PLL frequency synthesizer for tuners BU2615S / BU2615FS

The BU2615 PLL frequency synthesizers work up through the FM band. Featuring low radiation noise, low power consumption, and highly sensitive built-in RF amps, they support an IF count function.

Applications

Tuners (Mini components, radio cassette players, radio equipment, etc.)

Features

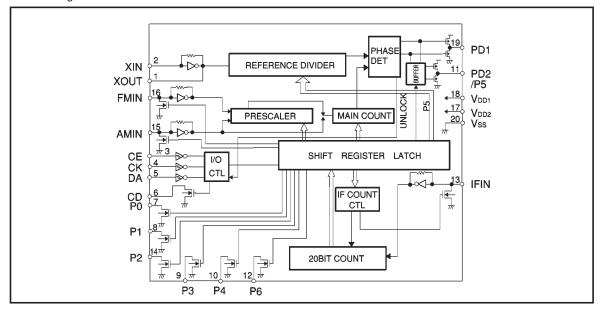
- 1) Built-in high-speed prescaler can divide 130MHzVCO.
- Basic oscillation of 75kHz keeps unnecessary radiation noise to a low level.
- Low current dissipation (during operation: 4mA, PLL OFF: 100µA)
- In addition to the standard FM and AM, also offers the following 7 frequencies: 25kHz, 12.5kHz, 6.25kHz, 3.125kHz, 5kHz, 3kHz, and 1kHz.

•Absolute maximum ratings (Ta = 25° C)

- 5) Counter for measurement of intermediate frequencies.
- 6) Unlock detection
- Seven output ports (open drain). The BU2614, with three output ports, is also available.
- 8) Serial data input (CE, CK, DA)

Para	ameter	Symbol	Limits	Unit	Conditions
Power supp	ly voltage	Vdd	-0.3~+7.0	V	VDD1, VDD2
Maximum in	put voltage 1	VIN1	-0.3~+7.0	V	CE, CK, DA
Maximum input voltage 2		VIN2	-0.3~Vdd+0.3	V	XIN, FMIN, AMIN, IFIN
Maximum output voltage 1		Vout1	-0.3~+10.0	V	P0 , P1, P2, P3, P4, P6, CD
Maximum output voltage 2		Vout2	-0.3~VDD+0.3	V	PD1, PD2, P5, XOUT
Maximum or	utput current	Ιουτ	0~+3.0	mA	P0 , P1, P2, P3, P4, P6, CD
Power	BU2615	D-1	600* ¹		
dissipation	BU2615FS	Pd	450* ²	mW	
Operating temperature		Topr	-10~+75	ĉ	
Storage temperature		Tstg	-55~+125	ĉ	

*1 Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.


*2 Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.

Recommended	l operating	power	supply	voltage
-------------	-------------	-------	--------	---------

Parameter	Symbol	Limits	Unit
Power supply	VDD1	2.7~6.0	V
voltage	VDD2	4.0~6.0	V

BU2615S / BU2615FS

Block diagram

Pin assignments

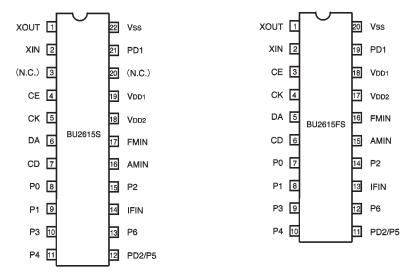


Fig.1 Pin assignments

126

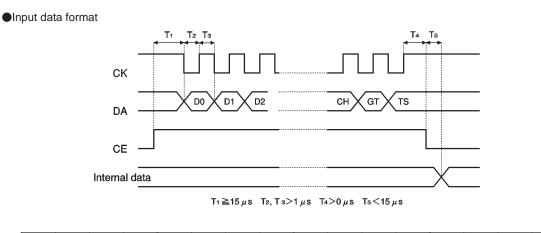
BU2615S / BU2615FS

Pin descriptions

Pin No.		Symbol	Pin name	Function	
BU2615S	BU2615FS	Symbol	Fin name	Function	1/0
1	1	XOUT		For generation of standard frequency and internal clock.	OUT
2	2	XIN	Crystal oscillation	Connected to 75 kHz crystal resonator.	IN
4	3	CE	Chip enable	When CE is LL DA is supply on with the vise of CK and	
5	4	DA	Serial data	When CE is H, DA is synchronous with the rise of CK and read to the internal shift register. DA is then latched at the timing of the fall of CE. Also, output data is output from	IN
6	5	СК	Clock signal	the CD terminal synchronous to the rise of CK.	
7	6	CD	Count data	Frequency data and unlock data are output.	
8	7	P0		Controlled on the basis of input data.	
9	8	P1			Nch open drain
10	9	P3	a		
11	10	P4	Output port		
12	11	P5/PD2		P5/PD2 can be switched between output port and phase	CMOS/3-state
13	12	P6		comparison output on the basis of input data.	Nch open drain
14	13	IFIN	IF input	Input for frequency measurement.	IN
15	14	P 2	Output port	Controlled on the basis of input data.	Nch open drain
16	15	AMIN	AM input	Local input for AM	IN
17	16	FMIN	FM input	Local input for FM	IN
18	17	V _{DD2}	Power supply 2	4.0V to 6.0V applied for high-speed circuit power supply.	_
19	18	V _{DD1}	Power supply 1	Power supply for logic. 2.7V to 6.0V	_
21	19	PD1	Phase comparison output	High level when value obtained by dividing local output is	3-state
22	20	Vss	GROUND	higher than standard frequency. Low level when value is lower. High impedance when value is same.	_
3.20	_	N.C.	N.C.	No internal connection.	-

