

LA70011, 70011M

Recording/Playback Amplifier for VHS VCRs

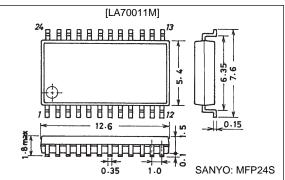
Overview

The LA70011 and LA70011M are recording/playback amplifiers for VHS VCR video signals. When used in combination with the LA71000M and LA71500M Series of video signal processing ICs, they permit Y/C recording without current adjustment.

Features

- Connecting the playback amplifier input directly to the head reduces the number of external elements required.
- The recording amplifiers use a fixed-current drive configuration that yields stable recording characteristics even under changing loads. They include built-in automatic gain control circuits.
- Using the same dimensions and pin assignments as the LA70001 and LA70001M permits the use of the same circuit boards as these earlier chips. The LA70011 can also be mounted at the right end of an LA70020 socket.

Package Dimensions


unit: mm

3067-DIP24S

unit: mm

3112-MFP24S

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V_{CC} max		7.0	V
Maximum power dissipation	Pd max	Ta ≤ 65°C [LA70011]	600	mW
		Ta \leq 65°C [LA70011M] 114.3 \times 76.1 \times 1.6 mm: glass epoxy	500	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended power supply voltage	V _{CC}		5.0	V
Operating power supply voltage range	V _{CC} op		4.8 to 5.5	V

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

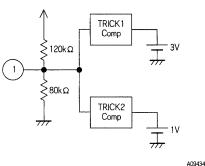
Operating Characteristics at Ta = $25^{\circ}C$

Parameter		Symbol	Conditions		Ratings		Unit
Dieu de cele Manda				min	typ	max	
Playback Mode							
Current drain SP-L CH1		ICCP	Current flowing into pin 13	44	53	60	mA
		G _{VP} 1	-	56	59	62	dB
Voltage gain	SP-H CH2	G _{VP} 2	V _{IN} = 38 mVp-p, f = 1 MHz	56	59	62	dB
	EP-L CH3	G _{VP} 3	-	56	59	62	dB
	EP-H CH4	G _{VP} 4		56	59	62	dB
Voltage gain difference		∆G _{VP} 1	$G_{VP}1 - G_{VP}2$	-1	0	+1	dB
laternada acia difference		∆G _{VP} 2	$G_{VP3} - G_{VP4}$	-1 -1	0	+1	dB
Intermode gain difference	CH1	∆G _{VP} 3	G _{VP} 3 — G _{VP} 1	-1	0	+1	dB
Converted input noise voltage	CH2 CH3 CH4	V _{NIN1} V _{NIN2} V _{NIN3} V _{NIN4}	Ratio of the output from a 1.1 MHz low pass filter to the output with no input under the same conditions as those used for measuring voltage gain.		1.0	1.5	µVrm
Frequency characteristic CH3 CH3 CH4		$\begin{array}{c} \Delta V_{fp} 1 \\ \Delta V_{fp2} \\ \Delta V_{fp3} \\ \Delta V_{fp4} \end{array}$	Ratios of the output for V _{IN} = 38 mVp-p and f = 7 MHz to the voltage gains G_{VP} 1, G_{VP} 2, G_{VP} 3, and G_{VP} 4.	-2.5	0		dB
Secondary harmonic distortion	CH1 CH2 CH3 CH4	$\Delta V_{HDP} 1$ ΔV_{HDP2} ΔV_{HDP3} ΔV_{HDP4}	Ratio of the 8 MHz (secondary) component of the output to its 4 MHz (primary) component for V_{IN} = 38 mVp-p and f = 4 MHz.		-40	-35	dB
Maximum output level	CH1 CH2 CH3 CH4	ΔV _{OMP} 1 ΔV _{OMP2} ΔV _{OMP3} ΔV _{OMP4}	Output level, for f = 1 MHz, at which the ratio of the 3 MHz (tertiary) component to the 1 MHz (primary) component is -30 dB.	1.0	1.2		Vp-p
Crosstalk SP		V _{CR} 1	Ratio of the output for V _{IN} = 38 mVp-p and f = 4 MHz to G_{VP} 1.		-40	-35	dB
		V _{CR} 2	Ratio of the output for V_{IN} = 38 mVp-p and f = 4 MHz to G_{VP} 2.		-40	-35	dB
		V _{CR} 3	Ratio of the output for V_{IN} = 38 mVp-p and f = 4 MHz to G _{VP} 3.		-40	-35	dB
Crosstalk EP		V _{CR} 4	Ratio of the output for V _{IN} = 38 mVp-p and $f = 4$ MHz to G _{VP} 4.		-40	-35	dB
		ΔV_{ODC} 1	CH1 — CH2				
		$\Delta V_{ODC} 2$	CH3 — CH4				
		ΔV _{ODC} 3	CH1 — CH3	100	0	.100	mV
Output DC offset		$\Delta V_{ODC}4$	CH2 — CH4	-100	0	+100	
		$\Delta V_{ODC} 5$	CH1 — CH4				
		$\Delta V_{ODC} 6$	CH2 — CH3				
Envelope detector output pin vol	tage	V _{ENV}	T6 DC level with no signal input.	0.0	08	1.3	V
		V _{ENVSP} 1	T6 DC level at which T7A output level is 175 mVp-p for f = 4 MHz.	2.0	2.5	3.0	v
Envelope detector output pin vol	tage SP	V _{ENVSP} 2	T6 DC level at which T7A output level is 400 mVp-p for $f = 4$ MHz.	4.0	4.5	5.0	v
	to go ED	V _{ENVEP} 1	T6 DC level at which T7A output level is 125 mVp-p for $f = 4$ MHz.	2.0	2.5	3.0	V
Envelope detector output pin vol		V _{ENVEP} 2	T6 DC level at which T7A output level is 300 mVp-p for f = 4 MHz.	4.0	4.5	5.0	V
		V _{COMP} 1	T2 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.		0.4	0.7	V
Comparator output voltage		V _{COMP} 2	T2 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.	4.5	4.8		V
SW-Tr on resistance during play	back	R _{PON} 17 R _{PON} 22	DC difference for 1 and 2 mA current inputs.		4	6	Ω
		TR1-1	Normal \rightarrow Trick1 : *1	3.2		5.0	V
Trick threshold lovel		TR1-2	$Trick1 \rightarrow Normal$	1.2		2.8	V
Trick threshold level		TR2-1	Normal \rightarrow Trick2 : *1	0.0		0.8	V
		TR2-2	$Trick2 \rightarrow Normal$	1.2		2.8	V

