13.			
15:11	Reserved: Set to 0.			
10:0	Video X Start Position: This field represents the horizontal start position of the video window according to the following formula. Position programmed = screen position + (H_TOTAL – H_SYNC_END) – 13.			
Offset 0C	Fh Video Y Register (R/W) Reset Value = xxxxxxxk			
31:27	Reserved: Set to 0.			
26:16	Video Y End Position: This field represents the vertical end position of the vide Position programmed = screen position + (V_TOTAL - V_SYNC_END) + 1.	o window according to the following formula		
15:11	Reserved: Set to 0.			
10:0	Video Y Start Position: This field represents the vertical start position of the video formula. Position programmed = screen position + (V_TOTAL - V_SYNC_END)			
Offset 10	n-13h Video Scale Register (R/W)	Reset Value = xxxxxxxh		
31:30	Reserved: Set to 0.			
29:16	Video Y Scale Factor: This field represents the video window vertical scale factor according to the following formula. VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1)			
	Where:			
	Ys = Video source vertical size in lines			
	Yd = Video destination vertical size in lines			
15:14	Reserved: Set to 0.			
13:0	Video X Scale Factor: This field represents the video window horizontal scale factor according to the following formula.			
	VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1)			
	Where: Xs = Video source horizontal size in pixels			
	Xd = Video destination horizontal size in pixels			
Offset 14	h-17h Video Color Key Register (R/W)	Reset Value = xxxxxxxh		
31:24	Reserved: Set to 0.			
23:0	Video Color Key: This field represents the video color key. It is a 24-bit RGB va compared may be masked prior to the compare by programming the Video Colo 18h) appropriately.			
Offset 18	h-1Bh Video Color Mask Register (R/W)	Reset Value = xxxxxxxh		
31:24	Reserved: Set to 0.			
23:0	Video Color Mask: This field represents the video color mask. It is a 24-bit RG corresponding bits in the graphics or video stream being compared to be ignore			
Offset 1C	h-1Fh Palette Address Register (R/W)	Reset Value = xxxxxxxh		
31:8	Reserved: Set to 0.			
7:0	Palette Address: The value programmed is used to initialize the palette addres	ss counter.		
Offset 20I	h-23h Palette Data Register (R/W)	Reset Value = xxxxxxxh		
31:24	Reserved: Set to 0.			

Bit	Description					
Offset 24	4h-27h	DOT Clock Configuratio	n Register (R/W)	Reset Value = 00000000h		
31		PLL postscaler and feedback t description is provided in bit	divider. 0 = Normal operation; 8.	1 = Reset.		
30	Half Clock: 0 = Enable; 1 =	Disable.				
	For odd post divisors, half clock enables the falling edge of the VCO clock to be used to generate the falling edge of the post divider output to more closely approximate a 50% output duty cycle.					
29	Reserved: Set to 0.					
28:24	5-Bit DCLK PLL Post Divis	or (PD) Value: Selects value	of 1 to 31.			
	00000 = PD divisor of 8 00001 = PD divisor of 6 00010 = PD divisor of 18 00011 = PD divisor of 4 00100 = PD divisor of 12 00101 = PD divisor of 16 00110 = PD divisor of 24 00111 = PD divisor of 2	01000 = PD divisor of 10 01001 = PD divisor of 20 01010 = PD divisor of 14 01011 = PD divisor of 26 01100 = PD divisor of 28 01101 = PD divisor of 30 01111 = PD divisor of 1*	10000 = PD divisor of 9 10001 = PD divisor of 7 10010 = PD divisor of 19 10011 = PD divisor of 5 10100 = PD divisor of 13 10101 = PD divisor of 17 10110 = PD divisor of 25 10111 = PD divisor of 3	11000 = PD divisor of 11 11001 = PD divisor of 21 11010 = PD divisor of 15 11011 = PD divisor of 27 11100 = PD divisor of 23 11101 = PD divisor of 31 11111 = Reserved		
	*See bit 11 description.					
23	Plus 1 (+1): Adds 1 or 0 to FD (DCLK PLL VCO Feedback Divisor) parameter in equation (see Note). 0 = Add 0 to FD; 1 = Add 1 to FD.					
22:12	N: This bit represents "N" in the equation (see Note). It is used to solve the value of FD (DCLK PLL VCO feedback divisor). N can be a value of 1 to 400. For all values of N, refer to Table 5-24 on page 204.					
11	CLK_ON: 0 = PLL disable; 1 = PLL enable. If PD = 1 (i.e., bits [28:24] = 01111) the PLL is always enabled and cannot be disabled by this bit.					
10	DOT Clock Select: 0 = DCLK; 1 = TV_CLK.					
9	Reserved: Set to 0					
8	Bypass PLL: Connects the	input of the PLL directly to the	output of the PLL. 0 = Normal	Operation; 1 = Bypass PLL.		
	If this bit is set to 1, the input of the PLL bypasses the PLL and resets the VCO control voltage, which in turn powers dow the PLL. Allow 0.5 ms for the control voltage to be driven to 0V.					
7:6	Reserved: Set to 0.					
5	Reserved (Read Only): Write as read					
4:3	Reserved: Set to 0.					
2:0	PLL Input Divide (ID) Value	e: Selects value of 2 to 9 (see	Note).			
	000 = ID divisor of 2 010 = ID divisor of 4	100 = ID divisor of 6 110 = ID divisor of 8	001 = ID divisor of 3 011 = ID divisor of 5	101 = ID divisor of 7 111 = ID divisor of 9		
Note:	To calculate DCLK output freq	uency:				
	Equation #1: DCLK = [CLK_1 Condition: 140 MHz < [DCLK					
	FD is der PD is der	IHZ is pin P24 ved from N see equation #2 a ived from bits [28:24] red from bits [2:0]	nd #3			
	+1 is achi					

Bit	Description	
Offset 28	-2Bh CRC Signature and TFT/TV Configuration Register (R/W)	Reset Value = 00000100h
31:8	24-Bit Video Signature Data (Read Only)	
7	SYNC Override: Drive VSYNC_OUT on FP_VSYNC_OUT and HSYNC_OUT on FP_HSYNC_OUT. 0 = Disable; 1 = Enable.	
6	Invert FP_CLK: 0 = Disable; 1 = Enable. (Applicable for TV not TFT.)	
5	Invert FP_CLK_EVEN: 0 = Disable; 1 = Enable.	
4	Reserved (Read Only)	
3	Signature Source Select: 0 = RGB data; 1 = FP data. (FP data occupies the top 6 bits of each color byte to the signature with the bottom two bits always zero.)	
2	Signature Free Run: 0 = Disable; 1 = Enable.	
	When high, with the signature enabled, the signature generator captures data continuously across multiple frames. This may be set high when the signature is started, then later set low, which causes the signature generation process to stop the end of the current frame.	
1	FP_HSYNC_OUT Delay: 0 = Disable; 1 = Enable. (Applicable for TFT not TV.)	
	When SYNC Override (bit 7) is high, this bit (bit 1) can be set high to delay FP_HSYNC_OUT by an extra two clock cycle. When the SYNC Override (bit 7) is low, this bit should also be set low.	
0 Signature Enable: 0 = Disable; 1= Enable.		
	When low, the signature register is reset to 000001h and held (no capture). When high, t pixel data signature with each pixel clock beginning with the next vsync.	the signature register captures the
Offset 2C	n-FFh Reserved	Reset Value = xxh

Table 5-24. F4BAR+Memory Offset 24h[22:12] Decode (Value of "N")

399 674 348 47 297 662 246 7A1 195 286 144 2A3 93 332 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93 333 93	43	Value
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.0	161
	42	2C2
386 3A0 345 23E 294 310 243 50E 192 437 141 51F 90 1E0 394 681 343 FA 292 440 241 438 190 6E 140 23F 88 700 392 661 342 1F5 291 80 240 76 189 188 376 187 701 88 700 391 400 340 7D4 288 405 237 386 188 577 85 406 333 763 287 A 226 76C 183 313 134 TE9 83 19 82 33 19 82 33 19 82 33 18 747 81 67 233 650 132 7A7 81 67 33 23 82 33 19 19 76 76 76 78 32 <td>41</td> <td>585</td>	41	585
395 740 344 47D 293 620 242 21D 191 6E 140 23F 89 3CO 394 681 343 FA 292 440 241 43B 190 DD 138 47F 88 701 392 202 341 3EA 290 101 239 ED 188 376 133 FFA 88 701 391 40B 340 7D4 289 202 238 10B 188 376 133 FFA 86 603 390 16 339 7A9 286 405 237 386 186 5D8 133 FA 84 C 386 5B 337 6A7 286 28 234 5B2 133 7D3 82 33 386 2DE 334 53B 284 AF 232 66CA 181 315	40	30B
394 681 343 FA 292 440 241 438 190 DD 139 47F 88 780 392 205 341 3EA 290 101 239 ED 188 186 376 138 FE 87 701 390 16 339 7A9 288 405 237 386 188 502 135 7F4 84 C 388 5B 337 6A7 236 76C 184 762 133 7D3 82 33 19 32 33 137 83 19 33 774 81 67 386 167 335 29D 284 57 233 365 183 665 130 69F 79 19F 384 5BD 333 277 286 157 229 652 178 A8 127 74F 80 76 7	39	616
333 502 342 1F5 291 80 240 76 189 188 188 188 188 188 188 188 188 376 391 40B 340 7D4 288 205 238 100 239 ED 187 6EC 136 3FA 390 16 339 7A9 288 405 237 386 187 6EC 136 3FA 388 5B 337 6A7 286 15 235 6D9 188 6C5 132 7A7 81 67 386 16F 335 29D 284 57 233 365 182 58A 131 74F 80 CF 384 5BD 333 277 282 15F 228 4AA 177 151 126 176 76 76 77 67C 77 76C 77 76 77	38	42C
392 205 341 3EA 290 101 239 ED 188 376 137 1FD 86 603 391 40B 340 7A9 288 202 238 1DB 137 1FD 86 603 136 3FA 85 3GA 7A9 288 405 237 3B6 186 5DB 137 7F4 85 406 137 7F4 83 19 83 19 83 137 7F4 83 137 7F4 83 19 82 33 19 82 33 19 82 33 19 82 33 137 7F4 83 137 7F4 83 19 133 7D3 82 33 137 137 157 83 131 74F 83 139 73 33 15 132 7A7 81 67 133 137 147 133 171 <td< td=""><td>37</td><td>58</td></td<>	37	58
391 40B 340 7D4 289 202 238 1DB 187 6EC 136 3FA 85 406 390 16 339 7A3 288 405 237 386 136 7F4 84 C 83 753 287 A 236 76C 186 508 133 7D3 82 33 387 B7 336 54E 286 15 235 609 184 762 133 7D3 82 33 386 16F 334 538 283 AF 231 594 181 131 74F 80 CF 383 37B 332 24FF 281 28E 230 329 178 48 127 4FB 76 4F8 381 5EC 331 1DE 280 57D 229 652 178 A8 127 4FB 76 4F8	36	B1
390 16 339 7A9 288 405 237 386 186 5D8 135 7F4 84 C 389 2D 338 753 287 A 236 76C 133 7D3 83 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 19 82 33 132 7A7 81 67 83 131 74F 80 CF 73 19F 332 19F 233 365 132 7A7 81 67 19F 338 37B 332 4FF 281 128 231 594 180 62A 129 53E 78 33E 75 76C 77 67C 77 67C 77 67C 278 <	35	163
389 2D 338 753 287 A 236 76C 185 381 134 7E9 83 19 386 5B 337 6A7 286 15 233 660 133 7D3 81 67 386 16F 335 29D 284 57 233 365 182 58A 131 74F 80 CF 386 16F 335 29D 284 57 233 365 181 131 74F 80 CF 384 5BD 333 277 282 15F 231 594 180 62A 129 53E 78 33E 77 67C 7 67C 77 67C<	34	2C6
388 5B 337 6A7 286 15 235 6D9 184 762 133 7D3 82 33 387 B7 336 54E 285 2B 234 5B2 133 7D3 81 67 386 16F 334 53B 283 AF 233 365 182 58A 131 74F 80 CF 384 5BD 333 277 282 15F 231 594 180 62A 128 27D 77 67C 382 6F6 331 1DE 280 57D 229 652 178 A8 127 4FB 76 4F8 381 5EC 330 36C 277 3EF 226 280 175 124 128 72 78 76 77 770 770 770 770 770 770 770 770 770 770	33	58D
387 B7 336 54E 285 2B 234 5B2 183 6C5 132 7A7 81 67 386 16F 335 29D 334 53B 283 AF 233 365 182 58A 131 74F 80 CF 384 5BD 333 277 282 15F 231 594 120 53E 78 33E 77 67C 77 77 170 77 777	32 31	31B 636
386 16F 335 29D 284 57 233 365 182 58A 131 74F 80 CF 385 2DE 334 53B 233 AF 232 6CA 181 315 129 53E 78 33E 383 37B 332 4EF 281 2BE 230 329 178 A8 122 53E 78 33E 381 5EC 330 3BC 279 2FB 228 4A4 177 151 126 1F6 75 1F0 380 3D9 329 778 278 5F7 227 148 176 2A2 125 3EC 74 3E0 370 762 326 3C5 275 7BD 224 243 173 517 122 763 71 703 2 78 326 525 78A 274 775 222 10E	30	46C
385 2DE 334 53B 283 AF 232 6CA 181 315 130 69F 79 19F 384 5BD 333 277 282 15F 231 594 180 62A 129 53E 78 33E 383 37B 332 4EF 281 2BE 230 329 178 454 128 27D 76 4FB 381 5EC 330 3BC 279 2FB 228 4A4 176 AA2 125 3EC 74 3E0 73 7C0 73 72 781 73 70 607 60 74 3E0 74 778 223 487	29	40C
384 5BD 333 277 282 15F 231 594 180 62A 129 53E 78 33E 383 37B 332 4EF 281 2BE 230 329 179 454 128 270 76 67C 381 5EC 330 3BC 279 2FB 228 652 178 A8 127 4FB 76 4F8 383 3D9 329 778 277 3EF 226 290 175 545 124 7DB 76 4F8 378 765 327 5E2 276 7DE 225 521 174 28B 123 7B1 72 781 71 703 376 596 325 78A 274 77B 222 10E 171 45F 120 58E 69 40E 374 65A 321 AC 270 7BA <td>28</td> <td>1B1</td>	28	1B1
383 37B 332 4EF 281 2BE 230 329 179 454 128 27D 77 67C 382 6F6 331 1DE 280 57D 229 652 178 A8 127 454 127 4FB 76 4F8 380 3D9 329 778 278 5F7 227 148 176 2A2 125 3EC 74 3E0 379 7B2 328 6F1 277 3EF 226 290 175 545 124 7DB 73 7CO 376 526 275 7BD 227 521 174 28B 123 7B1 73 7CO 73 700 70 670 70 70 670 70 70 670 70 670 70 670 70 670 70 670 70 670 70 670 70 670	27	362
382 6F6 331 1DE 280 57D 229 652 178 A8 127 4FB 76 4F8 381 5EC 330 3BC 279 2FB 228 4A4 177 151 126 1F6 75 1F0 380 3D9 329 778 278 5F7 227 148 176 2A2 125 3EC 74 3E0 379 7B2 328 6F1 277 3EF 226 290 175 545 124 708 73 7C0 376 596 325 78A 274 77B 223 487 172 22F 121 667 74 3E0 376 596 325 78A 274 77B 223 487 172 22F 121 667 69 40E 374 465A 322 456 271 3DD 220 439<	26	6C4
380 3D9 329 778 278 5F7 227 148 176 2A2 125 3EC 74 3E0 379 7B2 328 6F1 277 3EF 226 290 175 545 124 7Ba 7C0 73 7C0 378 765 327 5E2 275 7BD 224 243 173 517 122 763 71 703 376 596 325 78A 274 77B 223 487 172 22F 121 6C7 70 607 375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 374 65A 323 62B 272 5EE 221 21C 170 BE 119 31D 68 16 371 2D0 320 159 269 775 218 <td>25</td> <td>588</td>	25	588
379 7B2 328 6F1 277 3EF 226 290 175 545 124 7D8 73 7C0 378 765 327 5E2 276 7DE 225 521 174 288 123 7B1 72 7B1 376 596 325 78A 274 77B 223 487 172 22F 121 6C7 70 607 375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 373 4B4 322 456 271 3DD 220 439 169 17D 118 63A 67 39 372 168 321 AC 270 7BA 219 72 168 2FA 117 474 66 73 370 5A1 319 2B2 268 6EB 217 1CB	24	311
378 765 327 5E2 276 7DE 225 521 174 28B 123 7B1 72 781 7 377 6CB 325 78A 275 7BD 224 243 173 517 122 763 71 703 376 596 325 78A 274 77B 223 487 172 22F 121 6C7 70 607 375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 373 4B4 322 456 271 3DD 220 439 169 17D 118 63A 67 39 372 168 321 AC 270 7BA 219 72 168 2FA 117 474 66 73 67 39 65 67 39 65 67 39 64 10C 63 39E 63 39E 63 39E 63 39E <td>23</td> <td>622</td>	23	622
377 6CB 326 3C5 275 7BD 224 243 173 517 122 763 71 703 376 596 325 78A 274 77B 223 487 172 22F 121 6C7 607 69 40E 375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 69 40E 69 40E 69 40E 69 40E 66 739 67 39 67 39 67 39 67 39 67 39 66 73 67 39 66 73 67 39 66 67 39 66 67 39 66 66 73 66 73 66 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 <td>22</td> <td>444</td>	22	444
376 596 325 78A 274 77B 223 487 172 22F 121 6C7 607 69 40E 375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 374 65A 323 62B 272 5EE 221 21C 171 45F 120 58E 69 40E 373 4B4 322 456 271 3DD 220 439 169 17D 18 63A 67 39 371 2D0 320 159 269 775 218 E5 167 5F5 116 E8 65 E7 370 5A1 319 2B2 268 6EB 217 1CB 166 3EB 115 1D1 64 1CF 368 686 317 2CB 265 75A 214 659 163 75B 111 374 62 73C 63 39E	21	88
375 32D 324 715 273 6F7 222 10E 171 45F 120 58E 69 40E 374 65A 323 62B 272 5EE 221 21C 170 BE 119 31D 668 1C 373 4B4 322 456 271 3DD 220 439 169 17D 118 63A 667 39 372 168 321 AC 270 7BA 219 72 168 2FA 117 474 66 73 370 5A1 319 2B2 268 6EB 217 1CB 166 3EB 115 1D1 64 1CF 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 63 39E 63 39E 63 39E 64 167 57B 114 3A2 63 39E 64 65 E7 65 67A 2	20	111
374 65A 323 62B 272 5EE 221 21C 170 BE 119 31D 68 1C 373 4B4 322 456 271 3DD 220 439 168 17D 18 63A 371 2D0 320 159 269 775 218 E5 167 5F5 116 E8 117 474 66 73 370 5A1 319 2B2 268 6EB 217 1CB 166 3EB 115 1D1 64 1CF 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 39E 368 686 317 2CB 265 75A 214 659 163 75B 112 689 61 679 62 73C 63 39E 63 39E 64 66 73 65 67 39 64 66 73 65 67 73C <td>19</td> <td>222</td>	19	222
373 4B4 322 456 271 3DD 220 439 169 17D 118 63A 67 39 372 168 321 AC 270 7BA 219 72 168 2FA 117 474 66 73 371 2D0 320 159 269 775 218 E5 167 5F5 116 116 E8 65 E7 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 64 1CF 53 65 E7 63 39E 64 67 39 64 67 39 66 73 66 73 65 67 39 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 66 73 67 39 61 67 39 61	18	445
372 168 321 AC 270 7BA 219 72 168 2FA 117 474 66 73 371 2D0 320 159 269 775 218 E5 167 5F5 116 116 E8 65 E7 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 64 1CF 63 39E 63 39E 63 39E 64 66 73 63 39E 66 73 65 E7 65 E7 66 73 65 65 E7 63 39E 64 679 65 75A 214 659 163 75B 1112 689 61 679 64 4F2	17	8A
371 2D0 320 159 269 775 218 E5 167 5F5 116 E8 65 E7 370 5A1 319 2B2 268 6EB 217 1CB 166 3EB 115 1D1 64 1CF 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 368 686 317 2CB 266 3AD 215 72C 164 7AD 113 744 62 73C 366 219 315 32F 264 6B5 213 4B2 162 6B7 111 512 60 4F2 365 433 314 65E 263 56A 212 164 161 56E 110 225 59 1E4 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD	16	115
370 5A1 319 2B2 268 6EB 217 1CB 166 3EB 115 1D1 64 1CF 369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 368 686 317 2CB 266 3AD 215 72C 164 7AD 113 744 62 73C 367 50C 316 597 265 75A 214 659 163 75B 112 689 61 679 64 1679 64 1679 64 167 64 167 64 167 66 113 744 62 73C 64 679 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64<	15	22A
369 343 318 565 267 5D6 216 396 165 7D6 114 3A2 63 39E 368 686 317 2CB 266 3AD 215 72C 164 7AD 113 744 62 73C 367 50C 316 597 265 75A 214 659 163 75B 112 689 61 679 366 219 315 32F 264 6B5 213 4B2 162 6B7 111 512 60 4F2 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	14	455
368 686 317 2CB 266 3AD 215 72C 164 7AD 113 744 62 73C 367 50C 316 597 265 75A 214 659 163 75B 112 689 61 679 366 219 315 32F 264 6B5 213 4B2 162 6B7 111 512 60 4F2 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	13	AA
367 50C 316 597 265 75A 214 659 163 75B 112 689 61 679 366 219 315 32F 264 6B5 213 4B2 162 6B7 111 512 60 4F2 365 433 314 65E 263 56A 212 164 161 56E 110 225 59 1E4 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	12	155
366 219 315 32F 264 6B5 213 4B2 162 6B7 111 512 60 4F2 365 433 314 65E 263 56A 212 164 161 56E 110 225 59 1E4 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	11	2AA
365 433 314 65E 263 56A 212 164 161 56E 110 225 59 1E4 364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	10	555
364 66 313 4BC 262 2D5 211 2C8 160 2DD 109 44B 58 3C8 363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	9	2AB
363 CD 312 178 261 5AB 210 591 159 5BB 108 96 57 790	8	557 2AF
	6	55F
	5	2BF
362 13B 311 210 200 331 203 223 130 311 101 12D 300 721 361 336 310 5E1 259 6AE 208 646 157 6EE 106 25A 55 643	4	57F
360 66C 309 3C3 258 55C 207 48C 156 5DC 105 4B5 54 486	3	2FF
359 4D8 308 786 257 2B9 206 118 155 3B9 104 16A 53 10C	2	5FF
358 1B0 307 70D 256 573 205 230 154 772 103 2D4 52 218	1	3FF
357 360 306 61B 255 2E7 204 461 153 6E5 102 5A9 51 431		-
356 6C0 305 436 254 5CF 203 C2 152 5CA 101 353 50 62		
355 580 304 6C 253 39F 202 185 151 395 100 6A6 49 C5		
354 301 303 D9 252 73E 201 30A 150 72A 99 54C 48 18B		
353 602 302 1B3 251 67D 200 614 149 655 98 299 47 316		
352 404 301 366 250 4FA 199 428 148 4AA 97 533 46 62C		
351 8 300 6CC 249 1F4 198 50 147 154 96 267 45 458		
350 11 299 598 248 3E8 197 A1 146 2A8 95 4CF 44 B0		