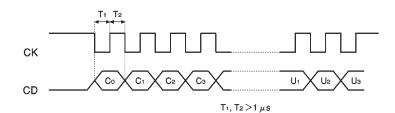
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Power supply current 1	DD1	-	5.0	10.0	mA	FMIN=130MHz, 100mVrms	17-pin current
Power supply current 2	DD2	-	100	150	μA		18-pin current
Quiescent current	IDD3	-	150	300	μA	No input, PLL = OFF	17-pin current
Input high level voltage	Vін	4.0	-	_	V	CE, CK, DA terminals	
Input low level voltage	VIL	-	-	1.0	V	CE, CK, DA terminals	
Input high level current 1	Інт	-	-	1.0	μA	CE, CK, DA terminals	VIN=VDD
Input high level current 2	Пн2	—	0.3	—	μA	XIN terminal	VIN=VDD
Input high level current 3	Іінз	—	6.0	—	μA	FMIN, AMIN, IFIN terminals	VIN=VDD
Input low level current 1	liL1	-1.0	_	_	μA	CE, CK, DA terminals	VIN=Vss
Input low level current 2	lıL2	-	-0.3	-	μA	XIN terminal	VIN=Vss
Input low level current 3	liL3	-	-6.0	_	μA	FMIN, AMIN, IFIN terminals	VIN=VSS
Output low level voltage 1	Vol1	—	0.2	0.5	V	P0, P1, P2, P3, P4, P6, CD	1 ₀ =1.0mA
Off level leakage current 1	OFF1	-	-	1.0	μA	P0 , P1, P2, P3, P4, P6, CD	Vo=10V
Output low level voltage 2	Vol2	—	0.1	0.5	V	FMIN, AMIN, IFIN terminals	loυτ=0.1mA
Output high level voltage	Vон	Vpp-1.0	VDD-0.3	—	V	PD1, PD2, P5	lout=-1.0mA
Output low level voltage	Vol	—	0.2	1.0	V	PD1, PD2, P5	loυτ=1.0mA
Off level leakage current 2	OFF2	-	-	100	nA	PD1, PD2	Vout=Vdd
Off level leakage current 3	OFF3	-100	-	_	nA	PD1, PD2	Vout=Vss
Internal feedback resistor 1	RF1	-	10	_	MΩ	XIN	
Internal feedback resistor 2	RF2	-	500	—	kΩ	FMIN, ANIN, IFIN terminals	
Input frequency 1	FINI	10	75	160	kHz	XIN, sine wave, C coupling	
Input frequency 2	FIN2	10	—	130	MHz	FMIN, sine wave, C coupling	VIN = 50 mVrms
Input frequency 3	FIN3	0.4	—	30	MHz	AMIN1, sine wave, C coupling	g Vıℕ = 70 mVrm
Input frequency 4	FIN4	0.4	—	16	MHz	IFIN, sine wave, C coupling V	/ıℕ = 70 mVrms
Maximum input amplitude	FINMAX	—	—	1.5	Vrms	XIN, FMIN, AMIN, IFIN, sine	wave, C coupling
Minimum pulse amplitude	TW	—	1.0	—	μs	CK, DA	
Input rise time	TR	—	—	500	ns	CE, CK, DA	
Input fall time	TF	-	—	500	ns	CE, CK, DA	

●Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{DD}1 = V_{DD}2 = 5.0V)