Parameter	Symbol	Conditions	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	
	HAP-1	$SP \rightarrow EP$: *1	1.7		5.0	V
HA playback threshold level	HAP-2	EPSP	0.0		1.3	V
	SW30-1	$Lch \rightarrow Hch$: *1	1.2		5.0	V
SW30 threshold level	SW30-2	$Hch\toLch$	0.0		0.8	V
Recording Mode		· · · · ·				
Current drain	ICCR	Current input at pin 13.	52	59	66	mA
REC AGC AMP output level	V _{RSP}	Output level for V_{IN} = 400 mVp-p and f = 4 MHz.	127	135	143	mVp-p
	V _{REP}		104	111	119	mVp-p
Intermode gain difference	∆GVR	VRSP/VREP	1.4	1.7	2.0	dB
	ΔV_{AGC} 1-SP ΔV_{AGC} 1-EP	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 700$ mVp-p.		0.5	1.0	dB
REC AGC AMP control characteristic	ΔV_{AGC} 2-SP ΔV_{AGC} 2-EP	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 100$ mVp-p.	-1.0	-0.5		dB
REC AGC AMP frequency characteristic	$\Delta V_{FRS} \\ \Delta V_{FRE}$	Ratio of f = 7 MHz output to f = 1 MHz output for V_{IN} = 400 mVp-p. *2	-1	0	+1	dB
REC AGC AMP secondary primary distortion	ΔV_{HDRS} ΔV_{HDRE}	Ratio of the 8 MHz (secondary) component of the output to its 4 MHz (primary) component for V_{IN} = 400 mVp-p and f = 4 MHz.		-45	-40	dB
REC AGC AMP maximum output level	$\Delta V_{MOSP} \\ \Delta V_{MOEP}$	Output level, for $f = 4$ MHz, at which the secondary distortion is -35 dB.	20	22		mApp
REC AGC AMP muting attenuation	ΔV_{MRS} ΔV_{MRE}	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 400$ mVp-p.		-45	-40	dB
REC AGC AMP cross modulation relative level	$\Delta V_{CYS} \Delta V_{CYE}$	Output ratio (4M \pm 629k)/4M for V _{IN} = 400 mVp-p and f = 4 MHz at T9A and V _{IN} = 2.4 Vp-p and f = 629 kHz at T10A.		-45	-40	dB
HA REC threshold level	H _{AR} -1	$SP \rightarrow EP:*1$	1.7		5.0	V
	H _{AR} -2	$EP\toSP$	0.0		1.3	V
REC MUTE threshold level	MUTE-1	MUTE OFF \rightarrow MUTE ON *1	1.2		2.8	V
	MUTE-2	$MUTE\;ON\toMUTE\;OFF$	3.2		5.0	V
REC PB threshold level	PB-REC	$PB \rightarrow REC *1$	1.2		5.0	V
	REC-PB	$REC \to PB$	0.0		0.8	V

