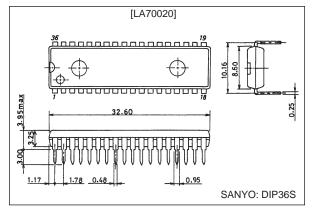
LA70020, 70020M

Recording/Playback Amplifier for VHS VCRs

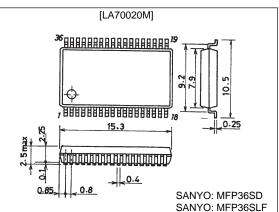
Overview

The LA70020 and LA70020M are 6-head amplifiers adding hi-fi recording/playback amplifiers to the LA70011/LA70011M recording/playback amplifiers for VHS VCR video signals. When used in combination with the LA71000M and LA71500M Series of video signal processing ICs, they permit Y/C recording without current adjustment.


Features

- Combining hi-fi and video amplifiers onto a single chip saves space on the circuit board.
- Connecting the playback amplifier input directly to the head reduces the number of external elements required.
- The recording amplifiers use a fixed-current drive configuration that yields stable recording characteristics even under changing loads. They include built-in automatic gain control circuits.
- The LA70020, encapsulated in DIP package, can be mounted at the right end of the LA70001 and LA70011 sockets. The LA70020M lacks this flexibility because its MFP package has a different pin pitch.

Package Dimensions


unit: mm

3170-DIP36S 400mil

unit: mm

3129-MFP36SD, MFP36SLF

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V _{CC} max		6.0	V
Maximum power dissipation		Ta ≤ 65°C [LA70020]	1000	mW
	Pd max	Ta \leq 65°C [LA70020M] 114.3 \times 76.1 \times 1.6 mm: glass epoxy	1000	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating supply voltage range	V _{CC} op		4.8 to 5.3	V

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Electrical Characteristics at Ta = 25°C (Video Circuits)