5.4 USB Registers

The USB Host Controller exists logically as its own PCI "Device", separate from the Chipset functions. It is a single-function device, and so it contains a PCI Configuration space for only Function 0. Depending on the state of the HOLD_REQ# pin on reset, the USB Controller will respond to one of two Device numbers for access to its PCI Configuration registers:

HOLD_REQ# low: Responds to pin AD29 high (Device 13h in a Geode system).

HOLD_REQ# high: Responds to pin AD27 high (Device 11h in a Geode system).

The PCI Configuration registers are listed in Table 5-25. They can be accessed as any number of bytes within a single 32-bit aligned unit. They are selected by the PCI-standard Index and Byte-Enable method. Registers marked as "Reserved", and reserved bits within a register, should not be changed by software.

Revision 1.1

In the PCI Configuration space, there is one Base Address Register (BAR), at Index 10h, which is used to map the USB Host Controller's operational register set into a 4K memory space. Once the BAR register has been initialized, and the PCI Command register at Index 04h has been set to enable the Memory space decoder, these "USB Controller" registers are accessible.

The memory-mapped USB Controller Registers are listed in Table 5-26. They follow the Open Host Controller Interface (OHCI) specification.

Bit	Description		
Index 00h	-01h Vendor Identification Register (RO)	Reset Value = 0E11h	
Index 02h	-03h Device Identification Register (RO)	Reset Value = A0F8h	
Index 04h	-05h Command Register (R/W)	Reset Value = 0000h	
15:10	Reserved: Set to 0.		
9	Fast Back-to-Back Enable (Read Only): USB only acts as a master to a single device, so this functionality is not needed It is always disabled (must always be set to 0).		
8	SERR#: USB asserts SERR# when it detects an address parity error. 0 = Disable;	1 = Enable.	
7	Wait Cycle Control: USB does not need to insert a wait state between the address disabled (bit is set to 0).	s and data on the AD lines. It is always	
6	Parity Error: USB asserts PERR# when it is the agent receiving data and it detects 0 = Disable; 1 = Enable.	s a data parity error.	
5	VGA Palette Snoop Enable (Read Only): USB does not support this function. It is	always disabled (bit is set to 0).	
4	Memory Write and Invalidate: Allow USB to run Memory Write and Invalidate corr	nmands. 0 = Disable; 1 = Enable.	
	The Memory Write and Invalidate command will only occur if the cache line size is set to 32 bytes and the memory write is exactly one cache line.		
	If the CS5530A is being used in a GX1 processor based system, this bit must be set to 0.		
3	Special Cycles: USB does not run special cycles on PCI. It is always disabled (bit is set to 0).		
2	PCI Master Enable: Allow USB to run PCI master cycles. 0 = Disable; 1 = Enable.		
1	Memory Space: Allow USB to respond as a target to memory cycles. 0 = Disable; 1 = Enable.		
0	I/O Space: Allow USB to respond as a target to I/O cycles. 0 = Disable; 1 = Enable	·.	
Index 06h	-07h Status Register (R/W)	Reset Value = 0280h	
15	Detected Parity Error: This bit is set whenever the USB detects a parity error, even enable bit (PCIUSB 04h[6]) is disabled. Write 1 to clear.	n if the Parity Error (response) detection	
14	SERR# Status: This bit is set whenever the USB detects a PCI address error. Write 1 to clear.		
13	Received Master Abort Status: This bit is set when the USB, acting as a PCI master, aborts a PCI bus memory cycle. Write 1 to clear.		
12	Received Target Abort Status: This bit is set when a USB generated PCI cycle (USB is the PCI master) is aborted by a PCI target. Write 1 to clear.		
11	Signaled Target Abort Status: This bit is set whenever the USB signals a target abort. Write 1 to clear.		
10:9	DEVSEL# Timing (Read Only): These bits indicate the DEVSEL# timing when per DEVSEL# is asserted to meet the medium timing, these bits are encoded as 01b.	forming a positive decode. Since	
8	Data Parity Reported: Set to 1 if the Parity Error Response bit (Command Register asserted while acting as PCI master (whether PERR# was driven by USB or not).	er bit 6) is set, and USB detects PERR#	

Table 5-25. USB Index xxh: USB PCI Configuration Registers

Table 5-25. USB Index xxh: USB PCI Configuration Registers (Continued)

D:4		
Bit	Description	
7	Fast Back-to-Back Capable (Read Only): USB does support fast back-to-back transactions v to the same agent. This bit is always 1.	when the transactions are not
6:0	Reserved: Set to 0.	
	PCI specification defines this register to record status information for PCI related events. This is writes can only reset bits. A bit is reset whenever the register is written and the data in the cor	0
Index 08h	Device Revision ID Register (RO)	Reset Value = 06h
Index 09h-	DBh PCI Class Code Register (RO)	Reset Value = 0C0310h
•	r identifies this function as an OpenHCI device. The base class is 0Ch (serial bus controller). The programming interface is 10h (OpenHCI).	ne sub class is 03h (universal
Index 0Ch	Cache Line Size Register (R/W)	Reset Value = 00h
	r identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value ne size of 32 bytes is the only value applicable to the design. Any value other than 08h written to	
In a CS553	0A/GX1 processor based system this register must be set to 00h since the GX1 processor has	a 16-byte cache line size.
Index 0Dh	Latency Timer Register (R/W)	Reset Value = 00h
This registe	r identifies the value of the latency timer in PCI clocks for PCI bus master cycles.	
Index 0Eh	Header Type Register (RO)	Reset Value = 00h
	r identifies the type of the predefined header in the configuration space. Since the USB is a sin bridge, this byte should be read as 00h.	gle function device and not a
Index 0Fh	BIST Register (RO)	Reset Value = 00h
This registe	r identifies the control and status of Built In Self Test. The USB does not implement BIST, so th	is register is read only.
Index 10h-	13h Base Address Register (R/W)	Reset Value = 00000000h
	ets the base address of the memory mapped USB controller registers. Bits [11:0] are read only 4 KB memory address range. Refer to Table 5-26 for the USB controller register bit formats an	
31:12	USB Controller Base Address	
11:0	Address Range (Read Only)	
Index 14h-	3Bh Reserved	
		Reset Value = xxh
Index 3Ch	Interrupt Line Register (R/W)	Reset Value = xxh Reset Value = 00h
This registe	Interrupt Line Register (R/W) r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB.	Reset Value = 00h
This registe	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The	Reset Value = 00h
This registe used by de Index 3Dh	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB.	Reset Value = 00h he value of this register is Reset Value = 01h
This registe used by de Index 3Dh	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB.	Reset Value = 00h he value of this register is Reset Value = 01h
This registe used by de Index 3Dh This registe Index 3Eh This registe	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h
This registe used by de Index 3Dh This registe Index 3Eh This registe	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h
This registe used by de Index 3Dh This registe Index 3Eh This registe a period of Index 3Fh This registe	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond.	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h
This registe used by de Index 3Dh This registe Index 3Eh This registe a period of Index 3Fh This registe value speci	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond.	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h
This registe used by de Index 3Dh This registe Index 3Eh This registe a period of Index 3Fh This registe value speci Index 40h-	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond.	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h a clock rate of 33 MHz. The
This registe used by de Index 3Dh This registe a period of Index 3Fh This registe value speci Index 40h- Used for in	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond. ASIC Test Mode Enable Register (R/W) ernal debug and test purposes only.	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h a clock rate of 33 MHz. The
This registe used by de Index 3Dh This registe Index 3Eh This registe a period of Index 3Fh This registe value speci Index 40h-	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond. ASIC Test Mode Enable Register (R/W) ernal debug and test purposes only.	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h a clock rate of 33 MHz. The Reset Value = 000F0000h
This registe used by de Index 3Dh This registe Index 3Eh This registe a period of Index 3Fh This registe value spect Index 40h- Used for in Index 44h-	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond. ASIC Test Mode Enable Register (R/W) ernal debug and test purposes only. ASIC Operational Mode Enable Register (R/W)	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h a clock rate of 33 MHz. The Reset Value = 000F0000h Reset Value = 0000F0000h
This register used by de Index 3Dh This register a period of Index 3Fh This register value speci Index 40h- Used for in Index 44h- 15:9	r identifies which of the system interrupt controllers the devices interrupt pin is connected to. The vice drivers and has no direct meaning to the USB. Interrupt Pin Register (RO) r identifies which interrupt pin a device uses. Since the USB uses INTA#, this value is set to 01 Min. Grant Register (RO) r specifies the desired settings for how long of a burst the USB needs assuming a clock rate of time in units of 1/4 microsecond. Max. Latency Register (RO) r specifies the desired settings for how often the USB needs access to the PCI bus assuming a fies a period of time in units of 1/4 microsecond. ASIC Test Mode Enable Register (R/W) ernal debug and test purposes only. ASIC Operational Mode Enable Register (R/W) Reserved: Read/Write 0s. SIE Pipeline Disable: When set, waits for all USB bus activity to complete prior to returning comprocessor. This is a fail-safe mechanism to avoid potential problems with the clk_dr transition I	Reset Value = 00h he value of this register is Reset Value = 01h h. Reset Value = 00h 33 MHz. The value specifies Reset Value = 50h a clock rate of 33 MHz. The Reset Value = 000F0000h Reset Value = 0000F0000h

Table 5-25. USB Index xxh: USB PCI Configuration Registers (Continued)

Bit	Description		
Index 46h	47h	Reserved	Reset Value = 00h
Index 48h	FFh	Reserved	Reset Value = xxh

		<u> </u>
Bit	Description	
Offset 00	h-03h HcRevision Register (RO) Reset Value = 00000110h
31:8	Reserved: Read/Write 0s.	
7:0	Revision (Read Only): Indicates the Open HCI Specification revision 1.0 specification. (X.Y = XYh).	on number implemented by the Hardware. USB supports
Offset 04	h-07h HcControl Register (R/W)	Reset Value = 00000000h
31:11	Reserved: Read/Write 0s.	
10	RemoteWakeupConnectedEnable: If a remote wakeup signal is supported, this bit enables that operation. Since there is no remote wakeup signal supported, this bit is ignored.	
9	RemoteWakeupConnected (Read Only): This bit indicated whether mentation does not support any such signal. The bit is hard-coded	
8	InterruptRouting: This bit is used for interrupt routing: 0 = Interrupt 1 = Interrupts routed to SMI.	ts routed to normal interrupt mechanism (INT);
7:6	HostControllerFunctionalState: This field sets the HC state. The UsbResume after detecting resume signaling from a downstream pr 00 = UsbReset 01 = UsbResume 10 = UsbOperational 11 = UsbSuspend	
5	BulkListEnable: When set, this bit enables processing of the Bulk	list.
4	ControlListEnable: When set, this bit enables processing of the Co	
3	IsochronousEnable: When clear, this bit disables the Isochronous List when the Periodic List is enabled (so Interrupt EE may be serviced). While processing the Periodic List, the HC will check this bit when it finds an isochronous ED.	
2	PeriodicListEnable: When set, this bit enables processing of the Periodic (interrupt and isochronous) list. The HC check this bit prior to attempting any periodic transfers in a frame.	
1:0	ControlBulkServiceRatio: Specifies the number of Control Endpoints serviced for every Bulk Endpoint. Encoding is N-1 where N is the number of Control Endpoints (i.e., 00 = 1 Control Endpoint; 11 = 3 Control Endpoints).	
Offset 08	h-0Bh HcCommandStatus Register ((R/W) Reset Value = 00000000h
31:18	Reserved: Read/Write 0s.	
17:16	ScheduleOverrunCount: This field increments every time the Schewraps from 11 to 00.	edulingOverrun bit in HcInterruptStatus is set. The coun
15:4	Reserved: Read/Write 0s.	
3	OwnershipChangeRequest: When set by software, this bit sets the OwnershipChange field in HcInterruptStatus. The bit cleared by software.	
2	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B	
2	BulkListFilled: Set to indicate there is an active ED on the Bulk Lis	ulk List. trol List. It may be set by either software or the HC and
	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the Control	ulk List. trol List. It may be set by either software or the HC and ontrol List.
1 0	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the Cont cleared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation.	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset
1 0	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the Cont cleared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation.	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset
1 0 Offset 0C	BulkListFilled: Set to indicate there is an active ED on the Bulk List Cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the Contrelisted to the ED on the ControlListFilled: Se	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h
1 0 0 0 0 0 ffset 0 C 31	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the Contrelistic there is an active ED on the ControlLi	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h
1 0 0ffset 0C 31 30	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the ControlLeared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation. ch-0Fh HcInterruptStatus Register (F Reserved: Read/Write 0s. OwnershipChange: This bit is set when the OwnershipChangeRed	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h quest bit of HcCommandStatus is set.
1 0 0 0ffset 0C 31 30 29:7	BulkListFilled: Set to indicate there is an active ED on the Bulk List Cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlLeared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation. Ch-OFh HcInterruptStatus Register (F Reserved: Read/Write 0s. OwnershipChange: This bit is set when the OwnershipChangeRed Reserved: Read/Write 0s. RootHubStatusChange: This bit is set when the content of HcRhS	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h quest bit of HcCommandStatus is set. tatus or the content of any HcRhPortStatus register ha
1 0 0 0ffset 0C 31 30 29:7 6	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlLeared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation. Ch-OFh HcInterruptStatus Register (F Reserved: Read/Write 0s. OwnershipChange: This bit is set when the OwnershipChangeRed Reserved: Read/Write 0s. RootHubStatusChange: This bit is set when the content of HcRhS changed.	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h quest bit of HcCommandStatus is set. tatus or the content of any HcRhPortStatus register ha es value.
1 0 0 0ffset 0C 31 30 29:7 6 5	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set the Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set the Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set to indicate there is an active ED on the ControlListFilled: Set when the OwnershipChangeRed Reserved: Read/Write 0s. RootHubStatusChange: This bit is set when the content of HcRhS changed. FrameNumberOverflow: Set when bit 15 of FrameNumber changeRed Set when the content of HcRhS changeRed Set when bit 15 of FrameNumber changeRed Set when the content of HcRhS changeRed Set when the content of HcRhS changeRed Set when the content chan	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h quest bit of HcCommandStatus is set. tatus or the content of any HcRhPortStatus register hat so value. and is hard-coded to 0. Writes are ignored.
1 0 0ffset 0C 31 30 29:7 6 5 4	BulkListFilled: Set to indicate there is an active ED on the Bulk List cleared by the HC each time it begins processing the head of the B ControlListFilled: Set to indicate there is an active ED on the ControlLeared by the HC each time it begins processing the head of the C HostControllerReset: This bit is set to initiate a software reset. This operation. Ch-OFh HcInterruptStatus Register (F Reserved: Read/Write 0s. OwnershipChange: This bit is set when the OwnershipChangeRed Reserved: Read/Write 0s. RootHubStatusChange: This bit is set when the content of HcRhS changed. FrameNumberOverflow: Set when bit 15 of FrameNumber changed UnrecoverableError (Read Only): This event is not implemented at the fourth of the fourth	ulk List. trol List. It may be set by either software or the HC and ontrol List. is bit is cleared by the HC upon completion of the reset R/W) Reset Value = 00000000h quest bit of HcCommandStatus is set. tatus or the content of any HcRhPortStatus register ha es value. and is hard-coded to 0. Writes are ignored. wnstream port.