128

BU2615S / BU2615FS

-	anation (ata [·] D₀ through D₁₅ (Wher	S _ 1		broug	ь D)					
Do	D1		D3 D4 D5 D6		D8	D9	D15.)	D1	1 D	12 D13	D14	D15
Examp	les:		• · · ·					1				
Divide	ratio=1	100(D)	1100(D)÷2=550(D)	=226(H)	S=), PS=	=0 Div	vide ı	atio is	double t	he set v	alue.
0	1 1	0	0 1 0	0	0	1	0	0	0	0	0	0
Divide	ratio=1	107(D)=	=453(H) S=1, PS=	1								
1	1 0	0	1 0 1	0	0	0	1	0	0	0	0	0
Divide	ratio=92	26(D)=:	39E(H) S=1, PS=0									
	x x			1	1	0	0	1	1	1	0	0
(2) C	T: Frequ	iency m	easurement beginning									
	-	-	easurement									
			r is reset, IFIN is pulld		-							
. ,			data: P0, P1, P2, P3,	P4, P5, P	6							
	-		put ON (P5 is LO) put OFF (P5 is HI)									
			lard frequency data									
· · ·	Data	,			-							
R₀	Rı	R ₂	Standard freque	ncv	-							
0	0	0	25kHz		-							
0	0	1	12.5kHz		-							
0	1	0	6.25kHz		-							
0	1	1	5kHz		-							
1	0	0	3.125kHz		-							
1	0	1	3kHz		-							
1	1	0	1kHz		_							
1	1	1	%PLL OFF		-							
	= pulldown	. AMIN = r	ulldown, PD = high impedan	ce	-							
	-		n FMIN and AMIN									
• •	: FMIN	1: AMIN										
. ,			et to ON while AMIN is	s selected	d,							
			livision is possible.									
			t to ON, output port F n output. 0: P5 1: PI		0							
		•	measurement time a		k							
· · /	etection	,			IX.							
СТ	GT		uency measurement	Unlock d	etectior	n Da	ita outpu	ıt				
0	0		OFF	OF	F		NG					
0	1		OFF	10	N	1						
1	0	10	V gate time 16 ms	0	N	1	ОК					
1	1	10	J gate time 32 ms	10	N	1						
(0) T	S: Test (loto Inn	sut(0)			(_				

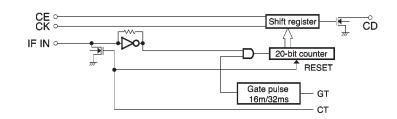

(9) TS: Test data. Input(0).

D٥	Dı	D2	D₃	D4	D₅	D6	D7	D8	D۹	D10	D11	D12	D13	D14	D15
← Input done from D₀.															
P٥	P1	P2	Pз	P4	P₅	P6	СТ	Ro	Rı	R2	S	PS	СН	GT	тs

Output data format CE output is LO.

Output data includes pullup resistance.

Output data format


LSB C٥ C1 C2 С₃ C4 **C**5 C6 C7 C8 C9 C10 C11 C12 **C**13 C14 C15 Output done from C₀. Uз C16 C17 C18 C19 U٥ U1 U2

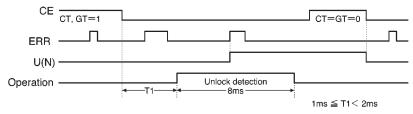
% Data output only possible when CT = 1 or GT = 1.

130

Frequency counter

(1) Structure

(2) How the frequency counter operates

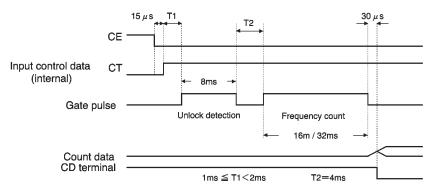

When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, input pulldown and the counter are reset. Measuring time (gate pulse) is selected (16ms/32ms) on the basis of control data GT. When control data CT equals 0, the counter is reset.

(3) Explanation of output data

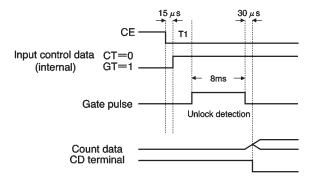
D₀: LSB D₁₉: MSB

How the unlock detection circuit operates

When control data GT equals 1, or CT equals 1, the unlock detection circuit goes into operation for 8ms. When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted. When CT equals 0, or GT equals 0, the unlock detection circuit is reset.

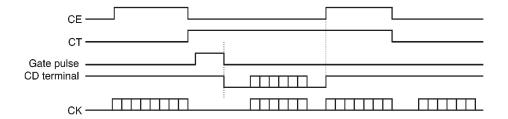


Explanation of output data

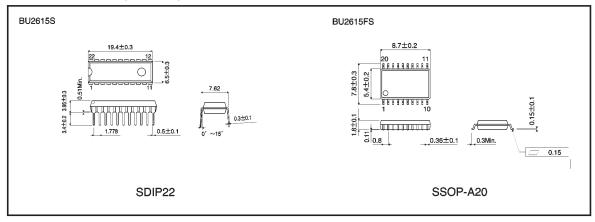

U0	U1	U2	UЗ					
0	0	0	0		<	ERR	<	7 µ s
1	1	1	0	7μs	<	ERR	<	13 µ s
1	1	0	0	13 µ s	<	ERR	<	26 µ s
1	1	1	0	26 µ s	<	ERR	<	54 µ s
1	1	1	1	54 µ s	<	ERR	<	

BU2615S / BU2615FS

How the frequency counter and unlock detection circuit operate
(1) When CT = 1: Frequency count and unlock detection are carried out.



(2) When CT = 0 and GT = 1: Only unlock detection is carried out.


Explanation of CD terminal

When frequency measurement or unlock detection is finished, the CD terminal goes to LO to indicate that the count and unlock detection have finished. It also synchronizes with CK to output counter data. When the next data is input, it goes to HI.

132