Parameter		Symbol	Conditions		Ratings		Unit
T didificiei		Cymbol	Conditions	min	typ	max	Onic
Playback Mode			11				
Current drain		I _{CCP}	Current flowing into pin 13	44	53	60	mA
	SP-L CH1	G _{VP} 1	V _{IN} = 38 mVp-p, f = 4 MHz	56	59	62	dB
Voltage gain	SP-H CH2	G _{VP} 2		56	59	62	dB
Voltage gain	EP-L CH3	G _{VP} 3		56	59	62	dB
	EP-H CH4	G _{VP} 4		56	59	62	dB
Voltage gain difference		ΔG_{VP} 1	G _{VP} 1 — G _{VP} 2	-1	0	+1	dB
Voltage gain difference		$\Delta G_{VP}2$	G _{VP} 3 — G _{VP} 4	-1	0	+1	dB
Intermode gain difference		$\Delta G_{VP}3$	G _{VP} 3 — G _{VP} 1	-1	0	+1	dB
Converted input noise voltage	CH1 CH2 CH3 CH4	V _{NIN1} V _{NIN2} V _{NIN3} V _{NIN4}	Ratio of the output from a 1.1 MHz low pass filter to the output with no input under the same conditions as those used for measuring voltage gain.		1.0	1.5	μVrm
Frequency characteristic	CH1 CH2 CH3 CH4	$\Delta V_{fp} 1$ ΔV_{fp2} ΔV_{fp3} ΔV_{fp4}	Ratios of the output for V _{IN} = 38 mVp-p and f = 7 MHz to the voltage gains G_{VP} 1, G_{VP} 2, G_{VP} 3, and G_{VP} 4.	-2.5	0		dB
Secondary harmonic distortion	CH1 CH2 CH3 CH4	$\Delta V_{HDP} 1$ ΔV_{HDP2} ΔV_{HDP3} ΔV_{HDP4}	Ratio of the 8 MHz (secondary) component of the output to its 4 MHz (primary) component for V_{IN} = 38 mVp-p and f = 4 MHz.		-40	-35	dB
Maximum output level	CH1 CH2 CH3 CH4	ΔV _{OMP} 1 ΔV _{OMP2} ΔV _{OMP3} ΔV _{OMP4}	Output level, for f = 1 MHz, at which the ratio of the 3 MHz (tertiary) component to the 1 MHz (primary) component is -30 dB.	1.0	1.2		Vp-p
Crosstalk SP		V _{CR} 1	Ratio of the output for V_{IN} = 38 mVp-p and f = 4 MHz to G_{VP} 1.		-40	-35	dB
		V _{CR} 2	Ratio of the output for V _{IN} = 38 mVp-p and $f = 4$ MHz to $G_{VP}2$.		-40	-35	dB
		V _{CR} 3	Ratio of the output for V_{IN} = 38 mVp-p and f = 4 MHz to G_{VP} 3.		-40	-35	dB
Crosstalk EP		V _{CR} 4	Ratio of the output for V _{IN} = 38 mVp-p and $f = 4$ MHz to G _{VP} 4.		-40	-35	dB
		ΔV_{ODC} 1	CH1 — CH2				
		$\Delta V_{ODC} 2$	CH3 — CH4				
0 4 4 50 11 4		$\Delta V_{ODC}3$	CH1 — CH3	100	0	. 100	mV
Output DC offset		$\Delta V_{ODC}4$	CH2 — CH4	-100	0	+100	
		$\Delta V_{ODC} 5$	CH1 — CH4				
		ΔV _{ODC} 6	CH2 — CH3				
Envelope detector output pin vol	tage	V _{ENV}	T12 DC level with no signal input.	0	0.8	1.4	V
		V _{ENVSP} 1	T12 DC level at which T13A output level is 150 mVp-p for f = 4 MHz.	2.0	2.5	3.0	v
Envelope detector output pin vol	tage SP	V _{ENVSP} 2	T12 DC level at which T13A output level is 400 mVp-p for f = 4 MHz.	4.0	4.5	5.0	V
		V _{ENVEP} 1	T12 DC level at which T13A output level is 125 mVp-p for f = 4 MHz.	2.0	2.5	3.0	V