Bit	Description		
0	SchedulingOverrun: Set when the List Processor determines a Schedule Overrun ha	as occurred.	
Note: All	bits are set by hardware and cleared by software.		
Offset 10		Reset Value = 00000000h	
31	MasterInterruptEnable: This bit is a global interrupt enable. A write of 1 allows interrupt		
20	enable bits listed above.		
30	OwnershipChangeEnable: 0 = Ignore; 1 = Enable interrupt generation due to Owner	snip Change.	
29:7	Reserved: Read/Write 0s.		
6 5	RootHubStatusChangeEnable: 0 = Ignore; 1 = Enable interrupt generation due to Root Hub Status Change. FrameNumberOverflowEnable: 0 = Ignore; 1 = Enable interrupt generation due to Frame Number Overflow.		
4	UnrecoverableErrorEnable: This event is not implemented. All writes to this bit are ig		
3	ResumeDetectedEnable: 0 = Ignore; 1 = Enable interrupt generation due to Resume	-	
2	StartOfFrameEnable: 0 = Ignore; 1 = Enable interrupt generation due to Resulte		
1	WritebackDoneHeadEnable: 0 = Ignore; 1 = Enable interrupt generation due to Write		
0	SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to SchedulingOverrupt generation due to Scheduli		
-	iting a 1 to a bit in this register sets the corresponding bit, while writing a 0 leaves the bit	5	
Offset 14		Reset Value = C000006Fh	
31	MasterInterruptEnable: Global interrupt disable. A write of 1 disables all interrupts.		
30	OwnershipChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to Owner	rship Change.	
29:7	Reserved: Read/Write 0s.		
6	RootHubStatusChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to R	0	
5	FrameNumberOverflowEnable: 0 = Ignore; 1 = Disable interrupt generation due to F		
4	UnrecoverableErrorEnable: This event is not implemented. All writes to this bit will b	•	
3	ResumeDetectedEnable: 0 = Ignore; 1 = Disable interrupt generation due to Resume Detected.		
2	StartOfFrameEnable: 0 = Ignore; 1 = Disable interrupt generation due to Start of Frame.		
1	WritebackDoneHeadEnable: 0 = Ignore; 1 = Disable interrupt generation due to Writeback Done Head.		
0	SchedulingOverrunEnable: 0 = Ignore; 1 = Disable interrupt generation due to Sche	•	
	iting a 1 to a bit in this register clears the corresponding bit, while writing a 0 to a bit leav		
Offset 18		Reset Value = 00000000h	
31:8	HCCA: Pointer to HCCA base address.		
7:0	Reserved: Read/Write 0s.		
Offset 1C		Reset Value = 00000000h	
31:4	PeriodCurrentED: Pointer to the current Periodic List ED.		
3:0	Reserved: Read/Write 0s.		
Offset 20	n-23h HcControlHeadED Register (R/W)	Reset Value = 00000000h	
31:4	ControlHeadED: Pointer to the Control List Head ED.		
3:0	Reserved: Read/Write 0s.		
Offset 24	h-27h HcControlCurrentED Register (R/W)	Reset Value = 00000000h	
31:4	ControlCurrentED: Pointer to the current Control List ED.		
3:0	Reserved: Read/Write 0s.		
Offset 28	n-2Bh HcBulkHeadED Register (R/W)	Reset Value = 00000000h	
31:4	BulkHeadED: Pointer to the Bulk List Head ED.		
3:0	Reserved: Read/Write 0s.		
Offset 2C	h-2Fh HcBulkCurrentED Register (R/W)	Reset Value = 00000000h	
31:4	BulkCurrentED: Pointer to the current Bulk List ED.		

Bit	Description			
Offset 30	h-33h	HcDoneHead Register (R/W)	Reset Value = 00000000h	
31:4	DoneHead: Pointer to the	current Done List Head ED.		
3:0	Reserved: Read/Write 0s	i.		
Offset 34	h-37h	HcFmInterval Register (R/W)	Reset Value = 00002EDFh	
31	FrameIntervalToggle (Re	ead Only): This bit is toggled by HCD when it loads a new	w value into FrameInterval.	
30:16	FSLargestDataPacket (F the beginning of each fran	acket (Read Only): This field specifies a value which is loaded into the Largest Data Packet Counter at		
15:14	Reserved: Read/Write 0s	i.		
13:0	FrameInterval: This field specifies the length of a frame as (bit times - 1). For 12,000 bit times in a frame, a value of 11,99 is stored here.			
Offset 38	h-3Bh	HcFrameRemaining Register (RO)	Reset Value = 00002Exxh	
31	FrameRemainingToggle	(Read Only): Loaded with FrameIntervalToggle when Fr	rameRemaining is loaded.	
30:14	Reserved: Read 0s.			
13:0		Only): When the HC is in the UsbOperational state, this bunt reaches 0, (end of frame) the counter reloads with Fri ions into UsbOperational.		
Offset 3C	h-3Fh	HcFmNumber Register (RO)	Reset Value = 00000000h	
31:16	Reserved: Read 0s.			
15:0	FrameNumber (Read Only): This 16-bit incrementing counter field is incremented coincident with the loading of FrameR maining. The count rolls over from FFFFh to 0h.			
Offset 40	h-43h	HcPeriodicStart Register (R/W)	Reset Value = 00000000h	
31:14	Reserved: Read/Write 0s			
13:0	PeriodicStart: This field contains a value used by the List Processor to determine where in a frame the Periodic List processing must begin.			
Offset 44	h-47h	HcLSThreshold Register (R/W)	Reset Value = 00000628h	
31:12	Reserved: Read/Write 0s.			
11:0	LSThreshold: This field contains a value used by the Frame Management block to determine whether or not a low spee transaction can be started in the current frame.			
Offset 48	h-4Bh	HcRhDescriptorA Register (R/W)	Reset Value = 01000002h	
31:24	switching is effective withi expected that these bits b	Fime: This field value is represented as the number of 2 m n 2 ms. Only bits [25:24] are implemented as R/W. The re e written to anything other than 1h, but limited adjustmen entation. This field should always be written to a non-zer	emaining bits are read only as 0. It is no it is provided. This field should be writte	
23:13	Reserved: Read/Write 0s.			
12	NoOverCurrentProtection: This bit should be written to support the external system port over-current implementation. 0 Over-current status is reported; 1 = Over-current status is not reported.			
11	OverCurrentProtectionMode: This bit should be written 0 and is only valid when NoOverCurrentProtection is cleared. 0 Global Over-Current; 1 = Individual Over-Current			
10	DeviceType (Read Only): USB is not a compound device.			
9	NoPowerSwitching: This bit should be written to support the external system port power switching implementation. 0 = Ports are power switched. 1 = Ports are always powered on.			
8	PowerSwitchingMode: This bit is only valid when NoPowerSwitching is cleared. This bit should be written 0. 0 = Global Switching; 1 = Individual Switching			

Bit	Description		
Offset 4C	h-4Fh HcRhDescriptorB Re	egister (R/W)	Reset Value = 00000000h
31:16	PortPowerControlMask: Global-power switching. This fie ingMode is set (individual port switching). When set, the port (Set/ClearPortPower). When cleared, the port only respond 0 = Device not removable; 1 = Global-power mask.	ort only responds to individu	al port power switching commands
	Port Bit relationship - Unimplemented ports are reserved, 0 = Reserved 1 = Port 1	read/write 0.	
	2 = Port 2		
	15 = Port 15		
15:0	DeviceRemoveable: USB ports default to removable dev Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2	vices. 0 = Device not remova	ble; 1 = Device removable.
	 15 = Port 15		
	15 = FUIL 15		
	Unimplemented ports are reserved, read/write 0.		
		written during system initiali	zation to configure the Root Hub.
	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is ese bit should not be written during normal operation.		zation to configure the Root Hub. Reset Value = 00000000h
The	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is ese bit should not be written during normal operation.	ster (R/W)	Reset Value = 00000000h
The Offset 50	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is nese bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to	ster (R/W)	Reset Value = 00000000h
The Offset 50I 31	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is vese bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect.	ster (R/W)	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no
The Offset 50h 31 30:18	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is to ese bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always	ster (R/W) this bit clears DeviceRemo CurrentIndicator changes. W s read 0.	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0
The Offset 50H 31 30:18 17 16	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is rese bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPower	ster (R/W) this bit clears DeviceRemo CurrentIndicator changes. W s read 0. ver command to the ports. W	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect.
The Offset 501 31 30:18 17	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is to ese bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always	ster (R/W) this bit clears DeviceRemo CurrentIndicator changes. W s read 0. ver command to the ports. W	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect.
The Offset 50H 31 30:18 17 16	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is vest is should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPower Read: DeviceRemoteWakeupEnable: This bit enables power	ster (R/W) this bit clears DeviceRemon CurrentIndicator changes. W s read 0. ver command to the ports. W orts' ConnectStatusChange	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 /riting a 0 has no effect. as a remote wakeup event.
The Offset 50H 31 30:18 17 16	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is reserved: is only reset by a power-on reset (PCIRST#). It is reserved: should not be written during normal operation. h-53h HcRhStatus Register h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPower 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets Devide Reserved: Read/Write 0s.	ster (R/W) this bit clears DeviceRemo CurrentIndicator changes. W s read 0. ver command to the ports. V orts' ConnectStatusChange iceRemoteWakeupEnable. V	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect. as a remote wakeup event. Nriting a 0 has no effect.
The Offset 501 31 30:18 17 16 15	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is reserved: see bit should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPowerChas a DeviceRemoteWakeupEnable: This bit enables per 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets Devi	ster (R/W) this bit clears DeviceRemove CurrentIndicator changes. We s read 0. ver command to the ports. We orts' ConnectStatusChange iceRemoteWakeupEnable. We /RCUR pin. This field is only	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 /riting a 0 has no effect. as a remote wakeup event. Writing a 0 has no effect. valid if NoOverCurrentProtection and
The Offset 501 31 30:18 17 16 15 15 14:2	Unimplemented ports are reserved, read/write 0. is register is only reset by a power-on reset (PCIRST#). It is reserved; should not be written during normal operation. h-53h HcRhStatus Register ClearRemoteWakeupEnable (Write Only): Writing a 1 to effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverChas no effect. Read: LocalPowerStatusChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPower Write a 1 issues a SetGlobalPower 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets Devi Reserved: Read/Write 0s. OverCurrentIndicatorChange: Not supported. Always Write: SetGlobalPower: Write a 1 issues a SetGlobalPower 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets Devi Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OV	ster (R/W) this bit clears DeviceRemove CurrentIndicator changes. We s read 0. ver command to the ports. We orts' ConnectStatusChange iceRemoteWakeupEnable. We /RCUR pin. This field is only rent condition; 1 = Over-current	Reset Value = 00000000h teWakeupEnable. Writing a 1 has no /riting a 1 clears this bit. Writing a 0 /riting a 0 has no effect. as a remote wakeup event. Writing a 0 has no effect. valid if NoOverCurrentProtection and

Bit	Description			
Offset 54h	h-57h HcRhPortStatus[1] Register (R/W)	Reset Value = 00000628h		
31:21	Reserved: Read/Write 0s.			
20	PortResetStatusChange: This bit indicates that the port reset signal has completed. 0 = Port 1 = Port reset is complete.	t reset is not complete;		
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing 0 has no effect.			
18	PortSuspendStatusChange: This bit indicates the completion of the selective resume sequence for the port. 0 = Port is no resumed; 1 = Port resume is complete.			
17	PortEnableStatusChange: This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus). 0 = Port has not been disabled; 1 = PortEnableStatus has been cleared.			
16	ConnectStatusChange: This bit indicates a connect or disconnect event has been detected. Writing a 1 clears this bit. Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware detection of connect/disconnect event. If DeviceRemoveable is set, this bit resets to 1.			
15:10	Reserved: Read/Write 0s.			
9	Read: LowSpeedDeviceAttached: This bit defines the speed (and bud idle) of the attached CurrentConnectStatus is set. 0 = Full Speed device; 1 = Low Speed device.	device. It is only valid when		
	Write: ClearPortPower: Writing a 1 clears PortPowerStatus. Writing a 0 has no effect.			
8	Read: PortPowerStatus: This bit reflects the power state of the port regardless of the power power is off; 1 = Port power is on.	switching mode. 0 = Port		
	Note: If NoPowerSwitching is set, this bit is always read as 1.			
	Write: SetPortPower: Writing a 1 sets PortPowerStatus. Writing a 0 has no effect.			
7:5	Reserved: Read/Write 0s.			
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset signal is active.			
	Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no effect.			
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR pin dedicated t valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set. 0 = No ov current condition.	,		
	Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence for the port. V	Vriting a 0 has no effect.		
2	Read: PortSuspendStatus: 0 = Port is not suspended; 1 = Port is selectively suspended.			
	Write: SetPortSuspend: Writing a 1 sets PortSuspendStatus. Writing a 0 has no effect.			
1	Read: PortEnableStatus: 0 = Port disabled; 1 = Port enabled.			
	Write: SetPortEnable: Writing a 1 sets PortEnableStatus. Writing a 0 has no effect.			
0	Read: CurrentConnectStatus: 0 = No device connected; 1 = Device connected.			
	Note: If DeviceRemoveable is set (not removable) this bit is always 1.			
	Write: ClearPortEnable: Writing 1 a clears PortEnableStatus. Writing a 0 has no effect.			
Note: This	s register is reset by the UsbReset state.			

Bit	Description		
Offset 58	h-5Bh HcRhPortStatus[2] Register (R/W)	Reset Value = 01000002h	
31:21	Reserved: Read/Write 0s.		
20	PortResetStatusChange: This bit indicates that the port reset signal has completed. (1 = Port reset is complete.	0 = Port reset is not complete;	
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes 0 has no effect.	s. Writing a 1 clears this bit. Writing a	
18	PortSuspendStatusChange: This bit indicates the completion of the selective resume sequence for the port. 0 = Port is resumed; 1 = Port resume is complete.		
17	PortEnableStatusChange: This bit indicates that the port has been disabled due to a hardware event (cleared PortEna bleStatus). 0 = Port has not been disabled; 1 = PortEnableStatus has been cleared.		
16	ConnectStatusChange: This bit indicates a connect or disconnect event has been detected. Writing a 1 clears this bit. Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware detection of connect/disconnect event. If DeviceRemoveable is set, this bit resets to 1.		
15:10	Reserved: Read/Write 0s.		
9	Read: LowSpeedDeviceAttached: This bit defines the speed (and bud idle) of the att CurrentConnectStatus is set. 0 = Full Speed device; 1 = Low Speed device.	tached device. It is only valid when	
	Write: ClearPortPower: Writing a 1 clears PortPowerStatus. Writing a 0 has no effect.	·	
8	Read: PortPowerStatus: This bit reflects the power state of the port regardless of the power is off; 1 = Port power is on.	power switching mode. 0 = Port	
	Note: If NoPowerSwitching is set, this bit is always read as 1.		
	Write: SetPortPower: Writing a 1 sets PortPowerStatus. Writing a 0 has no effect.		
7:5	Reserved: Read/Write 0s.		
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset signal is active. Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no effect.		
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR pin dedic valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set. 0 = current condition.		
	Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence for the	port. Writing a 0 has no effect.	
2	Read: PortSuspendStatus: 0 = Port is not suspended; 1 = Port is selectively suspend		
	Write: SetPortSuspend: Writing a 1 sets PortSuspendStatus. Writing a 0 has no effect	ct.	
1	Read: PortEnableStatus: 0 = Port disabled; 1 = Port enabled.		
	Write: SetPortEnable: Writing a 1 sets PortEnableStatus. Writing a 0 has no effect.		
0	Read: CurrentConnectStatus: 0 = No device connected; 1 = Device connected.		
	Note: If DeviceRemoveable is set (not removable) this bit is always 1.		
	Write: ClearPortEnable: Writing 1 a clears PortEnableStatus. Writing a 0 has no effect	ct.	
Note: Thi	s register is reset by the UsbReset state.		
Offset 5C	h-5Fh Reserved	Reset Value = 00000000h	
Offset 60	n-9Fh Reserved	Reset Value = xxh	

Bit	Description			
Offset 10	t 100h-103h HceControl Register (R/W) Reset Value = 00000			
31:9	Reserved: Read/Write 0s.			
8	A20State: Indicates current GateA20Sequence is active	state of Gate A20 on keyboard controller. Compared a	against value written to 60h when	
7	IRQ12Active: Indicates a po clear it (set it to 0); a 0 write	ositive transition on IRQ12 from keyboard controller oc has no effect.	ccurred. Software writes this bit to 1 to	
6		IRQ1Active: Indicates a positive transition on IRQ1 from keyboard controller occurred. Software writes this bit to 1 to clear it (set it to 0); a 0 write has no effect.		
5	GateA20Sequence: Set by HC when a data value of D1h is written to I/O port 64h. Cleared by HC on write to I/O port 64h of any value other than D1h.			
4	ExternalIRQEn: When set to 1, IRQ1 and IRQ12 from the keyboard controller cause an emulation interrupt. The function controlled by this bit is independent of the setting of the EmulationEnable bit in this register.			
3	IRQEn: When set, the HC generates IRQ1 or IRQ12 as long as the OutputFull bit in HceStatus is set to 1. If the AuxOutput Full bit of HceStatus is 0, IRQ1 is generated: if 1, then an IRQ12 is generated.			
2	CharacterPending: When set, an emulation interrupt will be generated when the OutputFull bit of the HceStatus register is set to 0.			
1	EmulationInterrupt (Read Only): This bit is a static decode of the emulation interrupt condition.		rrupt condition.	
0		et to 1 the HC is enabled for legacy emulation and will o /or IRQ12 when appropriate. The HC also generates a vare.		
Note: Th	nis register is used to enable an	d control the emulation hardware and report various s	status information.	
Offset 10)4h-107h	HceInput Register (R/W)	Reset Value = 000000xxh	
31:8	Reserved: Read/Write 0s.			
7:0	InputData: This register holds data written to I/O ports 60h and 64h.			
Note: Th	nis register is the emulation side	e of the legacy Input Buffer register.		
Offset 10	98h-10Bh	HceOutput Register (R/W)	Reset Value = 000000xxh	
31:8	Reserved: Read/Write 0s.			
7:0	OutputData: This register h	osts data that is returned when an I/O read of port 60h	h is performed by application software.	
	is register is the emulation side are.	e of the legacy Output Buffer register where keyboard	and mouse data is to be written by soft-	
Offset 10	Ch-10Fh	HceStatus Register (R/W)	Reset Value = 00000000h	
31:8	Reserved: Read/Write 0s.			
7	Parity: Indicates parity error	on keyboard/mouse data.		
6	Timeout: Used to indicate a time-out			
5	AuxOutputFull: IRQ12 is asserted whenever this bit is set to 1 and OutputFull is set to 1 and the IRQEn bit is set.			
4	Inhibit Switch: This bit reflects the state of the keyboard inhibit switch and is set if the keyboard is NOT inhibited.			
3	CmdData: The HC will set this bit to 0 on an I/O write to port 60h and on an I/O write to port 64h the HC will set this bit to			
2	Flag: Nominally used as a system flag by software to indicate a warm or cold boot.			
1		InputFull: Except for the case of a Gate A20 sequence, this bit is set to 1 on an I/O write to address 60h or 64h. While this bit is set to 1 and emulation is enabled, an emulation interrupt condition exists.		
0	OutputFull: The HC will set this bit to 0 on a read of I/O port 60h. If IRQEn is set and AuxOutputFull is set to 0 then an IRQ1 is generated as long as this bit is set to 1. If IRQEn is set and AuxOutputFull is set to 1 then and IRQ12 will be generated a long as this bit is set to 1. While this bit is 0 and CharacterPending in HceControl is set to 1, an emulation interrupt condition exists.			
	lion exists.			