Notes:* Before measuring the items under Playback Mode, input a 0 to 5.0 V trigger pulse to T5 (H-SYNC), the pin from which the LA70011 takes its T3 (HA) control switch timing.
* The resistance between pins 13 and 14 must be accurate to within 1.0%.
*1. These are voltage application points.
*2. Apply a DC voltage of approximately 1.8 V to the AGC wave detector filter pin (pin 15) to fix the AGC amplifier gain.
*3. Apply a DC voltage to the REC-CUR-Adj pin (pin 12) and adjust the output level.

Pin Descriptions

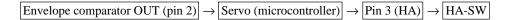

Pin Number	Pin Name	Stand	dard DC Voltage (V)	Equivalent Circuit	Notes
1	TRICK-H			VCC 120kΩ 120kΩ Trick1 3V Comp Trick2 1V J J A0941B	Trick1 3.0 V NORMAL 1.0 V Trick2
2	COMP-OUT	PB	H: min. 4.5 V L: max. 0.7 V Open		EP > SP ENV High
3	HA (EP/SP)			3 1kΩ HA Comp 1.5V 100kΩ 777 Λ09420	EP 1.0 V SP
4	SW30			4 1kΩ 50kΩ 50kΩ 1V 1V 1V 777 A09421	Hch Lch
5	H-SYNC			5 20kΩ 80kΩ 777 777 409422	SYNC H L

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
6 ENVDET-OUT	PB	See relevant documents.			
	REC	0	6 20kΩ 7777 A09423		
7		РВ	1.7	100Ω ↓	
	PB-OUT REC	REC	2.1	(7) → ↓ 1mA → ↓ 1mA → ↓ A09424	
8 20	GND				
9		PB REC-Y-IN	4.0	300Ω 300Ω 5kΩ 	
		REC	3.7		
10	REC-C-IN	PB	4.0	10 25kΩ 5kΩ 5kΩ 77 Α09426	
		REC	3.7		
11	REC/MUTE/PB			20k Ω	REC MUTE 9B

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
12 REC-CURRENT- ADJ2	РВ	2.5 V			
	REC	2.5 V	100kΩ 		
13	V _{CC}				
14	REC-CURRENT-	PB	5.0		
	14 ADJ1	REC	4.5		
15	15 REC-AGC-FILT	PB	0	15-W- 1	
		REC	1.6	10kΩ	
16 19	SP L-IN SP H-IN	PB	2.1	REC-ON VCC	
21 24	EP L-IN EP H-IN	REC	4.1	(2)(2) → PB-ON → 2.4mA 777 A09431	
17 REC	REC SP OUT				
22	22 EP OUT	REC	4.1	γ<	

Pin Number	Pin Name	Stand	dard DC Voltage (V)	Equivalent Circuit	Notes
18		РВ	0	⁽¹⁸ €3) ≥20kΩ	
23	PB FILT	REC	2.5	PB-ON 20k Ω Λ09433	

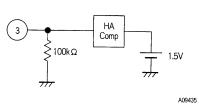
Usage Notes Control Pin Logic Switching Trick Mode with Pin 1



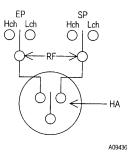
GND < pin 1 level - DC < 1.0 V: TRICK2 1.0 V < pin 1 level - DC < 3.0 V: NORMAL 3.0 V < pin 1 level - DC < 5.0 V: TRICK1

NORMAL Mode Two channels selected with pin 3 (EP/SP): ON Envelope comparator: OFF