Envelope detector output pin vol	tage EP	V _{ENVEP} 2	T6 DC level at which T7A output level is 300 mVp-p for f = 4 MHz.	4.0	4.5	5.0	V
		V _{COMP} 1	T8 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.		0.4	0.7	V
Comparator output voltage		V _{COMP} 2	T8 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.	4.5	4.8		V
SW-Tr on resistance during playback R			DC difference for 1 and 2 mA current inputs.		4	6	Ω
		TR1-1	Normal \rightarrow Trick1 : *1	3.2		5.0	V
Trick threshold laws		TR1-2	$Trick1 \rightarrow Normal$	1.2		2.8	V
Trick threshold level		TR2-1	Normal \rightarrow Trick2 : *1	0.0		0.8	V
		TR2-2	$Trick2 \rightarrow Normal$	1.2		2.8	V

Parameter	Symbol	Conditions	Ratings			Unit	
Parameter	Symbol	Conditions	min	typ	max		
	HAP-1	$SP \rightarrow EP$: *1	1.7		5.0	V	
HA playback threshold level	HAP-2	EPSP	0.0		1.3	V	
	SW30-1	$Lch \rightarrow Hch: *1$	1.2		5.0	V	
SW30 threshold level	SW30-2	$Hch\toLch$	0.0		0.8	V	
Recording Mode							
Current drain	ICCR	Current input at pin 13.	52	59	66	mA	
REC AGC AMP output level	V _{RSP}	Output level for V_{IN} = 400 mVp-p and f = 4 MHz.	127	135	143	mVp-p	
	V _{REP}		104	111	119	mVp-p	
Intermode gain difference	∆GVR	VRSP/VREP	1.4	1.7	2.0	dB	
	ΔV_{AGC} 1-SP ΔV_{AGC} 1-EP	Output level divided by V_{RSP} or V_{REP} for $f = 4 \text{ MHz}$ and $V_{IN} = 700 \text{ mVp-p}$.		0.5	1.0	dB	
REC AGC AMP control characteristic	ΔV_{AGC} 2-SP ΔV_{AGC} 2-EP		-1.0	-0.5		dB	
REC AGC AMP frequency characteristic	$\Delta V_{FRS} \\ \Delta V_{FRE}$	Ratio of f = 7 MHz output to f = 1 MHz output for V_{IN} = 400 mVp-p. *2	-1	0	+1	dB	
REC AGC AMP secondary primary distortion	ΔV_{HDRS} ΔV_{HDRE}	Ratio of the 8 MHz (secondary) component of the output to its 4-MHz (primary) component for V_{IN} = 400 mVp-p and f = 4 MHz.		-45	-40	dB	
REC AGC AMP maximum output level	$\Delta V_{MOSP} \\ \Delta V_{MOEP}$	Output level, for f = 4 MHz, at which the secondary distortion is –35 dB.	20	22		mApp	
REC AGC AMP muting attenuation	ΔV_{MRS} ΔV_{MRE}	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 400$ mVp-p.		-45	-40	dB	
REC AGC AMP cross modulation relative level	$\Delta V_{CYS} \Delta V_{CYE}$	Output ratio (4M +/ 629k)/4M for V_{IN} = 400 mVp-p and f = 4 MHz at T9A and V_{IN} = 2.4 Vp-p and f = 629 kHz at T10A.		-45	-40	dB	
HA REC threshold level	H _{AR} -1	$SP \rightarrow EP:*1$	1.7		5.0	V	
	H _{AR} -2	$EP\toSP$	0.0		1.3	V	
REC MUTE threshold level	MUTE-1	MUTE OFF \rightarrow MUTE ON *1	1.2		2.8	V	
	MUTE-2	$MUTE\;ON\toMUTE\;OFF$	3.2		5.0	V	
REC PB threshold level	PB-REC	$PB \rightarrow REC *1$	1.2		5.0	V	
	REC-PB	$REC \to PB$	0.0		0.8	V	