5.5 ISA Legacy I/O Register Space

The bit formats for the ISA Legacy I/O Registers plus two chipset-specific configuration registers used for interrupt mapping in the CS5530A are given in this section. These registers reside in the ISA I/O address space in the address range from 000h to FFFh and are accessed through typical input/output instructions (i.e., CPU direct R/ W) with the designated I/O port address and 8-bit data. The registers are separated into the following categories:

- DMA Channel Control Registers, see Table 5-27
- DMA Page Registers, see Table 5-28

Programmable Interval Timer Registers, see Table 5-29

Revision 1.1

- Programmable Interrupt Controller Registers, see Table 5-30
- Keyboard Controller Registers, see Table 5-31
- Real Time Clock Registers, see Table 5-32
- Miscellaneous Registers, see Table 5-33 (includes 4D0h and 4D1h Interrupt Edge/Level Select Registers and ACPI Timer Count Register at I/O Port 121Ch)

Bit	Description	
I/O Port 00	0h (R/W) DMA Channel 0 Address Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	1h (R/W) DMA Channel 0 Transfer Count Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	2h (R/W) DMA Channel 1 Address Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	3h (R/W) DMA Channel 1 Transfer Count Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	04h (R/W) DMA Channel 2 Address Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	5h (R/W) DMA Channel 2 Transfer Count Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	6h (R/W) DMA Channel 3 Address Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	7h (R/W) DMA Channel 3 Transfer Count Register	
Written as t	two successive bytes, byte 0, 1.	
I/O Port 00	8h (R/W)	
Read	DMA Status Register, Channels 3:0	
7	Channel 3 Request: Request pending? 0 = No; 1 = Yes.	
6	Channel 2 Request: Request pending? 0 = No; 1 = Yes.	
5	Channel 1 Request: Request pending? 0 = No; 1 = Yes.	
4	Channel 0 Request: Request pending? 0 = No; 1 = Yes.	
3	Channel 3 Terminal Count: TC reached? 0 = No; 1 = Yes.	
2	Channel 2 Terminal Count: TC reached? 0 = No; 1 = Yes.	
1	Channel 1 Terminal Count: TC reached? 0 = No; 1 = Yes.	
0	Channel 0 Terminal Count: TC reached? 0 = No; 1 = Yes.	
Write	DMA Command Register, Channels 3:0	
7	DACK Sense: 0 = Active high; 1 = Active low.	
6	DREQ Sense: 0 = Active high; 1 = Active low.	
5	Write Selection: 0 = Late write; 1 = Extended write.	
4	Priority Mode: 0 = Fixed; 1 = Rotating.	
3	Timing Mode: 0 = Normal; 1 = Compressed.	
2	Channels 3 through 0: 0 = Disable; 1 = Enable.	

Table 5-27. DMA Channel Control Registers

215

Table 5-27. DMA Channel Control Registers (Continued)

Bit	Description	
I/O Port 0	09h (WO)	Software DMA Request Register, Channels 3:0
7:3	Reserved: Set	to 0.
2	Reserved: Set	to 0.
1:0		ber Request Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.
	•	e DMA is not supported.
I/O Port 0	0Ah (R/W)	DMA Channel Mask Register, Channels 3:0
7:3	Reserved: Set	
2		c: 0 = Not masked; 1 = Masked.
1:0	•	ber Mask Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.
I/O Port 0	0Bh (WO)	DMA Channel Mode Register, Channels 3:0
7:6	Transfer Mode	e: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade.
5	Address Direc	ction: 0 = Increment; 1 = Decrement.
4	4	: 0 = Disable; 1 = Enable.
3:2		: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.
1:0	Channel Num	ber Mode Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.
I/O Port 0	0Ch (WO)	DMA Clear Byte Pointer Command, Channels 3:0
I/O Port 0	0Dh (WO)	DMA Master Clear Command, Channels 3:0
I/O Port 0	0Eh (WO)	DMA Clear Mask Register Command, Channels 3:0
I/O Port 0	0Fh (WO)	DMA Write Mask Register Command, Channels 3:0
I/O Port 0	C0h (R/W)	DMA Channel 4 Address Register
Not used.		
I/O Port 0	C2h (R/W)	DMA Channel 4 Transfer Count Register
Not used.		
I/O Port 0	C4h (R/W)	DMA Channel 5 Address Register
Memory a	ddress bytes 1 a	nd 0.
I/O Port 0	C6h (R/W)	DMA Channel 5 Transfer Count Register
Transfer c	ount bytes 1 and	0
I/O Port 0	C8h (R/W)	DMA Channel 6 Address Register
Memory a	ddress bytes 1 a	nd 0.
I/O Port 0	CAh (R/W)	DMA Channel 6 Transfer Count Register
Transfer c	ount bytes 1 and	0.
I/O Port 0	CCh (R/W)	DMA Channel 7 Address Register
Memory a	ddress bytes 1 a	nd 0.
I/O Port 0	CEh (R/W)	DMA Channel 7 Transfer Count Register
	ount bytes 1 and	

Table 5-27. DMA Channel Control Registers (Continued)

I/O Port UDUh (R/W) Read DMA Status Register, Channels 7:4 7 Channel 7 Request: Request pending? 0 = No; 1 = Yes. 6 Channel 5 Request: Request pending? 0 = No; 1 = Yes. 7 Undefined 3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 4 Undefined 3 Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined 1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 10 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 10 Channel Masker Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is no	Bit	Description			
7 Channel 7 Request: Request pending? 0 = No; 1 = Yes. 6 Channel 6 Request: Request pending? 0 = No; 1 = Yes. 5 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 2 Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes. 1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined Wite DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channel Number 4: 0 = Disable; 1 = Enable. 10 Reserved: Set to 0. 22 Request Type: 0 = Reset; 1 = Set. 10 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported VO Port 0D-h (R/W) VO Port 0D-h (R/W) DMA Channel Mask Register, Channels 7:4 7:3 Reserved: Set to 0.	I/O Port 0	iD0h (R/W)			
6 Channel 6 Request: Request pending? 0 = No; 1 = Yes. 5 Channel 7 Request: Request pending? 0 = No; 1 = Yes. 4 Undefined 3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 2 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 3 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined 9 Undefined 9 Undefined 9 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Lat write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Norma; 1 = Compressed. 2 Channel S Through 4: 0 = Disable; 1 = Enable. 10 Reserved: Set to 0. 10 Reserved: Set to 0. 11 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 10 Channel Mask: 0 = Not masked; 1 = Masked. 110 Channel Mask: 0 = Not masked; 1 = Masked. 120 Channel Mask: 0 = Not masked; 1 = Masked. 1310 Channel Mask: 0 = Not masked; 1 = Masked. 132 <td>Read</td> <td>DMA Status Register, Channels 7:4</td>	Read	DMA Status Register, Channels 7:4			
5 Channel 5 Request: Request pending? 0 = No; 1 = Yes. 4 Undefined 3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 2 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined Write State Colspan="2">DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Norma; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 7; Note: Software DMA is not supported 1/O Port 0D⊅h (RW) DMA Channel Mode Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 7; 11 = Channel 7. 1/O Port 0D>h (WO) DMA Channel Mode Re	7	Channel 7 Request: Request pending? 0 = No; 1 = Yes.			
4 Undefined 3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 2 Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes. 1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 10 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Est. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Note: Software DMA is not supported VO Port 0D4h (R/W) DMA Channel Mask Register, Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported VO VO Port 0D4h (R/W) DMA Channel Mode Register, Channel 5; 10 = Channel 6; 11 = Channel 7. Voet 0D5h (WO) DMA Channel Mode Register, Channels 7:4 7:3 Reserved: Set to 0.	6	Channel 6 Request: Request pending? 0 = No; 1 = Yes.			
3 Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes. 2 Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined 0 Undefined Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Normal; 1 = Compressed. 2 Channel 8 T through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported VO Port UD4h (R/W) 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mumber Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA Kegister, Channels 7:4 TO 7:3 Reserved: Set to 0. 2 Channel Mumber Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 7.	5	Channel 5 Request: Request pending? 0 = No; 1 = Yes.			
2 Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes. 1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Inved; 1 = Rotating. 3 Timing Mode: 0 = Inved; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Manker Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 7. Note: Software DMA is not supported VO Port 0D4h (RW) 0 DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4: 01 = Channel 5: 10 = Channel 7: 4 1:0 Channel Mumber Mask Select: 00 = Channel	4	Undefined			
1 Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes. 0 Undefined Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 7 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port UV+h (R/W) 1/O Port OV+h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. VO Port Ub+h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 0 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Diraction: 0	3	Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes.			
0 Undefined Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 10 Reserved: Set to 0. I/O Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 10 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask: 0 = Not masked; 1 = Single; 10 = Block; 11 = Channel 5; 10 = Channel 6; 11 = Channel 7. VO Port 0D6h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement.	2	Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes.			
Write DMA Command Register, Channels 7:4 7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel 8 request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA Reguest Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mumber Mask Select:: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. VO Port 0D+h (WO) DMA Channel Mode Register, Channels 7:4 1:0 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select:: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. <	1	Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes.			
7 DACK Sense: 0 = Active high; 1 = Active low. 6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported VO Port 0D→h (K/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. VO Port 0D→h (K/W) DMA Channel Mode Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. VO Port 0D→h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 <t< td=""><td>0</td><td>Undefined</td></t<>	0	Undefined			
6 DREQ Sense: 0 = Active high; 1 = Active low. 5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 10 Port 0D2h (WO) 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1/O Port 0D5h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Mode: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select:: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7	Write	DMA Command Register, Channels 7:4			
5 Write Selection: 0 = Late write; 1 = Extended write. 4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. VO Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/0 Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask coll = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1/0 Port 0D4h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. 1/0 Port 0D4h (WO) <	7	DACK Sense: 0 = Active high; 1 = Active low.			
4 Priority Mode: 0 = Fixed; 1 = Rotating. 3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. I/O Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D4h (RW) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D4h (RW) DMA Channel Mode Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D6h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:	6	DREQ Sense: 0 = Active high; 1 = Active low.			
3 Timing Mode: 0 = Normal; 1 = Compressed. 2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 1/O Port 0D>t (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/O Port 0D↓h (RW) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Request Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/O Port 0D↓h (RW) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1/O Port 0D↓h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Chann	5	Write Selection: 0 = Late write; 1 = Extended write.			
2 Channels 7 through 4: 0 = Disable; 1 = Enable. 1:0 Reserved: Set to 0. 1/O Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported 1/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1/O Port 0D6h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade	4	Priority Mode: 0 = Fixed; 1 = Rotating.			
1:0 Reserved: Set to 0. I/O Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D6h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode	3	Timing Mode: 0 = Normal; 1 = Compressed.			
I/O Port 0D2h (WO) Software DMA Request Register, Channels 7:4 7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D+h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mumber Mask Select: 00 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D-h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 7. Channel A must be programmed in cascade mode. This mode is not the default. I/O Port 0D-k (WO) DMA Clear Mask Register Command, Channels 7:4 I/O Port 0D-k (WO) DMA Clear Mask Register Command, Channels 7:4	2	Channels 7 through 4: 0 = Disable; 1 = Enable.			
7:3 Reserved: Set to 0. 2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D4h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D4h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Clear Mask Register Command, Channels 7:4 I/O Port 0DAh (WO) DMA Clear Mask Register Command, Channels 7:4	1:0	Reserved: Set to 0.			
2 Request Type: 0 = Reset; 1 = Set. 1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port UD+h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port UD+h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port UD+h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port UD-h (WO) DMA Clear Mask Register Command, Channels 7:4 I/O Port UD-h (WO) DMA Clear Mask Register Command, Channels 7:4	I/O Port 0	D2h (WO) Software DMA Request Register, Channels 7:4			
1:0 Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Note: Software DMA is not supported I/O Port 0D↓h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D↓h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D&h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Clear Mask Register Command, Channels 7:4	7:3	Reserved: Set to 0.			
Note: Software DMA is not supported I/O Port 0→ h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0→ h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 7. 1:0 DMA Clear Byte Pointer Command, Channels 7:4 1/O Port U→ h (WO) DMA Clear Mask Register Command, Channels 7:4 1/O Port U→ h (WO) DMA Clear Mask Register Command, Channels 7:4	2	Request Type: 0 = Reset; 1 = Set.			
I/O Port 0D↓h (R/W) DMA Channel Mask Register, Channels 7:0 7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D৮h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel A must be programmed in cascade mode. This mode is not the default. I/O Port 0D bh (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0D Ah (WO) DMA Clear Mask Register Command, Channels 7:4	1:0				
7:3 Reserved: Set to 0. 2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port UD bh (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel A must be programmed in cascade mode. This mode is not the default. I/O Port UD h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port UD h (WO) DMA Clear Mask Register Command, Channels 7:4					
2 Channel Mask: 0 = Not masked; 1 = Masked. 1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port UD→ (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. 1/O Port UD N (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port UD Ah (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port UD (WO) DMA Clear Mask Register Command, Channels 7:4					
1:0 Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. I/O Port 0D6h (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4					
I/O Port 0Dbh (WO) DMA Channel Mode Register, Channels 7:4 7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4					
7:6 Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade. 5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4					
5 Address Direction: 0 = Increment; 1 = Decrement. 4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4	I/O Port 0	D6h (WO) DMA Channel Mode Register, Channels 7:4			
4 Auto-initialize: 0 = Disabled; 1 = Enable. 3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Clear Mask Register Command, Channels 7:4	7:6	Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade.			
3:2 Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved. 1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Master Clear Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4	5	Address Direction: 0 = Increment; 1 = Decrement.			
1:0 Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7. Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Master Clear Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4	4				
Channel 4 must be programmed in cascade mode. This mode is not the default. I/O Port 0D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4 I/O Port 0DAh (WO) DMA Master Clear Command, Channels 7:4 I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4		Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.			
I/O Port 0D8h (WO)DMA Clear Byte Pointer Command, Channels 7:4I/O Port 0DAh (WO)DMA Master Clear Command, Channels 7:4I/O Port 0DCh (WO)DMA Clear Mask Register Command, Channels 7:4	1:0				
I/O Port 0DAh (WO)DMA Master Clear Command, Channels 7:4I/O Port 0DCh (WO)DMA Clear Mask Register Command, Channels 7:4		Channel 4 must be programmed in cascade mode. This mode is not the default.			
I/O Port 0DCh (WO) DMA Clear Mask Register Command, Channels 7:4	I/O Port 0	DBh (WO) DMA Clear Byte Pointer Command, Channels 7:4			
	I/O Port 0	DAh (WO) DMA Master Clear Command, Channels 7:4			
I/O Port 0DEh (WO) DMA Write Mask Register Command. Channels 7:4	I/O Port 0	DCh (WO) DMA Clear Mask Register Command, Channels 7:4			
	I/O Port 0	DEh (WO) DMA Write Mask Register Command, Channels 7:4			

Table 5-28.	DMA Pa	age Registers
-------------	--------	---------------

Bit	Description	
I/O Port 0	081h (R/W)	DMA Channel 2 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0)82h (R/W)	DMA Channel 3 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0)83h (R/W)	DMA Channel 1 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0)87h (R/W)	DMA Channel 0 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0)89h (R/W)	DMA Channel 6 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0	08Ah (R/W)	DMA Channel 7 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0	08Bh (R/W)	DMA Channel 5 Low Page Register
Address b	oits [23:16] (byte 2).	
I/O Port 0	08Fh (R/W)	ISA Refresh Low Page Register
Refresh a	iddress.	
I/O Port 4	181h (R/W)	DMA Channel 2 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 081h.
I/O Port 4	182h (R/W)	DMA Channel 3 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 082h.
I/O Port 4	183h (R/W)	DMA Channel 1 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 083h.
I/O Port 4	187h (R/W)	DMA Channel 0 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 087h.
	189h (R/W)	DMA Channel 6 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 089h.
	18Ah (R/W)	DMA Channel 7 High Page Register
Address b	bits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 08Ah.
	18Bh (R/W)	DMA Channel 5 High Page Register
Address b	oits [31:24] (byte 3).	Note: This register is reset to 00h on any access to Port 08Bh.

