

LA70001, 70001M

Record/Playback Amplifiers for VHS Format VCRs

Overview

The LA70001 and LA70001M ICs provide record and playback amplifiers for VHS format VCRs. A system with an adjustment-free Y/C record current can be achieved by combining the LA70001/M with an LA71000M or LA71500M video signal processing IC.

Features

- Direct connection of the head to the playback amplifier input allows the number of external devices to be reduced.
- A fixed-current drive technique that is strongly resistant to load fluctuations is adopted in the record amplifier for stable recording characteristics. The record amplifier includes a built-in AGC circuit.
- These products have the same package dimensions as the LA70011 and LA70011M to allow a common PCB to be used. These products can also share the same PCB with the LA70020 by mounting the IC at the right end of the LA70020 socket.

Package Dimensions

unit: mm

3067-DIP24S

unit: mm

3112-MFP24S

Specifications Maximum Ratings at Ta = 25°C

Parameter	Symbol Conditions		Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
		Ta ≤ 65°C [LA70001]	600	mW
Allowable power dissipation	Pd max	Ta \leq 65°C [LA70001M] (Using a 114.3 × 76.1 × 1.6 mm glass epoxy PCB)	500	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating supply voltage range	V _{CC} op		4.8 to 5.5	V

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-0005 JAPAN

Electrical Characteristics at Ta = 25°C

Parameter		Symbol	Conditions	Ratings			Linit
		Symbol		min	typ	max	
[Playback Mode]							
Current drain		I _{CCP}	The pin 13 inflow current.	23	29	35	mA
Voltage gain C	H1	G _{VP} 1	V _{IN} = 38 m Vp-p, f = 1 MHz	56	59	62	dB
C C	H2	G _{VP} 2		56	59	62	dB
Voltage gain difference 1		$\Delta G_{VP}1$	G _{VP} 1—G _{VP} 2	-1	0	+1	dB
Equivalent input noise voltage C	:H1 :H2	V _{NIN} 1 V _{NIN} 2	With the same conditions as for the voltage gain, the ratio of the output passed through a 1.1-MHz low-pass filter and the output with no input signal.		1.0	1.5	μVrms
Frequency characteristics C	H1	ΔV _{fp} 1	The ratio of the output for $V_{IN} = 38 \text{ mVp-p}$,				
С	H2	ΔV _{fp} 2	$f = 7 \text{ MHz}$ and G_{VP} 1, 2, 3, and 4.	-2.5	0		dB
Second harmonic distortion C	:H1 :H2	V _{HDP} 1 V _{HDP} 2	With V_{IN} = 38 mVp-p, f = 4 MHz, the ratio of the 8-MHz output component (second harmonic) and the 4-MHz component (the fundamental).		-40	-35	dB
Maximum output level C	:H1 :H2	V _{OMP} 1 V _{OMP} 2	At f = 1 MHz, the output level when the ratio of the 3-MHz output (third harmonic) and the 1-MHz output (fundamental) is -30 dB.	1.0	1.2		Vp-р
Crosstalk SP		V _{CR} 1	The ratio of the V_{IN} = 38 mVp-p, f = 4 MHz output and G_{VP} 1.		-40	-35	dB
Output DC offset		$\Delta V_{ODC} 1$	CH1 – CH2	-100	0	+100	mV
Envelope detector output pin voltage	e	V _{ENV}	The T6 DC level when there is no input signal.	0	0.8	1.3	V
	- 004	V _{ENVSP} 1	With a f = 4 MHz input, the T6 DC level when the T7A output level becomes 175 mVp-p .	2.0	2.5	3.0	v
Envelope detector output pin voltage	9 2 2 1	V _{ENVSP} 2	With a f = 4 MHz input, the T6 DC level when the T7A output level becomes 400 mVp-p.	3.5	4.0	4.5	v
		V _{ENVEP} 1	With a f = 4 MHz input, the T6 DC level when the T7A output level becomes 125 mVp-p.	2.0	2.5	3.0	v
Envelope detector output pin voltage	θΕΡ	V _{ENVEP} 2	With a f = 4 MHz input, the T6 DC level when the T7A output level becomes 300 mVp-p.	4.0	4.5	5.0	v
Switch transistor on resistance in pla mode	ayback	R _{PON} 18	Measure the difference in the DC levels with a 1-mA and a 2-mA inflow current.		4	6	Ω
SW30 threshold level		SW30-1	$Lch \rightarrow Hch *1$	1.2		5.0	V
		SW30-2	$Hch \to Lch$	0.0		0.8	V
[Record Mode]		1	II		1		
Current drain		I _{CCR}	The pin 13 inflow current.	43	50	57	mA
Record AGC amplifier output level		V _{RSP}	The output level when V_{IN} = 400 mVp-p, f = 4 MHz.	105	112	119	mVp-p
Record AGC amplifier control		ΔV _{AGC} 1-SP	At $f = 4$ MHz, when $V_{IN} = 700$ mVp-p: the output level /VRSP, EP		0.5	1.0	dB
characteristics		ΔV _{AGC} 2-SP	At $f = 4$ MHz, when $V_{IN} = 100$ mVp-p: the output level /VRSP, EP	-1.0	-0.5		dB
Record AGC amplifier frequency characteristics		ΔV_{FRS}	At V_{IN} = 400 mVp-p, the ratio of the outputs when f is 1 MHz and 7 MHz, i.e. the ratio of the 7-MHz value to the 1-MHz value.*2.	-1	0	+1	dB
Record AGC amplifier second harmonic distortion		ΔV_{HDRS}	With V_{IN} = 400 mVp-p, f = 4 MHz, the ratio of the 8-MHz output component (second harmonic) and the 4-MHz component (the fundamental).		-45	-40	dB
Record AGC amplifier maximum our	tput level	ΔV _{MOSP}	At f = 4 MHz, the output level at which the second harmonic goes to -35 dB. $*3$	20	22		mAp-p
Record AGC amplifier muting attenuation		ΔV _{MRS}	When V_{IN} = 400 mVp-p and f = 4 MHz, the output level/VRSP, EP		-45	-40	dB
Record AGC amplifier cross modulation relative level		ΔV _{CYS}	T9A: V_{IN} = 400 mVp-p, f = 4 MHz T10A: V_{IN} = 2.4 Vp-p, f = 629 kHz The ratio of the (4 MHz ± 629 kHz) and the 4-MHz outputs.		-45	-40	dB
Record muting threshold level		MUTE-1	MUTE OFF \rightarrow MUTE ON *1	1.2		2.8	V
		MUTE-2	$MUTE\;ON\toMUTE\;OFF$	3.2		5.0	V
Record mode to playback mode thres	hold level	PB-REC	$PB \rightarrow REC *1$	1.2		5.0	V
		REC-PB	$REC \to PB$	0.0		0.8	V