Notes:* Before measuring the items under Playback Mode, input a 0 to 5.0 V trigger pulse to T11 (H-SYNC), the pin from which the LA70020 takes its T9 (HA) control switch timing.
* The resistance between pins 19 and 20 must be accurate to within 1.0%.
*1. These are voltage application points.
*2. Apply a DC voltage of approximately 1.8 V to the AGC wave detector filter pin (pin 21) to fix the AGC amplifier gain.
*3. Apply a DC voltage to the REC-CUR-Adj pin (pin 18) and adjust the output level.

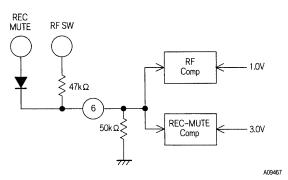
Electrical Characteristics at Ta = 25° C (Hi-Fi Circuits)

Parameter	Symbol	Conditions		Ratings		Unit
	2,		min	typ	max	
Playback Mode		[]				
Current drain	HI _{CCP}	Current flowing into pin 36	20	25	30	mA
Voltage gain	HG _{VP} 1	V _{IN} = 20 mVp-p, f = 1.5 MHz	72.5	75.5	78.5	dB
CH2	HG _{VP} 2		72.5	75.5	78.5	dB
Voltage gain difference	ΔHG _{VP}	$HG_{VP}1 - HG_{VP}2$	-2	0	+2	dB
Intermode gain difference	ΔHGEP	Voltage gain difference between SP and EP modes. *1	1.7	2.4	3.1	dB
Converted input noise voltage CH1 CH2	HV _{NIN1} HV _{NIN2}	Ratio of the output from a 1.1-MHz low pass filter to the output with no input under the same conditions as those used for measuring voltage gain.		0.8	1.2	μVrm
Frequency characteristic CH1 CH2	ΔHV_{fp1} ΔHV_{fp2}	Ratios of the output for $V_{IN} = 20 \text{ mVp-p}$ and f = 2 MHz to the voltage gains HG _{VP} 1 and HG _{VP} 2.	-3	-1		dB
CH1 Secondary harmonic distortion CH2	$\Delta HV_{HDP}1$ ΔHV_{HDP2}	Ratio of the 3-MHz (secondary) component of the output to its 1.5-MHz (primary) component for $V_{IN} = 20$ mVp-p and f = 1.5 MHz.		-50	-40	dB
CH1 Maximum output level CH2	$\frac{\Delta HV_{OMP}1}{\Delta HV_{OMP2}}$	Output level, for f = 1.5 MHz, at which the ratio of the 4.5 MHz (secondary) component to the 1.5 MHz (primary) component is -30 dB	2			Vp-p
	V _{HCR} 1	Ratio of the output for V_{IN} = 20 mVp-p and f = 1.5 MHz to HG _{VP} 1.		-40	-35	dB
Crosstalk SP	V _{HCR} 2	Ratio of the output for V_{IN} = 20 mVp-p and f = 1.5 MHz to HG _{VP} 2.		-40	-35	dB
	V _{HCR} 3	Ratio of the output for $V_{IN} = 20 \text{ mVp-p}$ and f = 1.5 MHz to HG _{VP} 1.		-40	-35	dB
Crosstalk EP	V _{HCR} 4	Ratio of the output for V_{IN} = 20 mVp-p and f = 1.5 MHz to HG _{VP} 2.		-40	-35	dB
Output DC offset SP mode	ΔV _{ODC} 1	CH1 — CH2	-30	0	+30	mV
Output DC offset EP mode	ΔV _{ODC} 2	CH1 — CH2	-50	0	+50	mV
	H _{HAP-1}	$SP \rightarrow EP$: *1	1.7		5.0	V
HA threshold level	H _{HAP-2}	$EP \to SP$	0.0		1.3	V
	H _{SW30-1}	$Lch \rightarrow Hch: *1$	1.2		5.0	V
SW30 threshold level	H _{SW30-2}	$Hch \rightarrow Lch$	0.0		0.8	V
SW-Tr on resistance during playback	H _{RPON}	DC difference for 1 and 2 mA current inputs.		4	6	Ω
Recording Mode						
Current drain	HICCR	Current input at pin 36.	55	65	75	mA
REC AGC AMP output level	H _{VOR}	Output level for V_{IN} = 180 mVp-p and f = 1.5 MHz.	270	280	290	mVp-
REC AGC AMP control characteristic	ΔHV _{AGC1}	Output level divided by HV _{OR} for f = 1.5 MHz and V _{IN} = 360 mVp-p.		0.2	0.5	dB
	ΔV_{AGC2}	Output level divided by HV _{OR} for f = 1.5 MHz and V _{IN} = 90 mVp-p.	-0.5	-0.2		dB
REC AGC AMP muting attenuation	∆HV _{MR}	Output level divided by HV _{OR} for f = 4 MHz and V _{IN} = 180 mVp-p.			-40	dB
REC AGC AMP cross modulation relative level for 0.4-MHz component	HCMD04	0.4-MHz component for T3A V _{IN} = 90 mVp-p, $f = 1.3$ MHz + V _{IN} = 270 mVp-p, $f = 1.7$ MHz.			-40	dB
REC AGC AMP cross modulation relative level for 0.9-MHz component	HCMD09	0.9-MHz component for T3A V _{IN} = 90 mVp-p, f = 1.3 MHz + V _{IN} = 270 mVp-p, f = 1.7 MHz.			-40	dB
REC MUTE threshold level	H _{MUTE1}	MUTE OFF \rightarrow MUTE ON *1	1.2		2.8	V
	H _{MUTE2}	MUTE ON \rightarrow MUTE OFF	3.2		5.0	V
REC PB threshold level	PB-REC	$PB \rightarrow REC *1$	1.2		5.0	V
	REC-PB	$REC \to PB$	0.0		0.8	V

Note : These are voltage application points.

Pin Descriptions

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
	. HiFi	PB	2.6		
1	PB-FM-OUT	REC	4.0	€ ↓ 400 µ A	
2 31	HiFi GND				
3	HiFi	PB	0	300Ω 5kΩ	
	REC-FM-IN	REC 3.0			
4	, HiFi	PB	0		
	REC-AGC-Filt	REC	1.2	↓₩.↓ ₹15kΩ 4 ₹300Ω ₩.↓ Α09446	
5	HiFi REC-CURRENT-	РВ	0.7	200 µ A↓ 200 µ A↓ 2.5V	
	ADJ	REC	1.5	3000 7777 5 A09447	
6	HiFi RF-SW (REC-MUTE)			1kΩ REC/MUTE 3.2V 6 W RF 777 50kΩ 777 1V 777 A09448	SW30 MUTE ON Hch Lch