Bit	Description
I/O Port 0	40h
Write	PIT Timer 0 Counter
7:0	Counter Value
Read	PIT Timer 0 Status
7	Counter Output: State of counter output signal.
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.
3:1	Current Counter Mode: 0-5.
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).
I/O Port 0	41h
Write	PIT Timer 1 Counter (Refresh)
7:0	Counter Value
Read	PIT Timer 1 Status (Refresh)
7	Counter Output: State of counter output signal.
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.
3:1	Current Counter Mode: 0-5.
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).
I/O Port 0	42h
Write	PIT Timer 2 Counter (Speaker)
7:0	Counter Value
Read	PIT Timer 2 Status (Speaker)
7	Counter Output: State of counter output signal.
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.
3:1	Current Counter Mode: 0-5.
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).
I/O Port 0	43h (R/W) PIT Mode Control Word Register
7:6	Counter Select: 00 = Counter 0; 01 = Counter 1; 10 = Counter 2; 11 = Read-back command (Note 1).
5:4	Current Read/Write Mode: 00 = Counter latch command (Note 2); 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.
3:1	Current Counter Mode: 0-5.
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).
	If bits [7:6] = 11: Register functions as Read Status Command Bit 5 = Latch Count, Bit 4 = Latch Status, Bit 3 = Select Counter 2, Bit 2 = Select Counter 1, Bit 1 = Select Counter 0, and Bit 0 = Reserved
	If bits [5:4] = 00: Register functions as Counter Latch Command Bits [7:6] = Selects Counter, and [3:0] = Don't care

Table 5-29. Programmable Interval Timer Registers

Table 5-30.	Programmable	Interrupt	Controller	Registers
-------------	--------------	-----------	------------	-----------

		o. Trogrammable interrupt controller Registers		
Bit	Description			
I/O Port (020h / 0A0h (WO)	Master / Slave PIC IWC1		
7:5	Reserved: Set to 0.			
4	Reserved: Set to 1.			
3	Trigger Mode: 0 = Edge; 1 =	= Level.		
2	Vector Address Interval: 0	= 8-byte intervals; 1 = 4-byte intervals.		
1	Reserved: Set to 0 (cascade	e mode).		
0	Reserved: Set to 1 (ICW4 m	iust be programmed).		
I/O Port (021h / 0A1h (WO)	Master / Slave PIC ICW2 (after ICW1 is written)		
7:3	A[7:3]: Address lines [7:3] for	or base vector for interrupt controller.		
2:0	Reserved: Set to 0.			
I/O Port (021h / 0A1h (WO)	Master / Slave PIC ICW3 (after ICW2 is written)		
Master P	IC ICW3			
7:0	Cascade IRQ: Must be 04h.			
Slave PIC	CICW3			
7:0	Slave ID: Must be 02h.			
I/O Port (021h / 0A1h (WO)	Master / Slave PIC ICW4		
		(after ICW3 is written)		
7:5	Reserved: Set to 0.			
4	Special Fully Nested Mode	: 0 = Disable; 1 = Enable.		
	This function is not implemented and should always be disabled (i.e., set this bit to 0).			
3:2	Reserved: Set to 0.			
1	Auto EOI: 0 = Normal EOI; 7	I = Auto EOI.		
0	Reserved: Set to 1 (8086/80	188 mode).		
I/O Port (021h / 0A1h (R/W)	Master / Slave PIC OCW1 (except immediately after ICW1 is written)		
7	IRQ7 / IRQ15 Mask: 0 = Not	Masked; 1 = Mask.		
6	IRQ6 / IRQ14 Mask: 0 = Not	Masked; 1 = Mask.		
5	IRQ5 / IRQ13 Mask: 0 = Not Masked; 1 = Mask.			
4	IRQ4 / IRQ12 Mask: 0 = Not Masked; 1 = Mask.			
3	IRQ3 / IRQ11 Mask: 0 = Not Masked; 1 = Mask.			
2	IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask.			
1	IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask.			
0	IRQ0 / IRQ8 Mask: 0 = Not	Masked; 1 = Mask.		
I/O Port 0	020h / 0A0h (WO)	Master / Slave PIC OCW2		
7:5	Rotate/EOI Codes			
	000 = Clear rotate in Auto E0 001 = Non-specific EOI 010 = No operation 011 = Specific EOI (bits [2:0]	101 = Rotate on non-specific EOI command110 = Set priority command (bits [2:0] must be valid)		
4:3	Reserved: Set to 0.			
2:0	IRQ Number (000-111)			

Table 5-30. Programmable Interrupt Controller Registers (Continued)

Bit	Description		
I/O Port 0	20h / 0A0h (WO)	Master / Slave PIC OCW3	
7	Reserved: Set to 0.		
6:5	Special Mask Mode		
	00 = No operation	10 = Reset Special Mask Mode	
	01 = No operation	11 = Set Special Mask Mode	
4	Reserved: Set to 0.		
3	Reserved: Set to 1.		
2	Reserved: Set to 0. Poll Cor	nmand at this address is not supported.	
1:0	Register Read Mode		
	00 = No operation	10 = Read interrupt request register on next read of Port 20h	
	01 = No operation	11 = Read interrupt service register on next read of Port 20h	
I/O Port 0	20h / 0A0h (RO) Maste	r / Slave PIC Interrupt Request and Service Registers	
		for OCW3 Commands	
Interrupt	Request Register		
7	IRQ7 / IRQ15 Pending: 0 =	Yes; 1 = No.	
6	IRQ6 / IRQ14 Pending: 0 =	Yes; 1 = No.	
5	IRQ5 / IRQ13 Pending: 0 =	Yes; 1 = No.	
4	IRQ4 / IRQ12 Pending: 0 =	Yes; 1 = No.	
3	IRQ3 / IRQ11 Pending: 0 =	Yes; 1 = No.	
2	IRQ2 / IRQ10 Pending: 0 =	Yes; 1 = No.	
1	IRQ1 / IRQ9 Pending: 0 = Yes; 1 = No.		
0	IRQ0 / IRQ8 Pending: 0 = Y	es; 1 = No.	
Interrupt	Service Register		
7	IRQ7 / IRQ15 In-Service: 0	= No; 1 = Yes.	
6	IRQ6 / IRQ14 In-Service: 0	= No; 1 = Yes.	
5	IRQ5 / IRQ13 In-Service: 0	= No; 1 = Yes.	
4	IRQ4 / IRQ12 In-Service: 0	= No; 1 = Yes.	
3	IRQ3 / IRQ11 In-Service: 0	= No; 1 = Yes.	
2	IRQ2 / IRQ10 In-Service: 0	= No; 1 = Yes.	
1	IRQ1 / IRQ9 In-Service: 0 =	No; 1 = Yes.	
0	IRQ0 / IRQ8 In-Service: 0 = No; 1 = Yes.		
Note: Th		with bits [1:0] in a write to 020h.	

Table 5-31. Keyboard Controller Registers

Bit	Description				
I/O Port 06	0h (R/W) External Keyboard Controller Data Register				
tures are e	Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset fea- nabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port A20M# pin or cause a warm CPU reset.				
I/O Port 06	1h (R/W) Port B Control Register Reset Value = 00x01100b				
7	PERR#/SERR# Status (Read Only): Was a PCI bus error (PERR#/SERR#) asserted by a PCI device or by the CS5530A? 0 = No; 1 = Yes.				
	This bit can only be set if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ERR_EN with a 1 or after reset.				
6	IOCHK# Status (Read Only): Is an I/O device reporting an error to the CS5530A? 0 = No; 1 = Yes.				
	This bit can only be set if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to IOCHK_EN with a 1 or after reset.				
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).				
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).				
3	IOCHK Enable: 0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. Note that NMI is under SMI control. 1 = Ignores the IOCHK# input signal and does not generate NMI.				
2	PERR#/SERR# Enable: Generates an NMI if PERR#/SERR# is driven active to report an error. 0 = Enable; 1 = Disable				
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output (OUT2) to pass to the speaker.				
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.				
I/O Port 062h (R/W) External Keyboard Controller Mailbox Register					
	Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through Decode Control Register 2 (F0 Index 5Bh[7]).				
I/O Port 06	4h (R/W) External Keyboard Controller Command Register				
features are	Controller Command Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset e enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this the A20M# pin or cause a warm CPU reset.				
I/O Port 06	6h (R/W) External Keyboard Controller Mailbox Register				
	Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h decode is enabled through Decode Control Register 2 (F0 Index 5Bh[7]).				
I/O Port 09	2h Port A Control Register (R/W) Reset Value = 02h				
7:2	Reserved: Set to 0.				
1	A20M# SMI Assertion: Assert A20M#. 0 = Enable mask; 1 = Disable mask.				
0	Fast CPU Reset: WM_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.				
	This bit must be cleared before the generation of another reset.				

Table 5-32. Real-Time Clock Registers

Bit	Description			
I/O Port 07	70h (WO)	RTC Address Register		
7	NMI Mask: 0 = Enable; 1	= Mask.		
6:0	RTC Register Index: A v	write of this register sends the data out on the ISA bus and also causes RTCALE to be triggered.		
Note: This	s register is shadowed with	in the CS5530A and is read through the RTC Shadow Register (F0 Index BBh).		
I/O Port 07	/O Port 071h (R/W) RTC Data Register			
	0	ue of the register indexed by the RTC Address Register plus initiates a RTCCS#.		

A write of this register sets the value into the register indexed by the RTC Address Register plus initiates a RTCCS#.

Bit	Description		
I/O Ports 1	70h-177h/376h Secondary IDE Registers (R/W)		
	ocal IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to uration rather than generating standard ISA bus cycles.	o operate according to	
I/O Ports 1	F0h-1F7h/3F6h Primary IDE Registers (R/W)		
	ocal IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to uration rather than generating standard ISA bus cycles.	o operate according to	
I/O Port 4E	00h Interrupt Edge/Level Select Register 1 (R/W)	Reset Value = 00h	
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
2	Reserved: Set to 0.		
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
0	Reserved: Set to 0.		
Notes: 1.	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.		
2.	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shar	ed).	
I/O Port 4D	01h Interrupt Edge/Level Select Register 2 (R/W)	Reset Value = 00h	
7	IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)	
6	IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)	
5	Reserved: Set to 0.		
4	IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)	
3	IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)		
2	IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)	
1	IRQ9 Edge or Level Select: Selects PIC IRQ9 sensitivity configuration. 0 = Edge; 1 = Level. (Notes	l and 2)	
0	Reserved: Set to 0.		
Notes: 1.	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.		
2.	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shar	ed).	
I/O Port 12	1Ch-121Fh (Note) ACPI Timer Count Register (RO) Reset	Value = 00FFFFFCh	
(3.579545 2.343 seco			
•	MI status is reported at F1BAR+Memory Offset 00h/02h[0]. el SMI status is reported is at F0 Index 87h/F7h[0].		
31:24	Reserved: Always returns 0.		
23:0	Counter		
Natas The	ACPI Timer Count Register is also accessible through F1BAR+Offset 1Ch.		

Table 5-33. Miscellaneous Registers

5.6 V-ACPI I/O Register Space

The register space designated as V-ACPI I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space, called V-ACPI. In order for ACPI to be supported, the V-ACPI VSA module must be included in the BIOS. The register descriptions that follow, are supplied here for reference only.

Fixed Feature Space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the VSA/ACPI solution are mapped to normal I/O space starting at offset AC00h; however, the designer can relocate this register space at compile time, hence are hereafter referred to as ACPI_BASE. Registers within V-ACPI (Virtualized ACPI) I/O space must only be accessed on their defined boundaries. For example, byte aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

The V-ACPI I/O Register Space can be broken up into major blocks:

- PM Event Block 1A (PM1A_EVT_BLK)
- PM Event Block 1A Control (PM1A_CNT_BLK)
- Processor Register Block (P_BLK)
- Command Block (CMD_BLK)
- Test/Setup Block (TST/SETUP_BLK)
- General Purpose Enable 0 Block (GPE0_BLK)

PM1A_EVT_BLK is 32-bit aligned and contains two 16-bit registers, PM1A_STS and PM1A_EN.

PM1A_CNT_BLK is 32-bit aligned and contains one 16-bit register, PM1A_CNT. PM1A_CNT contains the Fixed Feature control bits used for various power management

enables and as communication flags between BIOS and the ACPI OS.

P_BLK is 32-bit aligned (one register block per processor) and contains two registers P_CNT and P_LVL2. P_LVL3 is currently not supported.

- P_CNT (Processor Control) 16-bit register, Controls process duty cycle via CPU clock throttling.
 DUTY_WIDTH = 3 (can be widened)
 DUTY_OFFSET = 0
- P_LVL2 (Enter C2 Power State) 8-bit, read only register. When read, causes the processor to enter C2 power state.

CMD_BLK contains one 8-bit register SMI_CMD which interprets and processes the ACPI commands (defined in Fixed ACPI Description Table, refer to ACPI Specification, Section 5.2.5).

TST/SETUP_BLK is provided by the VSA technology code and contains two registers, SETUP_IDX and SETUP_DATA for the purpose of configuring the CS5530A. Specifically, this pair of registers enables system software to map GPIO pins on the CS5530A to PM1A_STS and GPE0_STS register bits.

GPE0_BLK has registers used to enable system software to configure GPIO (General Purpose I/O) pins to generate SCI interrupts. GPE0_BLK is a 32-bit block aligned on a 4byte boundary. It contains two 16-bit registers, GPE0_STS and GPE0_EN, each of which must be configured by the BIOS POST. In order for a GPE0_STS bit to generate an SCI, the corresponding enable bit in GPE0_EN must be set.

Table 5-34 gives the bit formats of the V-ACPI I/O registers.

Bit	Description			
ACPI_BA	SE 00h-03h	P_CNT — Processo	r Control Register (R/W)	Reset Value = 00000000h
31:5	Reserved: Always 0.			
4	THT_EN: Enables thro	ottling of the clock based on th	e CLK_VAL field.	
3	Reserved: Always 0.			
2:0	CLK_VAL: Clock throt	tling value. CPU duty cycle =		
	000 = Reserved 001 = 12.5%	010 = 25% 011 = 37.5%	100 = 50% 101 = 62.5%	110 = 75% 111 = 87.5%
ACPI_BA	SE 04h	P_LVL2 — Enter C2 P	ower State Register (RO)	Reset Value = 00h
Reading	this 8-bit read only registe	er causes the processor to ente	er the C2 power state. Reads o	f P_LVL2 return 0. Writes have no effect
ACPI_BA	SE 05h	Re	served	Reset Value = 00h
ACPI_BA	SE 06h	SMI_CMD — OS/BIOS	Requests Register (R/W)	Reset Value = 00h
Interpret	and process the ACPI con 0x01 - ACPI_ENABLE 0x02 - ACPI_DISABLE 0x03 - S4BIOS_REQ (op	· ·	PI Description Table, refer to AC	CPI Specification, Section 5.2.5).

Table 5-34. V-ACPI Registers

Bit	Description				
ACPI_BA	SE 07h	Reserved	Reset Value = 00h		
ACPI_BA	SE 08h-09h PM1A	A_STS — PM1A Status Register (R/W)	Reset Value = 0000h		
15	WAKE_STS: Wake Status - Set whe	n system was in sleep state and an enabled wakeup	o occurs.		
14:11	Reserved				
10		This bit changes to 1 if an RTC alarm causes a wake is asserted by the RTC. Refer to Table 5-37.	e up event. This bit is only set upor		
9	SLPBTN_STS: Sleep Button Status set, an SCI interrupt is generated.	(Optional) - This bit changes to 1 when the sleep bu	itton is pressed. If SLPBTN_EN is		
	This bit must be configured to be set 36.	by a GPIO pin using SETUP_IDX values 0x10-0x17	in order to be set. Refer to Table \$		
8	PWRBTN_STS: Power Button Status is asserted.	s - This bit is set when power button is pressed. If PV	VRBTN_EN is set, an SCI interrup		
	This bit must be configured to be set 36.	by a GPIO pin using SETUP_IDX values 0x10-0x17	in order to be set. Refer to Table !		
7:6	Reserved				
5	GBL_STS: Global Status - The BIOS same time GBL_STS is set, the BIOS	sets GBL_STS to 1 to release its global lock and re S generates an SCI.	turn control to the ACPI OS. At the		
4	BM_STS: Bus Master Status - This b	it is not supported by V-ACPI.			
3:1	Reserved				
0	TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I/O Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS.				
		so set, then a SCI interrupt is asserted.			
) to a given bit location will reset the bit.			
ACPI_BA	SE 0Ah-0Bh PM1/	A_EN — PM1A Enable Register (R/W)	Reset Value = 0000h		
15:11	Reserved				
10	RTC_EN: Real Time Clock Enable -	If set, an SCI is asserted when RTC_STS changes	to 1.		
9	SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when SLPBTN	_STS changes to 1.		
8	PWRBTN_EN: Power Button Enable	- If set, an SCI is asserted when PWRBTN_STS ch	nanges to 1.		
7:6	Reserved				
5	GBL_EN: Global Lock Enable - If set	, writing a 1 to GBL_STS causes an SCI to be asse	rted.		
4:1	Reserved				
0	TMR_EN: ACPI Timer Enable - If set Port 121Ch) changes state.	, an SCI is asserted when bit 23 of the ACPI timer (F1BAR+Memory Offset 1Ch or I/C		
ACPI_BA	SE 0Ch-0Dh PM1A	_CNT — PM1A Control Register (R/W)	Reset Value = 0000h		
15:14	Reserved				
13	SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system to enter the sleep state defined by SLP_TYPx. Reads of this bit always return zero.				
12:10	SLP_TYPx: Sleep Type - Defines the	e type of sleep state the system enters when SLP_E	N (bit 13) is set.		
	000 = Sleep State S0 (Full on)	100 = Sleep State S4			
	001 = Sleep State S1	101 = Sleep State S5 (Soft off) 110 = Reserved			
	010 = Sleep State S2 011 = Reserved	110 = Reserved 111 = Reserved			
9:3	Reserved				
2	GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise an event to the BIOS software (SMI). Used by ACPI driver to indicate a release of the global lock and the setting of the pending bit in the FACS table (refer to ACPI Specification, Section 5.2.8).				
1	BM_RLD: This bit is not supported b	v V-ACPI.			
0		Enable - Selects whether power management event	ts are SCI or SMI. Set by hardwar		

Table 5-34. V-ACPI Registers (Continued)

Т

Г

Table 5-34. V-ACPI Registers (Continued)

Bit	Description
ACPI_BAS	SE 0Eh-0Fh SETUP_IDX — Setup Index Register (R/W) Reset Value = 0000h
value writte	X is a 16-bit register that references an internal setting in the VSA (refer to Table 5-35). A read of SETUP_IDX returns the last on to SETUP_IDX. A write of SETUP_IDX selects the index for a corresponding write to SETUP_DATA. Writes of any unde- values to SETUP_IDX are ignored. If the current value of SETUP_IDX is invalid, a read of SETUP_DATA returns 0.
ACPI_BAS	GPE0_STS — General Purpose Event 0 Status Register (R/W) Reset Value = 0000h
	set by an external event and cleared by a write of a one to that bit. The GPE0_STS bits are mapped to specific, chipset-resident als using the SETUP_IDX and SETUP_DATA registers. Refer to Tables 5-35 through 5-37.
15	OEM_GPE_S15: Original Equipment Manufacturer General Purpose Event Status Bit 15 - OEM defined.
14	OEM_GPE_S14: Original Equipment Manufacturer General Purpose Event Status Bit 14 - OEM defined.
13	OEM_GPE_S13: Original Equipment Manufacturer General Purpose Event Status Bit 13 - OEM defined.
12	OEM_GPE_S12: Original Equipment Manufacturer General Purpose Event Status Bit 12 - OEM defined.
11	OEM_GPE_S11: Original Equipment Manufacturer General Purpose Event Status Bit 11 - OEM defined.
10	OEM_GPE_S10: Original Equipment Manufacturer General Purpose Event Status Bit 10 - OEM defined.
9	OEM_GPE_S09: Original Equipment Manufacturer General Purpose Event Status Bit 9 - OEM defined.
8	OEM_GPE_S08: Original Equipment Manufacturer General Purpose Event Status Bit 8 - OEM defined.
7	OEM_GPE_S07: Original Equipment Manufacturer General Purpose Event Status Bit 7 - OEM defined.
6	OEM_GPE_S06: Original Equipment Manufacturer General Purpose Event Status Bit 6 - OEM defined.
	The recommended mapping for the lid switch input is to use GPIO6. If the recommended mapping is used, this bit (bit 6) needs to be mapped to GPIO6 at boot time via SETUP_IDX and SETUP_DATA. Similarly, the lid switch input needs to be routed to GPIO6 in hardware. If this method is selected, this bit is defined as:
	LID_STS: Lid Status - Set when lid state changes. If LID_EN (ACPI_BASE 12h[6] is set, a SCI interrupt is asserted. Reset by writing a 1 to this bit.
5	OEM_GPE_S05: Original Equipment Manufacturer General Purpose Event Status Bit 5 - OEM defined.
4	OEM_GPE_S04: Original Equipment Manufacturer General Purpose Event Status Bit 4 - OEM defined.
3	OEM_GPE_S03: Original Equipment Manufacturer General Purpose Event Status Bit 3 - OEM defined.
2	OEM_GPE_S02: Original Equipment Manufacturer General Purpose Event Status Bit 2 - OEM defined.
1	OEM_GPE_S01: Original Equipment Manufacturer General Purpose Event Status Bit 1 - OEM defined.
0	OEM_GPE_S00: Original Equipment Manufacturer General Purpose Event Status Bit 0 - OEM defined.
ACPI_BAS	SE 12h-13h GPE0_EN — General Purpose Event 0 Enable Register (R/W) Reset Value = 0000h
15	OEM_GPE_E15: Original Equipment Manufacturer General Purpose Event Enable Bit 15 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
14	OEM_GPE_E14: Original Equipment Manufacturer General Purpose Event Enable Bit 14 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
13	OEM_GPE_E13: Original Equipment Manufacturer General Purpose Event Enable Bit 13 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
12	OEM_GPE_E12: Original Equipment Manufacturer General Purpose Event Enable Bit 12 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
11	OEM_GPE_E11: Original Equipment Manufacturer General Purpose Event Enable Bit 11 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
10	OEM_GPE_E10: Original Equipment Manufacturer General Purpose Event Enable Bit 10 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
9	OEM_GPE_E09: Original Equipment Manufacturer General Purpose Event Enable Bit 9 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
8	OEM_GPE_E08: Original Equipment Manufacturer General Purpose Event Enable Bit 8 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
7	OEM_GPE_E07: Original Equipment Manufacturer General Purpose Event Enable Bit 7 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
6	LID_EN: Lid Enable - Enables LID_STS to generate a SCI when set.
5	OEM_GPE_E05: Original Equipment Manufacturer General Purpose Event Enable Bit 5 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
4	OEM_GPE_E04: Original Equipment Manufacturer General Purpose Event Enable Bit 4 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.