TRICK1 and TRICK2 Modes All four channels: ON Envelope comparator: OFF

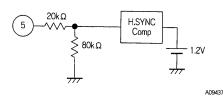

Difference between TRICK1 and TRICK2 modes (See the Block Diagram.) TRICK1 is a special playback mode using the following path

TRICK2 provides SP searching


Envelope comparator OUT \rightarrow HA-SW

HA-SW (EP/SP mode switch): Pin 3

GND < pin 3 level - DC < 1.5 V: SP mode 1.5 V < pin 3 level - DC < 5 V: EP mode Synchronization of HA Switching Timing during Playback with H-SYNC Signal

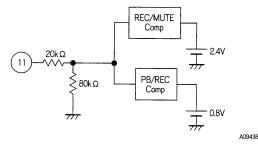

During playback, the LA70011's video circuits synchronize the HA-SW switching timing shown in the following figure with the H-SYNC signal from pin 5. (Other EP/SP switching takes place in real time.)

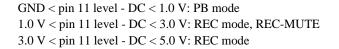
Comparator Output: Pin 2 EP envelope > SP envelope: High (min. 4.0 V)

EP envelope $\langle SP$ envelope: Low (max. 0.7 V)

H-SYNC Input: Pin 5

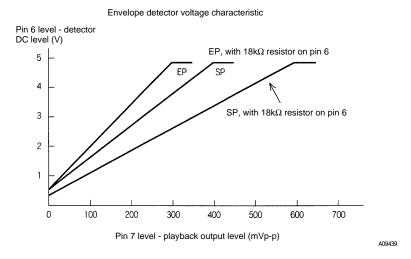
Pin 5 level - DC > 1.5 V: H-SYNC interval

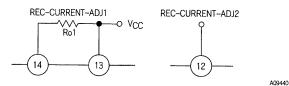

Playback:


- Determines timing of HA switching (EP/SP)
- Determines timing of special playback

Recording:

- Serves as gate pulse for REC-AGC-AMP SYNC unit

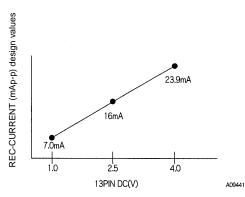



Envelope Detector Characteristic: Pin 6

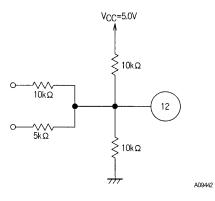
The LA70011 includes a built-in playback signal envelope detector circuit for use in automating tracking adjustment.

REC AMP Gain Control

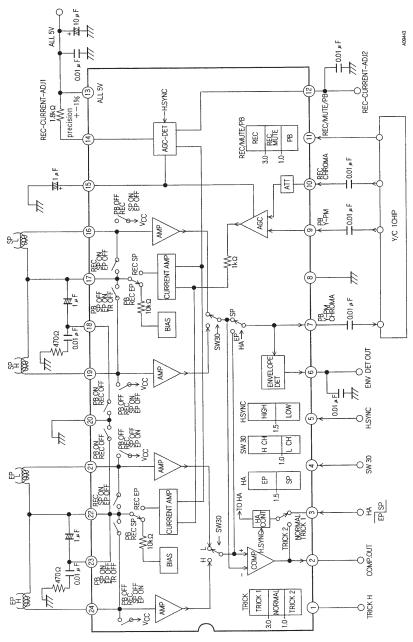
The LA70011 eliminates recording current adjustment by adding an automatic gain control circuit to the recording amplifier. It is also possible to change the recording current with the following methods.


REC-CURRENT-ADJ2 Open

The internal bias forces the DC level at pin 12 to $1/2 V_{CC}$ (that is, approximately 2.5 V), and R_01 determines the recording current.


Design values $R_O 1 = 1.5 \text{ k}\Omega = 16.0 \text{ mA (SP) (per channel)}$ $R_O 1 = 1.5 \text{ k}\Omega = 12.7 \text{ mA (EP)}$

REC-CURRENT-ADJ2 Used


Applying a DC control voltage between 1 and 4 V to pin 12 adjusts the figure determined by R_01 between -6.0 dB and +3.5 dB.

Note: One possible circuit for applying this voltage is the following, which provides 9 modes between 1 and 4 V.

Block Diagram

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Intersection of the second second
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.