

# SANYO Semiconductors **DATA SHEET**

# LA6541 — For Compact Disk Four-Channel Bridge (BTL) Driver

#### Overview

The LA6541 is a 4-channel bridge (BTL) driver for CD players.

#### **Functions**

- Bridge-connection (BTL) power amplifier, 4 channels
- IO max 700mA
- With muting function (Operable on all amplifier outputs of Amp 1 to Amp 8)
- 5.0V regulator built in (Output transistor connected externally)
- Reset circuit built in (Reset output delay time settable by using an external capacitor)
- Thermal shutdown circuit built in

### **Specifications**

**Maximum Ratings** at Ta = 25°C

| Parameter                   | Symbol              | Conditions           | Ratings     | Unit |
|-----------------------------|---------------------|----------------------|-------------|------|
| Supply voltage              | V <sub>CC</sub> max |                      | 14          | V    |
| Allowable power dissipation | Pd max              | Specified substrate* | 2.3         | W    |
| Maximum input voltage       | V <sub>IN</sub> B   |                      | 13          | V    |
| MUTE pin voltage            | VMUTE               |                      | 13          | V    |
| Operating temperature       | Topr                |                      | -20 to +75  | °C   |
| Storage temperature         | Tstg                |                      | -55 to +150 | °C   |

<sup>\*</sup> Substrate size: 114.3×76.1×1.5mm³, Material: glass epoxy.

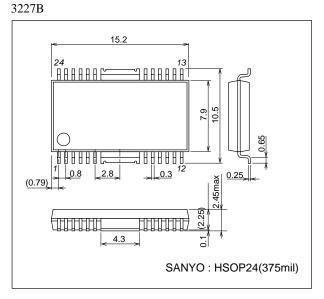
#### **Recommended Operating Conditions** at Ta = 25°C

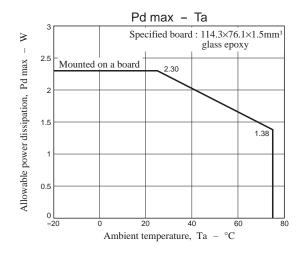
| Parameter                   | Symbol           | Conditions | Ratings   | Unit |
|-----------------------------|------------------|------------|-----------|------|
| Operating voltage           | V <sub>CC</sub>  |            | 5.6 to 13 | V    |
| Reset output source current | IORH             |            | 0 to 200  | μΑ   |
| Reset output sync current   | I <sub>ORL</sub> |            | 0 to 2    | mA   |