Т

Г

Table 5-34. V-ACPI Registers (Continued)

Bit	Description		
3		Driginal Equipment Manufacturer General Purpose Event Enable Bit 3 e corresponding GPE0_STS bit is set.	- When set, enables a SCI to be
2		Driginal Equipment Manufacturer General Purpose Event Enable Bit 2 e corresponding GPE0_STS bit is set.	- When set, enables a SCI to be
1		Driginal Equipment Manufacturer General Purpose Event Enable Bit 1 e corresponding GPE0_STS bit is set.	- When set, enables a SCI to be
0		Driginal Equipment Manufacturer General Purpose Event Enable Bit 0 e corresponding GPE0_STS bit is set.	- When set, enables a SCI to be
ACPI_BA	SE 14h-17h	SETUP_DATA — Setup Data Register (R/W)	Reset Value = 00000000h
During a read operation, SETUP_DATA returns the value of the internal setting specified by the current value in SETUP_IDX (ACPI_ABASE 0Eh-0Fh)			
ACPI_BA	SE 18h-1Fh	Reserved	Reset Value = 00h

Reserved for future V-ACPI Implementations.

Index	Operation
0x00	No operation
0x10	Configure GPIO0 to PM1A_STS or GPE0_STS bits
0x11	Configure GPIO1 to PM1A_STS or GPE0_STS bits
0x12	Configure GPIO2 to PM1A_STS or GPE0_STS bits
0x13	Configure GPIO3 to PM1A_STS or GPE0_STS bits
0x14	Configure GPIO4 to PM1A_STS or GPE0_STS bits
0x15	Configure GPIO5 to PM1A_STS or GPE0_STS bits
0x16	Configure GPIO6 to PM1A_STS or GPE0_STS bits
0x17	Configure GPIO7 to PM1A_STS or GPE0_STS bits
0x30	Configure IRQ0 to wakeup system
0x31	Configure IRQ1 to wakeup system
0x32	Do not use – Reserved for cascade interrupt
0x33	Configure IRQ3 to wakeup system
0x34	Configure IRQ4 to wakeup system
0x35	Configure IRQ5 to wakeup system
0x36	Configure IRQ6 to wakeup system
0x37	Configure IRQ7 to wakeup system
0x38	Configure IRQ8 to wakeup system (Defaults to RTC_STS in PM1A_STS)
0x39	Configure IRQ9 to wakeup system.
0x3A	Configure IRQ10 to wakeup system.
0x3B	Configure IRQ11 to wakeup system
0x3C	Configure IRQ12 to wakeup system
0x3D	Do not use – Reserved for math coprocessor
0x3E	Configure IRQ14 to wakeup system
0x3F	Configure IRQ15 to wakeup system
0x40	Generate GBL_STS – Sets the GLB_STS bit and generates a SCI to the OS
0x41	Configure IRQ to be used for SCI
0x42	Enable reads of ACPI registers
0x43	Do atomic I/O sequence
0x50	Video power
0x60	Soft SMI AX = 6000 emulation

Table 5-35. SETUP_IDX Values

Table 5-35. SETUP_IDX Values (Continued)

Index	Operation
0x61	Soft SMI AX = 6001 emulation
0x62	Soft SMI AX = 6002 emulation
0x63	Soft SMI AX = 6003 emulation
0x64	Audio power control

Table 5-36. GPIO Mapping (0x10-0x17)

SETUP_ DATA	Function		
xx Value			
0x00	No mapping – Do not use this GPIO pin		
0x08	Assign GPIOx to PWRBTN_STS bit in PM1A_STS		
0x09	Assign GPIOx to SLPBTN_STS in PM1A_STS		
0x10	Assign GPIOx to bit 0 in GPE0_STS register		
0x11	Assign GPIOx to bit 1 in GPE0_STS register		
0x12	Assign GPIOx to bit 2 in GPE0_STS register		
0x13	Assign GPIOx to bit 3 in GPE0_STS register		
0x14	Assign GPIOx to bit 4 in GPE0_STS register		
0x15	Assign GPIOx to bit 5 in GPE0_STS register		
0x16	Assign GPIOx to bit 6 in GPE0_STS register		
0x17	Assign GPIOx to bit 7 in GPE0_STS register		
0x18	Assign GPIOx to bit 8 in GPE0_STS register		
0x19	Assign GPIOx to bit 9 in GPE0_STS register		
0x1A	Assign GPIOx to bit 10 in GPE0_STS register		
0x1B	Assign GPIOx to bit 11 in GPE0_STS register		
0x1C	Assign GPIOx to bit 12 in GPE0_STS register		
0x1D	Assign GPIOx to bit 13 in GPE0_STS register		
0x1E	Assign GPIOx to bit 14 in GPE0_STS register		
0x1F	Assign GPIOx to bit 15 in GPE0_STS register		
y Value (y	values may be ORed together to get the desired combination of features)		
0x01	Falling edge		
0x02	Rising edge		
0x04	Power button		
0x08	Reserved		
z = y = xx =	GPIO mapping, a value of 0000zyxx is used where: a runtime/wake indicator the edge to be used = a bit in either PM1A_STS or GPE0_STS en using V-ACPI both edges of GPIO6 can be sensed. When using the CS5530A, GPIO6 provides additional hardware that		
	enables the chipset to generate an SMI on both the rising and falling edges of the input signal.		

SETUP_ DATA	Function		
0	Do not wakeup on IRQ activity.		
0x0a	Assign IRQ Wake to bit 10 in PM1A_STS register		
0x10	Assign IRQ Wake to bit 0 in GPE0_STS register		
0x11	Assign IRQ Wake to bit 1 in GPE0_STS register		
0x12	Assign IRQ Wake to bit 2 in GPE0_STS register		
0x13	Assign IRQ Wake to bit 3 in GPE0_STS register		
0x14	Assign IRQ Wake to bit 4 in GPE0_STS register		
0x15	Assign IRQ Wake to bit 5 in GPE0_STS register		
0x16	Assign IRQ Wake to bit 6 in GPE0_STS register		
0x17	Assign IRQ Wake to bit 7 in GPE0_STS register		
0x18	Assign IRQ Wake to bit 8 in GPE0_STS register		
0x19	Assign IRQ Wake to bit 9 in GPE0_STS register		
0x1A	Assign IRQ Wake to bit 10 in GPE0_STS register		
0x1B	Assign IRQ Wake to bit 11 in GPE0_STS register		
0x1C	Assign IRQ Wake to bit 12 in GPE0_STS register		
0x1D	Assign IRQ Wake to bit 13 in GPE0_STS register		
0x1E	Assign IRQ Wake to bit 14 in GPE0_STS register		
0x1F	Assign IRQ Wake to bit 15 in GPE0_STS register		
and	Note: When the ability to wakeup on an IRQ is desired use Index 0x31 through 0x3F. This will allow sensing of interrupts while sleeping and waking of the system when activity occurs. The desired GPE0 Status bit will only be set if the system is sleeping and a wake event occurs. The system will only wake if the status bit is enabled in the corresponding enable register.		
For	IRQ8 (RTC) is assigned to the RTC_STS bit in the PM1A_STS register by default and should NOT be changed. For enabling and selection of the GPE0 Status bit to be set when Wake on IRQ Activity is desired, use the SETUP_DATA values		
liste	listed above.		

Table 5-37. IRQ Wakeup Status Mapping (0x30-0x3F)

Table 5-38. Commands (0x41-0x43, and 0x50)

Index	Function
0x41	Configure IRQ to be used for SCI: When mapping the SCI interrupt SETUP_IDX contains the number of the IRQ to be used for the SCI. Valid values are 3-7, 9-12, and 14-15. Invalid values will not change the assignment of the SCI IRQ. The default value for the SCI IRQ is 9.
0x42	Enable Reads of ACPI Registers: Prior to the issuance of this command only <i>WRITES</i> can be performed to the V-ACPI Fixed feature registers. This command MUST be issued to enable reading of the registers. This is to prevent the User Def 1 hook on NON-ACPI systems from interfering with system functions.
0x43	Do Atomic I/O Sequence: This command allows a sequence of I/O operations to be done with no interruption. Certain SuperI/O chips must receive unlock codes with NO intervening I/O. In addition other SuperI/O chips do not allow I/O to devices while in configuration mode. This command will insure that I/O operations are completed without interruption. The address of a sequence of I/O commands is placed in the SETUP_DATA register. The command sequence will then be processed immediately.
	The I/O command sequence consists of two parts: the signature/length block and the I/O block. There is only one signature/ length block. There may be one or more I/O blocks.
	The signature block consists of four DWORDs (see Table 5-39).
	The I/O block consists of four bytes followed by three DWORDs (see Table 5-40).
0x50	Video Power: This command will control the power to the SoftVGA. If SETUP_DATA is written with a 0, power will be turned off. If a 1 is written, power will be turned on.

Г

٦

Table 5-39. Signature/Length Block for 0x43

Byte Offset	Value
0	Signature: Always 0x00000070
4	Length: The length of the entire buffer including the signature block in bytes.
8	Reserved: Set to 0
12	Reserved: Set to 0

Byte Offset	Description
0	BYTE: Operation Type. 1 = Read 2 = Write 3 = Read/And/Or/Write 4 = Define index and data ports In addition, values may be OR'ed in to the upper two bits of this byte to indicate that special functions are desired. 0x80 = Do not perform this operation (convert to NO-OP). 0x40 = This is an index operation.
1	BYTE: Reserved set to 0
2	 BYTE: I/O Length - Determines whether a BYTE, WORD or DWORD operation is performed. 1 = BYTE operation 2 = WORD operation 3 = DWORD operation If BYTE 0 is a 4, then this field is used to indicate the size of the index write.
3	BYTE: Reserved set to 0
4	DWORD: I/O Address - This is the address in the I/O space to be used. It is always a WORD value. If this is a define index/ data port operation, this DWORD contains the I/O address of the index port. If this is an index operation, other than define, this DWORD contains the value to be written to the index port.
8	DWORD: I/O Data - The meaning depends on the operation type. Read = This is where the data read from the I/O port will be placed. Write = This is the data to write to the I/O port. Read/AND/OR/Write = This is the data that will be ANDed with the data read from the I/O port. Define index/data port - This DWORD contains the I/O address of the data port.
12	DWORD: OR Data - This field is only used in a Read/AND/OR/Write operation. It contains the data that will be OR'ed after the data read was AND'ed with the previous field. After the OR is done, the data will be re-written to the I/O port.
	all cases if the data called for is shorter than the field, the data will be stored or retrieved from the least significant portion of the /ORD.

Table 5-40. I/O Block for 0x43

Soft SMI AX	SETUP_IDX	SETUP_DATA
0x6000	0x60	BP register value
0x6001	0x61	BP register value
0x6002	0x62	BX register value
0x6003	0x63	BX register value
Note: Arbitrary registers cannot be set in AUDIO Soft SMIs to be emulated.	ASL code before issuing a soft SMI. These	commands provide an I/O interface to allow

Table 5-42. Audio Power Control (0x64)

Data Value	Action	
0	Power codec off and mute output	
1	Power codec off, do not mute (allows CD to play)	
2	Power codec on and un-mute output	
3	Power codec on only	
Note: This command allows control of power to the audio codec as well as control of amplifier muting.		

AMD Revision 1.1

Electrical Specifications

This section provides information on electrical connections, absolute maximum ratings, recommended operating conditions, and DC/AC characteristics for the Geode CS5530A. All voltage values in the electrical specifications are with respect to V_{SS} unless otherwise noted.

For detailed information on the PCI bus electrical specification refer to Chapter 4 of the PCI Bus Specification, Revision 2.1.

6.1 Electrical Connections

6.1.1 Pull-Up Resistors

Table 6-1 lists the pins that are internally connected to a 20-kohm pull-up resistor. When unused, these inputs do not require connection to an external pull-up resistor.

Signal Name	Туре	Pin No.
IOR#	I/O	AE12
IOW#	I/O	AC11
MEMR#	I/O	AE19
MEMW#	I/O	AF20
SBHE#	I/O	AE17
SA[19:0]/ SD[19:0]	I/O	AD10, AE11, AF12, AD11, AE25, AD24, AD22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AD9

6.1.2 Unused Input Pins

All inputs not used by the system designer and not listed in Table 6-1 should be kept at either V_{SS} or V_{DD}. To prevent possible spurious operation, connect active-high inputs to ground through a 20-kohm (±10%) pull-down resistor and active-low inputs to V_{DD} through a 20-kohm (±10%) pull-up resistor.

6.1.3 NC-Designated Pins

Pins designated NC should be left disconnected. Connecting an NC pin to a pull-up resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions.

6.1.4 PWR/GND Connections and Decoupling

Testing and operating the CS5530A requires the use of standard high frequency techniques to reduce parasitic effects. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low-impedance wiring, and by using all of the V_{DD} and V_{SS} pins.

6.2 Absolute Maximum Ratings

Table 6-2 lists absolute maximum ratings for the CS5530A. Stresses beyond the listed ratings may cause permanent damage to the device. Exposure to conditions beyond these limits may (1) reduce device reliability and (2) result in premature failure even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings may also result in reduced useful life and reliability These are stress ratings only and do not imply that operation under any conditions other than those listed under Table 6-3 is possible.

6.3 Operating Conditions

Table 6-3 lists the recommended operating conditions for the CS5530A.

Parameter	Min	Max	Units	Comments
Operating Case Temperature	0	110	°C	Power Applied
Storage Temperature	-65	150	°C	No Bias
Supply Voltage		4.0	V	
Voltage On Any Pin	-0.5	5.5	V	
Input Clamp Current, I _{IK}	-0.5	10	mA	Power Applied
Output Clamp Current, I _{OK}		25	mA	Power Applied

Table 6-2. Absolute Maximum Ratings

Table 6-3. Operating Conditions

Symbol	Parameter (Note 1)	Min	Max	Units	Comments
т _с	Operating Case Temperature	0	85	°C	
V _{DD}	Supply Voltage	3.14	3.46	V	

1. For video interface specific parameters, refer to Table 6-17 "CRT, TFT/TV and MPEG Display Timing" on page 247.

6.4 DC Characteristics

All DC parameters and current measurements in this section were measured under the operating conditions listed in Table 6-3 on page 234, unless otherwise noted.

			DC Characteristics						
Symbol	Parameter	Min	Тур	Max	Units	Comments			
V _{IL}	Low Level Input VoltageNote 1								
	8 mA			0.8	V	V _{DD} = 3.14V			
	CLK			0.8					
	IDE			0.8					
	PCI	-0.5		0.3V _{DD}					
V _{IH}	High Level Input Voltage (N	Note 1)				·			
	8 mA	2.0			V	V _{DD} = 3.14V			
	CLK	2.0							
	IDE	2.0							
	PCI	0.5V _{DD}		V _{DD} +0.5					
V _{OL}	Low Level Output Voltage	(Note 1)				·			
	8 mA			0.4	V	V _{DD} = 3.14V, I _{OL} = 8 mA			
	DOTCLK			0.4	-	V _{DD} = 3.14V, I _{OL} = 20 mA			
	FP_CLK			0.4		V _{DD} = 3.14V, I _{OL} = 12 mA			
	IDE			0.5		V _{DD} = 3.14V, I _{OL} = 12 mA			
	PCI			0.1V _{DD}		V _{DD} = 3.14V, I _{OL} = 1.5 mA			
	USB			0.3		$R_L = 1.5 \text{ K}\Omega \text{ to } V_{DD,} V_{DD} = 3.46 \text{ V}$			
V _{OH}	High Level Output Voltage	(Note 1)							
	8 mA	2.4			V	V _{DD} = 3.14V, I _{OH} = -8 mA			
	DOTCLK	2.4				V _{DD} = 3.14V, I _{OH} = -20 mA			
	FP_CLK	2.4				V _{DD} = 3.14V, I _{OH} = -12 mA			
	IDE	2.4				V _{DD} = 3.14V, I _{OH} = -400 μA			
	PCI	0.9V _{DD}				V _{DD} = 3.14V, I _{OH} = -0.5 mA			
	USB	2.8		V _{DD}		V_{DD} = 3.14V, R_L = 15 K Ω to V_{SS}			
I _{LEAK}	Input Leakage Current Incl	uding Hi-Z Out	put Leak	age (Note 1)					
	8 mA, CLK, DOTCLK, FP_CLK, IDE, PCI			+/-10	μA	$V_{DD} = V_{DDIO} = 3.46V,$ $V_{PAD} = 0 \text{ to } 3.46V, \text{ Note } 2$			
				+/-200		$V_{DD} = V_{DDIO} = 3.46$ V, $V_{PAD} = 3.46$ to 5.5V, Note 2			
I _{PU}	Weak Pull-Up Current (No	te 1)			•	•			
	8 mA			-50	μA	V _{DDIO} = 3.46V, Note 2			

 Table 6-4.
 DC Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Comments		
I _{ОН}	Output High Current (Note 1)							
	8 mA			-8	mA	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$		
	FP_CLK			-12	_			
	IDE			-0.5				
	PCI	-0.5				$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$		
I _{OL}	Output Low Current (Note 1)		1		1	1		
	8 mA			8	mA	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$		
	FP_CLK			12				
	IDE			12		$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$		
	PCI	1.5			1	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$		
V _H	Hysteresis Voltage 8 mA, CLK (Note 1)	350			mV	V _{T+} - V _{T-}		
V _{DI}	USB - Differential Input Sensitivity	0.2			V	(D+)-(D-) , within V _{CM} , Note 3		
V _{CM}	USB - Differential Common Mode Range	0.8		2.5	V	Includes V _{DI} range		
V _{SE}	USB - Single Ended Receiver Threshold	0.8		2.0	V			
V _{CRS}	USB - Output Signal Crossover Voltage							
	Low Speed	1.3		2.0	V	V _{DD} = 3.14V to 3.46V,		
	Full Speed	1.3		2.0	V	See Figure 6-9 and Figure 6-10 on page 245		
C _{IN}	Input Capacitance (Note 1)							
	8 mA			5	pF	Note 3		
	CLK	5		12				
	IDE			25				
	PCI			10				
C _{OUT}	Output Capacitance - All Digital Drivers			7	pF	Note 3		

Table 6-4.	DC Characteristics	(Continued)
		(0011111000)

1. Pins with this buffer type are listed in Table 3-3 "352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name" on page 25.