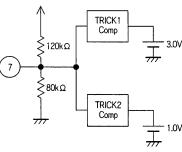

Pin Number	Pin Name	Stand	dard DC Voltage (V)	Equivalent Circuit	Notes
7	TRICK-H			$\begin{array}{c} & & VCC \\ 120k \Omega & & Trick1 & 3V \\ \hline & Comp & & \\ 80k \Omega & & Trick2 & 1V \\ \hline & & & \\ 777 & & & \\ 777 & & \\ A09449 \end{array}$	Trick1 3.0 V NORMAL 1.0 V Trick2
8	COMP-OUT	PB	H: min. 4.5 V L: max. 0.7 V Open	100Ω 100Ω	EP > SP ENV High
9	HA (EP/SP)			9 1 100kΩ 100kΩ 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V	EP 1.0 V SP
10	SW30			10 1 kΩ 50 kΩ 777 1V 777 1V 777 A09452	Hch Lch
11	H-SYNC			1) 20k Q H SYNC Comp 1.5V 777 A09453	SYNC H L

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
12	12 ENVDET-OUT	РВ	See relevant documents.	100 Q Z	
12		REC	0	12 18kΩ 7777 A09454	
13	PB-OUT	PB	1.7		
13	PB-001	REC	0	13 ↓ 1mA 7777 A09455	
14 26	GND				
15	REC-Y-IN —	PB	0		
		REC	3.7	A09456	
16	REC-C-IN	РВ	0	16 25kΩ 300Ω 5kΩ 5kΩ	
		REC	3.7	25kΩ 300Ω 5kΩ 	
17	REC/MUTE/PB			20kΩ 10-W- 80kΩ 777 20kΩ 777 0.8V 80kΩ 777 409458	REC MUTE PB

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
18 REC-CURREN	REC-CURRENT-	PB	2.5 V		
	ADJ2	REC	2.5 V	100kΩ 7777 A09459	
19	V _{CC}				
20	REC-CURRENT-	PB	5.0		
	ADJ1	REC	4.5	₹1.0kΩ,1.3kΩ 777 A09460	
21	REC-AGC-FILT	PB	0	² 600Ω ₹10kΩ 70 μ A 70 μ A 70 μ A	
		REC	1.6		
22 25	SP L-IN SP H-IN	PB	2.1	REC-ON VCC	
27 30	EP L-IN EP H-IN	REC	4.1	€730	
23 28	REC SP OUT	PB	2.1		
	EP OUT	REC	4.1	- -	

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
24	PR FII T	PB	0	23/29/39 ↑ ≨20kΩ	
34	29 PB FILT 34	REC	2.5	PB-ON 20kΩ A09464	
32	HiFi PB-Lch-IN	РВ	2.1	REC-ON VCC	
35	35 PB-Lch-IN PB-Hch-IN	REC	4.1	32 35	
33	HiFi	PB	2.1		
	REC-OUT	REC	4.1		
36	HiFi V _{CC}		5.0		

Usage Notes Control Pin Logic HiFi RF-SW, REC-MUTE : Pin 6



During playback Pin 6 level - DC < 1.0 V: Lch Pin 6 level - DC > 1.0 V: Hch

During recording Pin 6 level - DC < 3.0 V: Mute off Pin 6 level - DC > 3.0 V: Mute on

A09468

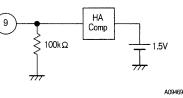
Switching Video Trick Mode with Pin 7

GND < pin 7 level - DC < 1.0 V: TRICK2 1.0 V < pin 7 level - DC < 3.0 V: NORMAL 2.0 V < pin 7 level - DC < 5.0 V: TRICK2

3.0 V < pin 7 level - DC < 5.0 V: TRICK2

NORMAL Mode Two channels selected with pin 9 (EP/SP): ON Envelope comparator: OFF

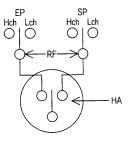
TRICK Modes All four channels: ON Envelope comparator: OFF


Difference between TRICK1 and TRICK2 modes TRICK1 is a special playback mode using the following path

Envelope comparator OUT (pin 8) \rightarrow Servo (microcontroller) \rightarrow Pin 3 (HA) \rightarrow HA-SW

TRICK2 provides SP searching

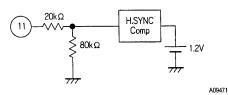
Envelope comparator OUT \rightarrow HA-SW


HA-SW (EP/SP mode switch): Pin 9

GND < pin 9 level - DC < 1.5 V: SP mode 1.5 V < pin 9 level - DC < 5 V: EP mode

Video Synchronization of HA Switching Timing during Playback with H-SYNC Signal During playback, the LA70020's video circuits synchronize the HA-SW switching timing shown in the following figure with the H-SYNC signal from pin 11. (Other EP/SP switching takes place in real time.)