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

#### SANYO Semiconductor Co., Ltd.

TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN


#### **Electrical Characteristics** at Ta = 25°C, $V_{CC} = 8.0$ V, $V_{REF} = 2.5$ V


| Doromotor                   | Cumbal              | One Hillians                                                                             | Ratings |      |                      |      |
|-----------------------------|---------------------|------------------------------------------------------------------------------------------|---------|------|----------------------|------|
| Parameter                   | Symbol              | Symbol Conditions                                                                        |         | typ  | max                  | Unit |
| Overall                     |                     |                                                                                          |         |      |                      |      |
| No-load current drain 1     | I <sub>CC</sub> 1   | All amp outputs ON (MUTE HI)                                                             |         | 20   | 40                   | mA   |
| No-load current drain 2     | I <sub>CC</sub> 2   | All amp outputs OFF (MUTE LOW)                                                           |         | 15   | 35                   | mA   |
| Output offset voltage 1     | V <sub>OF</sub> 1   | Amp 1-2 (V <sub>O</sub> 1-V <sub>O</sub> 2), Amp 3-4 (V <sub>O</sub> 3-V <sub>O</sub> 4) | -50     |      | 50                   | mV   |
| Output offset voltage 2     | V <sub>OF</sub> 1   | Amp 5-6 (V <sub>O</sub> 5-V <sub>O</sub> 6), Amp 7-8 (V <sub>O</sub> 7-V <sub>O</sub> 8) | -50     |      | 50                   | mV   |
| Buffer input voltage range  | I <sub>B</sub> IN   |                                                                                          | 1.5     |      | V <sub>CC</sub> -1.5 | V    |
| Input voltage rang          | VIN                 |                                                                                          | 1.0     |      | V <sub>CC</sub> -1.5 | V    |
| Output voltage source       | V <sub>O</sub> 1    | R <sub>L</sub> = 8.0Ω *1                                                                 | 5.0     | 5.6  |                      | V    |
| Output voltage sink         | V <sub>O</sub> 2    | R <sub>L</sub> = 8.0Ω *2                                                                 |         | 1.8  | 2.4                  | V    |
| Closed-circuit voltage gain | VG                  | Bridge amp                                                                               |         | 9    |                      | dB   |
| Slew rate                   | SR                  |                                                                                          |         | 0.15 |                      | V/μs |
| Mute ON voltage             | VMUTE               | *3                                                                                       |         | 1.2  |                      | ٧    |
| Power supply block (2SB632h | ( used)             | •                                                                                        |         |      |                      |      |
| Output voltage              | V <sub>OUT</sub> 1  | I <sub>O</sub> = 200mA                                                                   | 4.75    | 5.0  | 5.25                 | V    |
| Line regulation             | ΔV <sub>O</sub> LN1 | 5.6V ≤ V <sub>IN</sub> 1 ≤ 12V                                                           |         | 20   | 100                  | mV   |
| Load regulation             | ΔV <sub>O</sub> LD1 | 5mA ≤ I <sub>O</sub> ≤ 200mA                                                             |         | 50   | 150                  | mV   |
| Reset block                 |                     | ·                                                                                        |         |      |                      |      |
| H reset output voltage      | V <sub>O</sub> RH   | I <sub>O</sub> RH = 200μA, Cd Pin open                                                   | 4.73    | 4.98 | 5.23                 | V    |
| L reset output voltage      | V <sub>O</sub> RL   | I <sub>O</sub> RL = 2mA, Cd-GND shorted                                                  |         | 100  | 200                  | mV   |
| Reset threshold voltage     | V <sub>RT</sub>     | *4                                                                                       |         | 4.3  |                      | V    |
| Reset hysteresis voltage    | VHYS                | *5                                                                                       | 40      | 100  | 200                  | mV   |
| Reset output delay time     | td                  | Cd = 0.1μF                                                                               |         | 10   |                      | ms   |

Note  $^*1$ : Voltage relative to GND when a load of  $8\Omega$  is connected across bridge amplifier outputs (source)

## **Package Dimensions**

unit: mm (typ)






 $<sup>^{\</sup>star}2$  : Voltage relative to GND when a load of  $8\Omega$  is connected across bridge amplifier outputs (sink)

<sup>\*3 :</sup> MUTE HI supports all amplifier outputs ON ; MUTE LOW supports all amplifier outputs OFF.

 $<sup>^{\</sup>star}4$ : 5V supply voltage when the reset output is brought to LOW

<sup>\*5 :</sup> Difference between 5V supply voltage when the reset output is brought to LOW and 5V supply voltage when the reset output is brought to HI