2. Pins with a pull-up always enabled are denoted in Table 6-1 "Pins with Weak Internal Pull-Up" on page 233. Note that the leakage specification does not apply to hard-wired pull-ups.

3. Not 100% tested.

6.4.1 Definition of System Conditions for Measuring "On" Parameters

The current of the CS5530A is highly dependent on the DCLK (DOT clock). Table 6-5 shows how these factors are controlled when measuring the typical average and absolute maximum CS5530A current parameters. Table 6-6 provides the CS5530A's core, DAC, and PLL DC characteristics during various power states.

Table 6-5. System Conditions Used to Determine CS5530A's Current Used During the "On" State

	System Conditions				
CPU Current Measurement	V _{DD} (Note 1)	DCLK Frequency (Note 2)			
Typical Average	Nominal	50 MHz (Note 3)			
Absolute Maximum	Max	135 MHz (Note 4)			

1. See Table 6-3 on page 234 for nominal and maximum voltages.

- 2. Not all system designs support display modes that require a DCLK of 157 MHz. Therefore, absolute maximum current will not be realized in all system designs.
- 3. A DCLK frequency of 50 MHz is derived by setting the display mode to 800x600x8 bpp at 75 Hz, using a display image of vertical stripes (4-pixel wide) alternating between black and white with power management disabled.
- 4. A DCLK frequency of 157 MHz is derived by setting the display mode to 1280x1024x8 bpp at 85 Hz, using a display image of vertical stripes (1-pixel wide) alternating between black and white with power management disabled.

Symbol	Parameter	Min	Тур	Max	Units	Comments
Core (Note 1)						1
I _{DD_CORE}	Active I _{DD}		145	255	mA	Note 2 and Note 3
I _{DDAI_CORE}	Active Idle I _{DD}		85		mA	Note 4
I _{DDSM_CORE}	Suspend Mode I _{DD}		29		mA	Note 5
I _{DDSS_CORE}	Standby I _{DD}		5.7		mA	Note 6
DAC (Note 1)		·				
I _{DD_DAC}	Active I _{DD}		60	85	mA	Note 2 and Note 3
I _{DDAI_DAC}	Active Idle I _{DD}		60		mA	Note 4
I _{DDSM_DAC}	Suspend Mode I _{DD}		0.2		mA	Note 5
I _{DDSS_DAC}	Standby I _{DD}		0.2		mA	Note 6
PLL (Note 1)						
I _{DD_PLL}	Active I _{DD}		6	6	mA	
I _{DDAI_PLL}	Active Idle I _{DD}		6		mA	Note 4
I _{DDSM_PLL}	Suspend Mode I _{DD}		0.3		mA	Note 5
IDDSS_PLL	Standby I _{DD}		0.2		mA	Note 6
EXTVREFIN		·				
I _{DD_EXTVREFIN}	Active I _{DD}			75	μA	
. Outputs unlo	aded	•	•	•	•	•

1. Outputs unloaded.

2. Maximum current is measured under the following assumptions:

PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 157 MHz, and VID_CLK = 133 MHz.

 Typical current is measured under the following assumptions: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 50 MHz, and VID_CLK = 0 MHz.

- 4. Active Idle current is measured under the following assumptions with SUSPA# asserted: PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 50 MHz, and VID_CLK = 0 MHz.
- 5. Suspend current is measured under the following assumptions with SUSPA# asserted:
- PCICLK = 33 MHz, USBCLK = 48 MHz, DCLK = 0 MHz, and VID_CLK = 0 MHz.
 6. Standby current is measured under the following assumptions with SUSPA# and SUSP_3V (stop clock signal) asserted:

PCICLK = 0 MHz, USBCLK = 0 MHz, DCLK = 0 MHz, and VID_CLK = 0 MHz.

6.5 AC Characteristics

The following tables list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. The rising-clock-edge reference level, V_{REF} and other reference levels are shown in Table 6-7. Input or output signals must cross these levels during testing.

Input setup and hold times are specified minimums that define the smallest acceptable sampling window for which a synchronous input signal must be stable for correct operation.

Table 6-7. Drive Level and Measurement Points for AC Characteristics

Revision 1.1

Symbol	Voltage (V)
V _{REF}	1.5
V _{DD}	3.14
V _{SS}	0

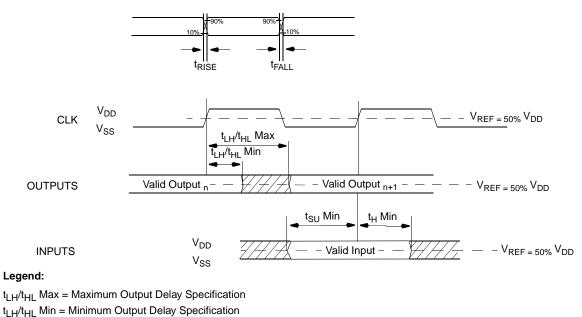

Symbol	Parameter	Min	Тур	Max	Unit	Comments (Note 1)	
t _{SU}	Input Setup Time to PCICLK	7			ns	See Figures 6-1 and 6-2 on	
t _H	Input Hold Time to PCICLK	0			ns	page 240	
t _{LH}	Low to High Propagation Delay (Referenced to PCICLK, Note 2)						
	PCI	2		11	ns	See Figure 6-2 on page 240 and Figure 6-3 on page 241 (also known as t_{VAL})	
t _{HL}	High to Low Propagation Delay (Referenced to PCICLK, Note 2)						
	PCI	2		11	ns	See Figure 6-2 on page 240 and Figure 6-4 on page 241 (also known as t_{VAL})	
t _{RISE/FALL}	Rising/Falling Edge Rate						
	IDE			1.25	V/ns	See Figures 6-1 and 6-2 on page 240, Note 3	

Table 6-8. AC Characteristics

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

 Pins with this buffer type are listed in Table 3-3 "352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name" on page 25.

3. Not 100% tested.

 t_{SU} Min = Minimum Input Setup Specification

t_H Min = Minimum Input Hold Specification

Note: See Table 6-7 "Drive Level and Measurement Points for AC Characteristics" on page 239 for V_{DD} , V_{SS} , and V_{REF} values.

Figure 6-1. Test Measurements for AC Characteristics

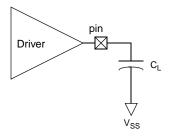


Figure 6-2. Test Circuit for AC Characteristics

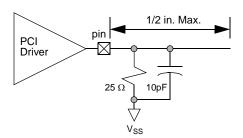


Figure 6-3. PCI Rising Edge (t_{LH}) Test Circuit

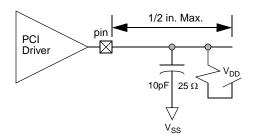


Figure 6-4. PCI Falling Edge (t_{HL}) Test Circuit

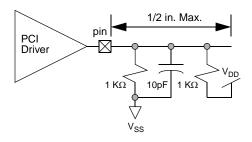


Figure 6-5. PCI Slew Rate Test Circuit

Symbol	Parameter	Min	Мах	Duty Cycle	Unit	Comments (Note 1)
Output Sig	gnals				•	
	DCLK Frequency	25	157.5	40/60	MHz	Note 2
	CLK_32K Frequency	32.	768	50/50	kHz	Note 3
	ISACLK Frequency		8.33333		MHz	
Input Sigr	nals					
	CLK_14MHZ Frequency	14.3	1818	45/55	MHz	
	USBCLK Frequency	4	18		MHz	
	TVCLK Frequency		27		MHz	
	VID_CLK Frequency		135		MHz	
t _{CYC}	PCICLK Cycle Time	30			ns	Note 4
t _{HIGH}	PCICLK High Time	11			ns	
t _{LOW}	PCICLK Low Time	11			ns	
	PCICLK Slew Rate	1	4		V/ns	See Figure 6-1 on page 240 and Figure 6-5 on page 241 (known as slew _r /slew _f), Note 5, and Note 6
	PCI_RST# Slew Rate	50			mV/ns	Rising edge only (deasser- tion), Note 6

Table 6-9.	Clock and R	Reset Specifications
------------	-------------	----------------------

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

2. Worst case duty cycle. Duty cycle is a function of PLL post divider. DCLK is programmable to standard video frequencies. Typical jitter < 650 ps peak-to-peak. CLK_14MHZ input jitter < 500 ps peak-to-peak.

- 3. CLK_32K jitter = period of CLK_14MHZ. CLK_32K output frequency = CLK_14MHZ/436.95621.
- 4. Frequency of operation is from DC to 33 MHz but at a single fixed frequency. Operation below 20 MHz is guaranteed by design.
- 5. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in Figure 6-6.

6. Not 100% tested.

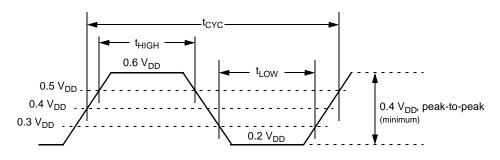


Figure 6-6. 3.3V PCICLK Waveform

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
f _{DCLK}	DCLK Clock Operating Frequency	25		157.5	MHz	Also known as CRT clock
f _{REF}	Input Reference Frequency		14.318		MHz	
t _{RISE/FALL}	Output Clock Rise/Fall Time			2	ns	@ 25 MHz
	Jitter, Peak-to-Peak	-300		300	ps	
DC	Duty Cycle	40/60		60/40	%	

Table 6-10. DCLK PLL Specifications

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

Symbol	Parameter	Min	Max	Units	Comments (Note 1)			
t _{SMI}	Rising PCICLK to SMI#	3	16	ns				
t _{SUSP#}	Rising PCICLK to SUSP#	6	9	ns				
t _{SUSPASetup}	SUSPA# Setup to Rising PCICLK	0		ns				
t _{SUSPAHold}	SUSPA# Hold from Rising PCICLK	3		ns				
	IRQ13 Input	Asynchrono	ous input for II	RQ decode.				
	INTR Output	Asynchronous output from IRQ decode.						
	SMI# Output	Asynchrono	ous output fro	m SMI decoo	le.			

Table 6-11. CPU Interface Timing

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

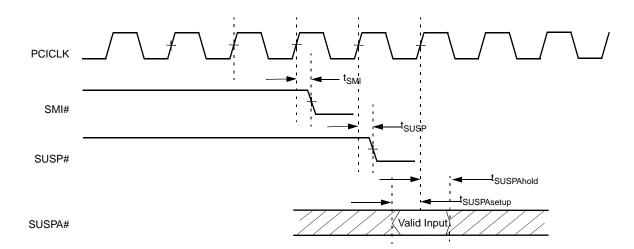
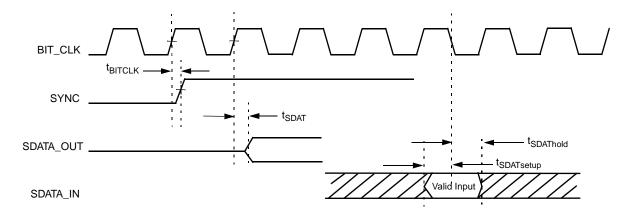



Figure 6-7. CPU Interface Timing

Symbol	Parameter	Min	Max	Units	Comments (Note 1)
t _{BITCLK}	Rising BIT_CLK to SYNC		15	ns	
t _{SDAT}	Rising BIT_CLK to SDATA_OUT		15	ns	
t _{SDATsetup}	SDATA_IN setup to falling BIT_CLK	10		ns	
t _{SDAThold}	SDATA_IN hold from falling BIT_CLK	10		ns	

Table 6-12. Audio Interface Timing

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

······································								
Symbol	Parameter	Min	Max	Unit	Comments (Note 1)			
Full Speed Mode								
t _R	Rise Time	4	20	ns				
t _F	Fall Time	4	20	ns				
Low Speed	Mode							
t _R	Rise Time	75		ns				
			300		C _L = 350 pF			
t _F	Fall Time	75		ns				
			300		C _L = 350 pF			

Table 6-13. USB Timing

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

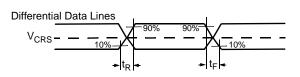


Figure 6-9. USB Timing

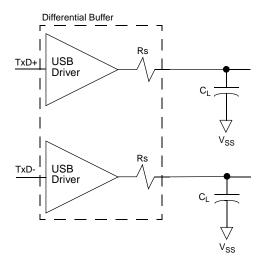


Figure 6-10. USB Test Circuit

6.6 Display Characteristics

The following tables and figures describe the characteristics of the CRT, TFT/TV and MPEG Display interfaces. It is divided into the following categories:

- CRT Display Recommended Operating Conditions
- CRT Display Analog (DAC) Characteristics

- Display Miscellaneous Characteristics
- CRT, TFT/TV and MPEG Display Timing

Additionally, Figure 6-13 on page 249 is provided showing a typical video connection diagram.

Symbol	Parameter	Min	Тур	Max	Units	Comments
AV _{DD}	Power Supply connected to AV_{DD1} , AV_{DD2} and AV_{DD3}	3.14	3.3	3.46	V	
RL	Output Load on each of the pins IOUTR, IOUTG and IOUTB		37.5		Ohms	R1, R2, and R3 as shown in Figure 6-13 on page 249
I _{OUT}	Output Current on each of the pins IOUTR, IOUTG and IOUTB			21	mA	
R _{SET}	Value of the full-scale adjust resistor connected to IREF		680		Ohms	This resistor should have a 1% tolerance.
VEXT _{REF}	External voltage reference con- nected to the EXTVREFIN pin		1.235		V	

Table 6-14. CRT Display Recommended Operating Conditions

Table 6-15. CRT Display Analog (DAC) Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
V _{OM}	Output Voltage			0.735	V	
V _{OC}	Output Current			20	mA	
INL	Integral Linearity Error			+/-1	LSB	
DNL	Differential Linearity Error			+/-1	LSB	
t _{FS}	Full Scale Settling Time			2.5	ns	
	DAC-to-DAC matching			5	%	
	Power Supply Rejection			0.7	%	@ 1 KHz
t _{RISE}	Output Rise Time			3.8	ns	Note 2 and Note 3
t _{FALL}	Output Fall Time			3.8	ns	Note 2 and Note 4

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

2. Timing measurements are made with a 75 ohm doubly-terminated load, with VEXT_{REF} = 1.235V and R_{SET} = 680 ohms.

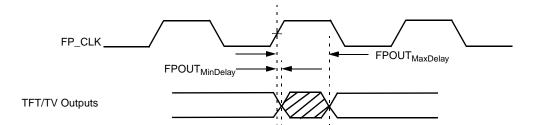
3. 10% to 90% of full-scale transition.

4. Full-scale transition: time from output minimum to maximum, not including clock and data feedthrough.

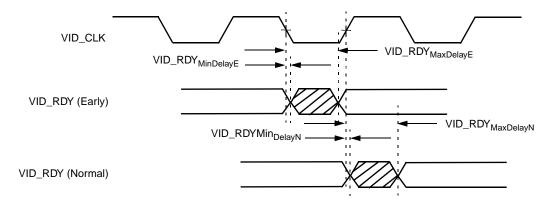
Symbol	Parameter	Min	Тур	Max	Units	Comments
	White Level Relative to Black	16.74	17.62	18.50	mA	
IAV _{DD}	AV _{DD} Supply Current		60		mA	(Static)

Table 6-16. Display Miscellaneous Characteristics

Table 6-17. CRT, TFT/TV and MPEG Display Timing


Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
Setup/Hold Time						•
t _{DisplaySetup}	Display Setup to Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	2.2			ns	See Figure 6-1 on page 240.
t _{DisplayHold}	Display Hold from Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	1.0			ns	
t _{VID_VALSetup}	VID_VAL Setup to Rising VID_CLK	3.0			ns	See Figure 6-1 on
t _{VID_VALHold}	VID_VAL Hold from Rising VID_CLK	0.8			ns	page 240.
t _{VID_DATASetup}	VID_DATA Setup to Rising VID_CLK	3.0			ns	See Figure 6-1 on
t _{VID_DATAHold}	VID_DATA Hold from Rising VID_CLK	0.8			ns	page 240, Note 2
Clock Specification						
t _{VID_CLKMin}	VID_CLK Minimum Clock Period	7.4			ns	
Delay Time						•
FPOUT _{MinDelay} FPOUT _{MaxDelay}	TFT/TV Output Delays from FP_CLK: FP_DATA[17:0], FP_HSYNC_OUT, FP_VSYNC_OUT, FP_DISP_ENA_OUT, FP_ENA_VDD, FP_ENA_BKL, FP_CLK_EVEN	0.5		4.5	ns	Note 3
VID_RDY _{MinDelayE} , VID_RDY _{MaxDelayE}	VID_RDY Delay from Falling VID_CLK (early mode)	3.0		10.5	ns	Note 4
VID_RDY _{MinDelayN} , VID_RDY _{MaxDelayN}	VID_RDY delay from rising VID_CLK (normal mode)	3.0		9.5	ns	

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.


2. Also applies to PIXEL[23:16] when in 16-bit video mode.

3. All flat panel applications use the falling edge of FP_CLK to latch their data.

4. The mode for VID_RDY (early or normal) is set with bit 25 of the Video Configuration Register (F4BAR+Memory Offset 00h[25]).

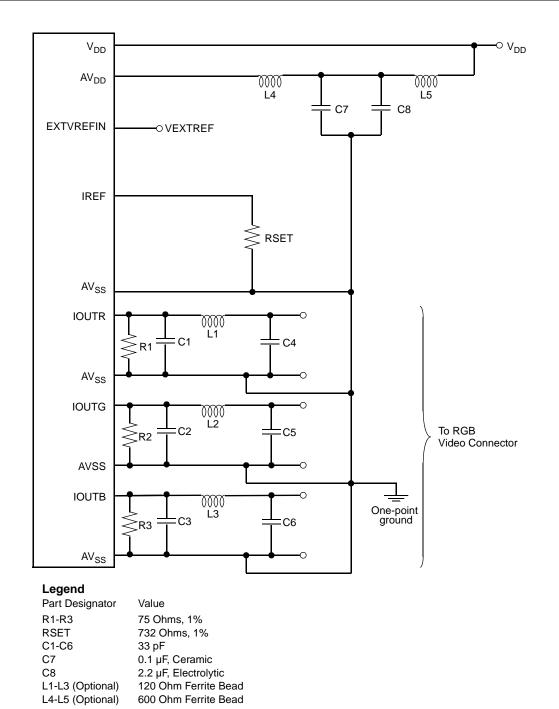


Figure 6-13. Typical Video Connection Diagram

AMD Revision 1.1

Test Mode Information

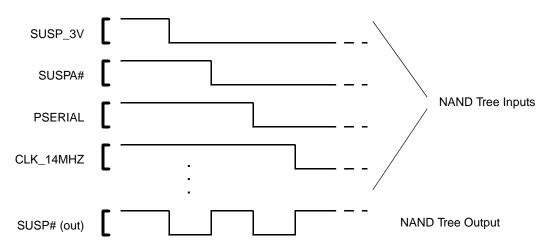
The CS5530A provides two test modes:

- 1) The NAND tree test mode for board-level automatic test equipment (ATE).
- 2) The I/O test mode for system design testing.