A09470


The hi-fi playback amplifier's gain is approximately 2.4 dB higher in EP mode than in SP mode.

SP: 75.0 dB EP: 77.4 dB

Comparator Output: Pin 8

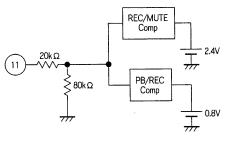
EP envelope > SP envelope: High (min. 4.0 V) EP envelope < SP envelope: Low (max. 0.7 V)

H-SYNC Input: Pin 11

Pin 11 level - DC > 1.5 V: H-SYNC interval

Video circuit operation only

Playback:

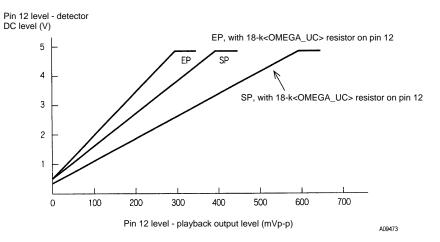

— Determines timing of HA switching (EP/SP)

— Determines timing of special playback

Recording:

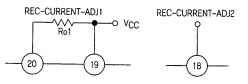
- Serves as gate pulse for REC-AGC-AMP SYNC unit

REC/REC-MUTE/PB Switching: Pin 17



Envelope Detector Characteristic: Pin 12

The LA70020 includes a built-in playback signal envelope detector circuit for use in automating tracking adjustment.


Envelope detector voltage characteristic

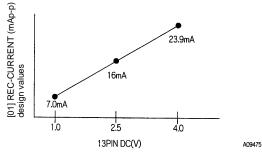
A09472

Video REC AMP Gain Control

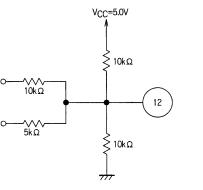
The LA70020 eliminates recording current adjustment by adding an automatic gain control circuit to the recording amplifier. It is also possible to change the recording current with the following methods.

A09474

REC-CURRENT-ADJ2 Open


The internal bias forces the DC level at pin 18 to 1/2 V_{CC} (that is, approximately 2.5 V), and R₀1 determines the recording current.

Design values

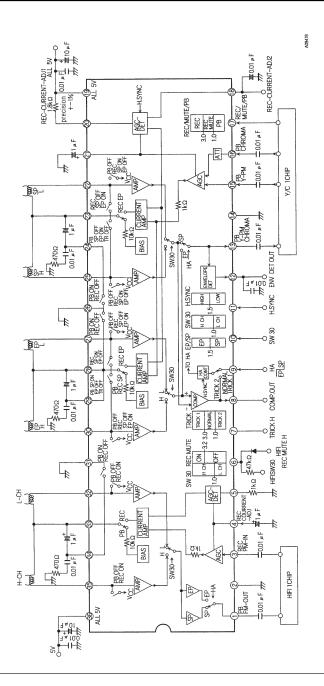

 $R_O 1 = 1.5 \text{ k}\Omega = 16.0 \text{ mA (SP) (per channel)}$ $R_O 1 = 1.5 \text{ k}\Omega = 12.7 \text{ mA (EP)}$

REC-CURRENT-ADJ2 Used

Applying a DC control voltage between 1 and 4 V to pin 18 adjusts the figure determined by R_01 between -6.0 dB and +3.5 dB.

Note: One possible circuit for applying this voltage is the following, which provides 9 modes between 1 and 4 V.

A09476


Hi-Fi REC AMP Gain Control

The LA70020 eliminates recording current adjustment by adding an automatic gain control circuit to the recording amplifier. It is also possible to change the recording current with the following methods.

A09477

REC-CURRENT-ADJ R_01 determines the recording current. Design values $R_01 = 1.0 \text{ k}\Omega = 24.0 \text{ mA (SP) (per channel)}$ $R_01 = 1.5 \text{ k}\Omega = 16.0 \text{ mA (EP)}$ **Block Diagram**

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Intersection 20 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.