# **Block Diagram and Sample Application Circuit**



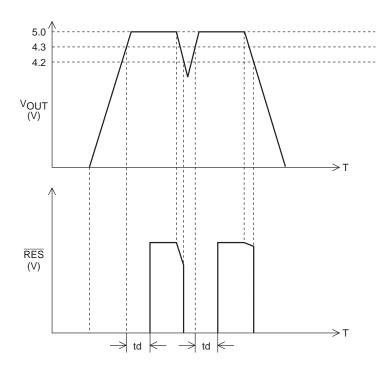
#### LA6541

#### **Pin Functions**

| Pin No. | Symbol            | Pin descriptions                                                       |  |  |  |
|---------|-------------------|------------------------------------------------------------------------|--|--|--|
| 1       | Vcc               | Power supply (Shorted to pin 24)                                       |  |  |  |
| 2       | MUTE              | All BTL amplifier outputs ON/OFF                                       |  |  |  |
| 3       | V <sub>IN</sub> 1 | BTL AMP 1 input pin                                                    |  |  |  |
| 4       | VG1               | BTL AMP 1 input pin (For gain adjustment)                              |  |  |  |
| 5       | V <sub>O</sub> 1  | BTL AMP 1 input pin (Noninverting side)                                |  |  |  |
| 6       | V <sub>O</sub> 2  | BTL AMP 1 input pin (Inverting side)                                   |  |  |  |
| 7       | V <sub>O</sub> 3  | BTL AMP 2 input pin (Inverting side)                                   |  |  |  |
| 8       | V <sub>O</sub> 4  | BTL AMP 2 input pin (Noninverting side)                                |  |  |  |
| 9       | VG2               | BTL AMP 2 input pin (For gain adjustment)                              |  |  |  |
| 10      | V <sub>IN</sub> 2 | BTL AMP 2 input pin                                                    |  |  |  |
| 11      | REG-OUT           | External transistor collector (PNP) connection. 5V power supply output |  |  |  |
| 12      | REG-IN            | External transistor (PNP) base connection                              |  |  |  |
| 13      | RES               | Reset output                                                           |  |  |  |
| 14      | CD                | Reset output delay time setting (Capacitor connected externally)       |  |  |  |
| 15      | V <sub>IN</sub> 3 | BTL AMP 3 input pin                                                    |  |  |  |
| 16      | VG3               | BTL AMP 3 input pin (For gain adjustment)                              |  |  |  |
| 17      | V <sub>O</sub> 5  | BTL AMP 3 output pin (Noninverting side)                               |  |  |  |
| 18      | V <sub>O</sub> 6  | BTL AMP 3 output pin (Inverting side)                                  |  |  |  |
| 19      | V <sub>O</sub> 7  | BTL AMP 4 output pin (Inverting side)                                  |  |  |  |
| 20      | V <sub>O</sub> 8  | BTL AMP 4 output pin (Noninverting side)                               |  |  |  |
| 21      | VG4               | BTL AMP 4 output pin (For gain adjustment)                             |  |  |  |
| 22      | V <sub>IN</sub> 4 | BTL AMP 4 output pin                                                   |  |  |  |
| 23      | VREF              | Level shift circuit's reference voltage application                    |  |  |  |
| 24      | Vcc               | Power supply (Shorted to pin 1)                                        |  |  |  |

Note: The Gnd (the lowest potential) must be located at the center of the pin assignment on the frame.

#### **Pin Description**


|                                           | 0.1011                                                                                                                                               | I            |                 |                                                                                                                                 |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Pin No.                                   | Symbol                                                                                                                                               | Pin function | Description     | Equivalent circuit                                                                                                              |
| 3<br>10<br>15<br>22<br>4<br>9<br>16<br>21 | V <sub>IN</sub> 1<br>V <sub>IN</sub> 2<br>V <sub>IN</sub> 3<br>V <sub>IN</sub> 4<br>VG1<br>VG2<br>VG3<br>VG4                                         | Input        | Each input pin  | V <sub>IN</sub> * O V <sub>CC</sub> V <sub>IN</sub> * O V <sub>CC</sub> V <sub>IN</sub> * O O O O O O O O O O O O O O O O O O O |
| 5, 6<br>7, 8<br>17, 18<br>19, 20          | V <sub>O</sub> 1, V <sub>O</sub> 2<br>V <sub>O</sub> 3, V <sub>O</sub> 4<br>V <sub>O</sub> 5, V <sub>O</sub> 6<br>V <sub>O</sub> 7, V <sub>O</sub> 8 | Output       | Each output pin | V <sub>O*</sub> O GND                                                                                                           |
| 2                                         | MUTE                                                                                                                                                 | MUTE         | MUTE            | VCC OVCC OVCC OVCC OVCC                                                                                                         |

# **Truth Table**

| Input |      | CH1              |                  | CH2              |                  | CH3              |                  | CH4              |                  |
|-------|------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|       | MUTE | V <sub>O</sub> 1 | V <sub>O</sub> 2 | V <sub>O</sub> 3 | V <sub>O</sub> 4 | V <sub>O</sub> 5 | V <sub>O</sub> 6 | V <sub>O</sub> 7 | V <sub>O</sub> 8 |
|       |      | (Amp 1)          | (Amp 2)          | (Amp 3)          | (Amp 4)          | (Amp 5)          | (Amp 6)          | (Amp 7)          | (Amp 8)          |
| Н     | Н    | Н                | ┙                | ┙                | H                | Н                | L                | L                | Η                |
|       | L    | -                | -                | -                | -                | -                | -                | -                | -                |
| L     | Н    | L                | Н                | Н                | L                | L                | Н                | Н                | L                |
|       | L    | -                | -                | -                | -                | -                | -                | -                | -                |

<sup>\* - :</sup> Amplifier output off

#### Reset operation



- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2006. Specifications and information herein are subject to change without notice.