7.1 NAND Tree Test Mode

The NAND tree mode is used to test input and bidirectional pins which will be part of the NAND tree chain. Table 7-1 shows how to set the device for the NAND tree test.

The output of the NAND tree is multiplexed on the SUSP# output (pin K26). After a POR# (pin K24) pulse, all inputs in Table 7-2 on page 252 are initialized to a "1" and then are successively pulled and held to a "0" starting with SUSP_3V (the first input pin in the tree). The output wave-


form on SUSP# will toggle on each input change as shown in Figure 7-1.

POR# is included as an input during the NAND Tree test, after being used to trigger the test first. IRQ7 (pin AD14) and TEST (pin D3) must be held high throughout the test.

Table 7-1.	NAND	Tree	Test	Selection

Signal Name	Pin No.	Setting
POR#	K24	0 -> 1
TEST	D3	1
IRQ7	AD14	1

Initial Conditions: TEST = 1, IRQ7 = 1, POR# = (first 0, then 1), all inputs '1'

The following pins are not in the NAND tree: AEN, BALE, CPU_RST, DACK[3:0]#, DACK[7:5]#, DCLK, DDC_SCL, D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, EXTVREFIN, FP_CLK, FP_CLK_EVEN, FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD, FP_HSYNC_OUT, FP_VSYNC_OUT, GPCS#, GPORT_CS#, HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#, IDE_DACK[1:0]#, IDE_IOR[1:0]#, IDE_IOW[1:0]#, IDE_RST#, IOUTB, IOUTG, IOUTR, IREF, IRQ7, ISACLK, KBROMCS#, PC_BEEP, PCI_RST#, PLLTEST, SA_LATCH, SDATA_OUT, SMEMR#/RTCALE, SMEMW#/RTCCS#, SUSP#, SYNC, TEST, VID_RDY, VSYNC_OUT, all NCs, and all analog/digital supplies.

Figure 7-1. Example: NAND Tree Output Waveform

Signal Name	Pin No.	
SUSP_3V	L24	
SUSPA#	L25	
PSERIAL	L26	
CLK_14MHZ	P24	
SMI#	P25	
INTR	P26	
IRQ13	R23	
IDE_DATA7	U23	
IDE_DATA6	U24	
IDE_DATA8	V24	
IDE_DATA10	V25	
IDE_DATA5	W26	
IDE_DATA9	Y25	
IDE_DATA11	Y24	
IDE_DATA4	AA26	
IDE_DATA12	AA25	
IDE_DATA3	AB26	
IDE_DATA1	AA24	
IDE_DATA13	AB25	
IDE_DATA2	AB24	
IDE_DATA0	AC26	
IDE_DATA14	AC25	
IDE_DATA15	AB23	
IDE_DREQ1	AC24	
IDE_DREQ0	AD26	
IDE_IORDY0	AD25	
IDE_IORDY1	AE26	
SA14/SD14	AD24	
SA15/SD15	AE25	
GPIO0	AC22	
GPIO1	AE24	
GPIO2	AF25	
GPIO3	AF24	
GPIO4	AD22	
GPIO5	AC21	
GPIO6	AE23	
GPIO7	AF23	
SA13/SD13	AE22	
SA10/SD10	AC20	
DRQ7	AF22	
SA12/SD12	AE21	
SA11/SD11	AF21	
SA9/SD9	AD19	
DRQ6	AE20	
MEMW#	AF20	
MEMR#	AE19	
DRQ5	AD18	
SA8/SD8	AF19	
DRQ0	AE18	
IRQ11	AF18	
IRQ14	AC17	
IRQ15	AD17	
SBHE#	AE17	
	11	L

Table 7-	2. NAND
Signal Name	Pin No.
IRQ12	AF17
IRQ10	AE16
IOCS16#	AF16
MEMCS16#	AC15
IRQ4	AE15
TC	AF15
IRQ3	AC14
IRQ8#	AE14
IRQ6	AF14
DRQ3	AD13
IRQ5	AE13
IRQ1	AF13
DRQ1	AD12
IOR#	AE12
SA17	AF12
IOW#	AC11
SA16	AD11
SA10	AE11
IOCHRDY SA19	AF11 AD10
	-
DRQ2	AE10
ZEROWS#	AF10
SA2/SD2	AD9
SA0/SD0	AE9
SA4/SD4	AF6
SA1/SD1	AE6
SA6/SD6	AF5
SA3/SD3	AC6
IRQ9	AE5
SA5/SD5	AD5
SA7/SD7	AF4
CLK_32K	AE3
OVER_CUR#	W3
POWER_EN	V4
USBCLK	W1
BIT_CLK	V2
SDATA_IN	U4
DDC_SDA	M4
FP_DATA12	L1
FP_DATA0	K3
FP_DATA13	K2
FP_DATA14	K1
FP_DATA2	J3
FP_DATA1	J2
FP_DATA3	J1
FP_DATA15	H2
FP DATA16	H3
FP DATA4	H1
FP DATA8	G1
FP DATA5	G2
FP DATA7	G2 G3
FP_DATA7	G3 G4
	64

FP_DATA9

F1

AD5

Table 7-2. NAND Tree Test Mode Pins				
nal Name	Pin No.] [Signal Name	Pin No.
IRQ12	AF17	1	FP_DATA17	F3
IRQ10	AE16	1 [FP_DATA10	E2
DCS16#	AF16	1	FP_DATA11	D1
MCS16#	AC15	1	FP_VSYNC	C1
IRQ4	AE15	1	FP_HSYNC	C2
TC	AF15	1	ENA_DISP	B1
IRQ3	AC14	1	TVCLK	B2
IRQ8#	AE14	1 1	PIXEL0	A1
IRQ6	AF14	1 1	PIXEL3	C4
DRQ3	AD13	1 1	PIXEL6	D5
IRQ5	AE13	1 1	PIXEL4	B3
IRQ1	AF13	1	PIXEL1	A2
DRQ1	AD12	1 1	PIXEL2	A3
IOR#	AE12	1	PIXEL11	C5
SA17	AF12	1	PIXEL9	D6
IOW#	AC11	1 1	PIXEL5	B4
SA16	AD11	1 1	PIXEL7	A4
SA18	AE11	1	HSYNC	C6
CHRDY	AF11	1 1	VSYNC	B5
SA19	AD10	1 1	PIXEL13	D7
DRQ2	AE10	1 1	PIXEL14	C7
ROWS#	AF10	1 1	PIXEL10	A5
A2/SD2	AD9	1 1	PIXEL8	B6
A0/SD0	AE9	1 1	VID_CLK	A6
A4/SD4	AF6	1 1	PIXEL17	C8
A1/SD1	AE6	1 1	VID_VAL	B7
A6/SD6	AF5	1 1	PIXEL12	A7
A3/SD3	AC6	1 1	PIXEL15	B8
IRQ9	AE5	1 1	PIXEL20	D9
A5/SD5	AD5		PIXEL21	C9
A7/SD7	AF4		PIXEL16	A8
LK_32K	AE3		PIXEL18	B9
ER CUR#	W3		PIXEL19	A9
WER_EN	VV3 V4		PIXEL19 PIXEL23	C10
ISBCLK	 W1		VID_DATA4	
IT_CLK	VV1 V2	┥┝	VID_DATA4 VID_DATA3	D11
	V2 U4	┥┝	_	C11 B11
DATA_IN		┥┝	PIXEL22 VID DATA0	B11
DC_SDA	M4	┥┟	—	A11
_DATA12 P_DATA0	L1 K2	┥┟	VID_DATA7	C12
	K3 K2	┥┝	VID_DATA6 VID_DATA5	B12
_DATA13	K2 K1	┥┝	_	A12
_DATA14		┥┝	VID_DATA1	C13
P_DATA2	J3	┥┝	VID_DATA2	B13
P_DATA1	J2	┥┝	PCLK	A13
P_DATA3	J1	┥┝	AD1	D14
_DATA15	H2	4	INTD#	B14
_DATA16	H3	4	INTA#	A14
P_DATA4	H1	┥┝	INTB#	D15
P_DATA8	G1	┥╷	INTC#	C15
P_DATA5	G2	4	AD3	B15
P_DATA7	G3	4	AD0	A15
P_DATA6	G4		AD2	C16

Signal Name	Pin No.
AD7	A16
AD4	C17
AD6	B17
AD9	A17
AD8	D18
C/BE0#	B18
AD12	A18
AD11	B19
AD10	A19
AD15	A20
AD14	B20
AD13	C20
PAR	A21
C/BE1#	B21
SERR#	A22
PERR#	B22
LOCK#	C22
DEVSEL#	A23
TRDY#	B23
FRAME#	C23
C/BE2#	A24
IRDY#	B24
AD17	A25
AD18	B25
AD16	A26
GNT#	D24
AD21	C25
AD19	B26
AD22	C26
AD20	E24
AD26	D25
C/BE3#	D26
AD23	E25
AD25	G24
STOP#	E26
AD24	F25
AD27	F26
AD28	G25
AD29	G26
AD31	H25
AD30	J24
HOLD_REQ#	H26
REQ#	J25
PCICLK	J26
POR#	K24

B16

7.2 I/O Test

This test affects all output and bidirectional pins. To trigger the I/O test, set the TEST and IRQ[3:7] pins according to Table 7-3, while holding POR# low. The test begins when POR# is brought high. Starting with the next rising edge of PCICLK, the states listed in Table 7-4 are entered by all digital output and I/O pins on successive PCICLK pulses:

Signal Name	Pin No.	Setting
POR#	K24	Х
TEST	D3	1
IRQ3	AC14	0
IRQ4	AE15	1
IRQ5	AE13	1
IRQ6	AF14	0
IRQ7	AD14	1

Table 7-3. I/O Test Selection

Table 7-4. I/O Test Sequence

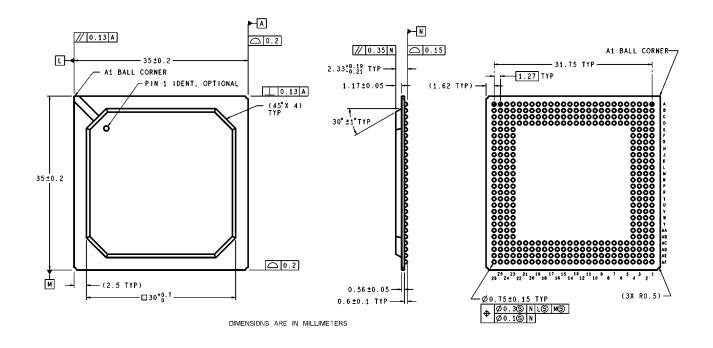
Clock #	Output Pin States
Before 1	Undefined
1	Floating
2	High
3	Low
4	Floating
5	Low
6	High
7	Floating
8 and beyond	Undefined

The following pins are INCLUDED in this test:

AD[31:0], AEN, BALE, C/BE[3:0]#, CLK_32K, CPU_RST, DACK[7:5,3:0], DDC_SCL, DDC_SDA, DEVSEL#, FP_CLK, FP_CLK_EVEN, FP_DATA[17:0], FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD, FP_HSYNC_OUT, FP_VSYNC_OUT, FRAME#, GPCS#, GPIO[7:0], GPORT_CS#, HOLD_REQ#, HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#, IDE_DACK[1:0]#, IDE_DATA[15:0], IDE_IOR[1:0]#, IDE_IOW[1:0]#, IDE_RST#, INTR, IOCHRDY, IOR#, IOW#, IRDY#, ISACLK, KBROMCS#, LOCK#, MEMCS16#, MEMR#, MEMW#, PAR, PCI_RST#, PC_BEEP, PERR#, POWER_EN, REQ#, SA/SD[15:0], SA[19:16], SA_LATCH, SBHE#, SDATA_OUT, SERR#, SMEMR#, SMEMW#, SMI#, STOP#, SUSP#, SUSP_3V, SYNC, TC, TRDY#, VID_RDY, VSYNC_OUT

Revision 1.1

Note: The SA/SD and SA bus, IOR#, IOW#, MEMR#, MEMW# and SBHE# pins never actually float, because they have internal weak pull-up devices that remain active.


The following pins are EXCLUDED from this test:

- Input-only pins: BIT_CLK, CLK_14MHZ, DRQ[7:5,3:0], ENA_DISP, FP_HSYNC, FP_VSYNC, GNT#, HSYNC, IDE_DREQ[1:0], IDE_IORDY[1:0], INTA#, INTB#, INTC#, INTD#, IOCS16#, IRQ1, IRQ[7:3], IRQ8#, IRQ[15:9], OVER_CUR#, PCICLK, PCLK, PIXEL[23:0], POR#, PSERIAL, SDATA_IN, SUSPA#, TEST, TVCLK, USBCLK, VID_CLK, VID_DATA[7:0], VID_VAL, VSYNC, ZEROWS#.
- USB pins: D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, AV_{DD}_USB, AV_{SS}_USB.
- Time-critical output: DCLK.
- Analog pins (including supplies): EXTVREFIN, IOUTB, IOUTG, IOUTR, IREF, PLLAGD, PLLDGN, PLLDVD, PLLTEST, AV_{DDx}, AV_{SSx}.
- Digital supply pins (V_{DD}, V_{SS}) and No Connects (NC).

AMD Revision 1.1

Physical Dimensions

The physical dimensions for the 352 PBGA (Plastic Ball Grid Array) package are provided in Figure 8-1.

UCE352A (Rev B)

Figure 8-1. 352 PBGA Mechanical Package Outline

AMD Revision 1.1

Support Documentation

A.1 Revision History

This document is a report of the revision/creation process of the architectural specification for the CS5530A companion device. Any revisions (i.e., additions, deletions, parameter corrections, etc.) are recorded in the table(s) below.

Revision # (PDF Date)	Revisions / Comments
0.1 (4/2/00)	Completed formatting first-pass of spec. Current spec is updated version of CS5530 data book with additional inputs from engineering. Differences between this spec's revision and the CS5530 data book are denoted with a change bar in the margin. Still need to proof-read for "ripple effects" made by engineering changes for next rev.
0.2 (6/16/00)	Corrections from Issues 1.3.
0.3 (6/27/00)	Further corrections from Issues 1.3. Partly indexed.
0.4 (7/5/00)	Corrections from Issues 1.3 and 1.5. Some issues remain to be resolved. Index markers inserted through AT chapter.
0.5 (7/19/00)	TME/Tech Pubs edits. See document revision 0.5 for revision history.
0.6 (8/7/00)	TME/Tech Pubs edits. See document revision 0.6 for revision history details.
0.7(9/18/00)	TME/Tech Pubs/Engr edits. See document revision 0.7 for revision history details.
	Note: Next revision to include section on "recommended soldering parameters" in Section 8.0 "Physical Dimensions".
1.0 (11/10/00)	TME/Tech Pubs/Engr edits. See document revision 1.0 for revision history details.
	Note: Will create separate applications note on "recommended soldering parameters" as opposed to adding as subsection in data book.
1.1 (5/1/01)	TME/Engr edits. See Table A-2 for details.
	Note: Will not create separate applications note on "recommended soldering parameters". Applications is fulfilling any customer inquiries with a document supplied by the Quality Group.

Table A-1. Revision History

	Table A-2.	Edits to	Create	Revision 1.1
--	------------	----------	--------	--------------

Section	Description		
Section 3.0 "Signal D	efinitions"		
Section 3.2.2 "Clock Interface"	 Changed last sentence of DCLK signal description on page 29. Did say: "However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock." Now says: "However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency." 		
Section 3.2.11 "Dis- play Interface"	• Changed resistor value in IREF signal description (from 732 ohm to 680 ohm) on page 41.		

Table A-2.	Edits to Create	Revision 1.1	(Continued)

Section	Description
Section 4.8 "Display S	Subsystem Extensions"
Section 4.8.3 "Video Overlay"	 Added sentence to last paragraph on page 137: — "However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings."
	 Section 4.8.5.3 "Flat Panel Support" on page 139 Added subsection titled "Flat Panel Power-Up/Down Sequence".
Section 6.0 "Electrica	I Specifications"
Section 6.5 "AC Char- acteristics"	 Table 6-8 "AC Characteristics" on page 239: — Removed 8 mA, DOTCLK, and FP_CLK t_{LH} and t_{HL} parameters.
	 Table 6-10 "DCLK PLL Specifications" on page 243: — Removed Jitter, Sigma One parameter from table (completely).
	 Table 6-11 "CPU Interface Timing" on page 243: — Changed t_{SMI} max value from 9 ns to 16 ns. — Changed t_{SUSPAHold} min value from 1 ns to 3 ns.
	 Table 6-15 "CRT Display Analog (DAC) Characteristics" on page 246: Added V_{OM} max value of 0.735V. Added V_{OC} max value of 20 mA. Added t_{FS} max value of 2.5 ns. Removed C_{OUT} parameter from table (completely). Changed t_{RISE} max value from 3 to 3.8 ns. Added t_{FALL} max value of 3.8 ns. Changed R_{SET} value in Note 2 from 732 ohms to 680 ohms.
	 Table 6-17 "CRT, TFT/TV and MPEG Display Timing" on page 247: Changed t_{DisplaySetup} min value from 2.5 ns to 2.2 ns. Changed t_{VID_VALSetup} min value from 3.75 ns to 3.0 ns. Changed t_{VID_DATASetup} min value from 0 ns to 0.8 ns. Changed t_{VID_DATASetup} min value from 0 ns to 0.8 ns. Changed t_{VID_DATAHold} min value from 0 ns to 0.8 ns. Changed t_{VID_CLKMin} parameter description from "VID_CLK Minimum Pulse Width" to "VID_CLK Minimum Clock Period". Changed FPOUT_{MinDelay}, FPOUT_{MaxDelay} min value from 0.1 ns to 0.5 and max value from 5.2 ns to 4.5 ns.

www.amd.com

One AMD Place P.O. Box 3453, Sunnyvale, CA 94088-3453 USA Tel: 408-732-2400 or 800-538-8450 TWX: 910-339-9280 TELEX: 34-6306 TECHNICAL SUPPORT

USA & Canada: 800-222-9323 or 408-749-5703 USA & Canada: PC Microprocessor: 408-749-3060 USA & Canada Email: pcs.support@amd.com

Latin America Email: spanish.support@amd.com Argentina: 001-800-200-1111, after tone 800-859-4478 Chile: 800-532-853 Mexico: 95-800-222-9323 Europe & UK: +44–0-1276-803299 Fax: +44–0-1276-803298 France: 0800-908-621 Germany: +49–89-450-53199 Italy: 800-877224 Europe Email: euro.tech@amd.com

Far East Fax: 852-2956-0588 Japan Fax: 81-3-3346-7848