Notes:Use a resistor with an accuracy of 1.0% for the resistor between pins 13 and 14. *1. This is the voltage application point *2. Here, fix the AGC amplifier gain by applying a 1.8-V DC level to the AGC detector filter pin (pin 15). *3. Here, adjust the output level by applying a DC voltage to the REC-CUR-Adj pin (pin 12).

Pin Functions

Pin No.	Pin name	Standa	ard DC voltage (V)	Equivalent circuit	Notes
1	N.C				
2	N.C				
3	HA (EP/SP)				EP 1.5 V SP
4	SW30			(4) 1kΩ 50kΩ 50kΩ 1V 1V 1V 1V 1V 10 10 10 10 10 10 10 10 10 10	Hch Lch
5	H-SYNC			5 20k Q H SYNC B0k Q T T A03398	SYNC H L
6	ENVDET-OUT	РВ	Provided in a separate document.		
		F	REC	0	€ 20kΩ →→→ A09399
7	PB-OUT	РВ	1.7		
		REC	2.1	T → ↓ 1 mA → ↓ 1 mA	
8 20	GND				

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Standard DC voltage (V)		Equivalent circuit	Notes
9 REC-Y-II	PEC-Y-IN	PB	4.0	300Ω 5kΩ 	
		REC	3.7		
10 REC-C-IN	PB	4.0	$ \begin{array}{c} 10\\ 25k\Omega \\ 300\Omega \\ -5k\Omega \\ -5k\Omega$		
		REC	3.7		
11	REC/MUTE/PB			20kΩ 20kΩ PB/REC 10.8V 80kΩ 777 10.8V 80kΩ 777 10.8V 80kΩ 777 10.8V 80kΩ 777 10.8V 80kΩ	REC 3.0 V MUTE PB
12 REC-CURRENT-ADJ	REC-CURRENT-AD /2	РВ	2.5 V	100kΩ 1	
		REC	2.5 V		
13	V _{CC}				
14	REC-CURRENT-ADJ1	PB	5.0		
		REC	4.5	× π × 1kΩ,1.3kΩ π A09405	

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Standa	ard DC voltage (V)	Equivalent circuit	Notes
15	REC-AGC-FILT	РВ	0		
		REC	1.6	10kΩ 777 409406	
16 19	L IN H IN	РВ	2.1	REC ON VCC	
		REC	4.1	PB-ON	
17	REC_SP_OUT	РВ	2.1 V		
		REC	4.1 V		
18	PB FILT	РВ	0	PB-ON 20k Ω A09409	
		REC	2.5		
21 22 23 24	N.C				

Usage Notes

Control Pin Logic

• HA-SW (EP/SP mode switching): pin 3

GND < the pin 3 DC level < 1.5 V: SP mode1.5 V < the pin 3 DC level < 5 V: EP mode

• H.SYNC input: pin 5

The pin 5 DC level > 1.5 V: The horizontal synchronization period

In record mode: Used as the REC-AGC-AMP synchronization block gate pulse.

• REC/REC-MUTE/PB switching: pin 11

GND < the pin 11 DC level < 1.0 V: Playback mode 1.0 V < the pin 11 DC level < 3.0 V: Record mode with recording muted.

3.0~V < the pin 11 DC level < 5.0 V: Record mode

Envelope detection characteristics: pin 6

The LA70001 provides a built-in playback signal envelope detection circuit so that the tracking adjustment can be made automatic.

A09411

Envelope Detection Voltage Characteristics

Record Amplifier Gain Control

The LA70001 achieves an adjustment-free record current by adding an AGC circuit in the record amplifier block. The record current can be modified using the following method.

• Record current adjustment 2: When left open.

Pin 12 DC level is set to $1/2 V_{CC}$ (approximately 2.5 V) by an internal bias, and the record current is determined by Ro1.

Design value: When Ro1 is $1.5 \text{ k}\Omega$, the record current will be 12.7 mA per channel.

• Record current adjustment 2: When used.

The gain can be varied by -6.0 dB to +3.5 dB relative to the value set by Ro1 by applying a control DC voltage of between 1 and 4 V to pin 12.

Record current (mAp-p) design value

Note: The technique shown in the figure below can be used to apply a DC level to pin 12. This allows a control voltage of between 1 and 4 V to be applied.

Block Diagram

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
- Intersection 20 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 1998. Specifications and information herein are subject to change without notice.