LH5168

CMOS 64K (8K × 8) Static Ram

FEATURES

- 8,192 × 8 bit organization
- Access times: 80/100 ns (MAX.)
- Low-power consumption:

Operating:

303 mW (MAX.) LH5168/D/N

@ 80 ns

248 mW (MAX.) LH5168/D/N/T/TR

@ 100 ns

275 mW (MAX.) LH5168H/HD/HN

@ 100 ns

Standby:

5.5 μW (MAX.) LH5168/D/N/T/TR 16.5 μW (MAX.) LH5168H/HD/HN

- Fully-static operation
- Three-state outputs
- Single +5 V power supply
- TTL compatible I/O
- Pin compatible to 64K bit EPROM
- Wide temp. range available

LH5168: -10 to +70°C

LH5168H: -40 to +85°C

Packages:

28-pin, 600-mil DIP

28-pin, 300-mil SK-DIP

28-pin, 450-mil SOP

28-pin, $8 \times 13 \text{ mm}^2 \text{ TSOP (Type I)}$

DESCRIPTION

The LH5168 is a static RAM organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5168H is designed for wide temperature range from -40 to +85°C.

PIN CONNECTIONS

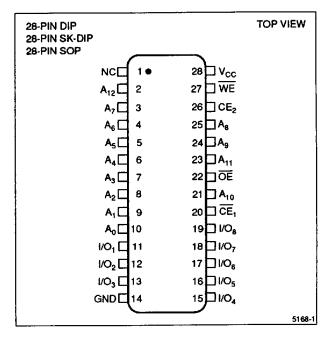


Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

CMOS 64K (8K × 8) Static RAM

LH5168

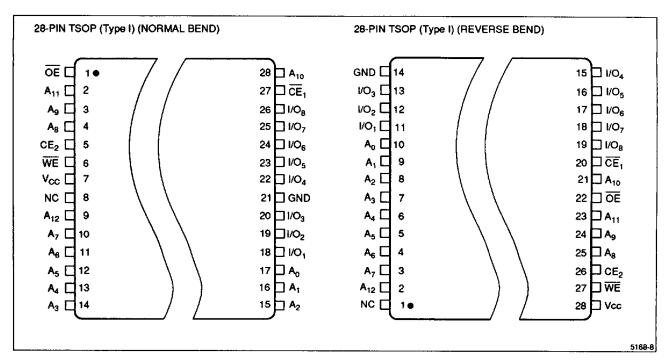


Figure 2. Pin Connections for TSOP Packages

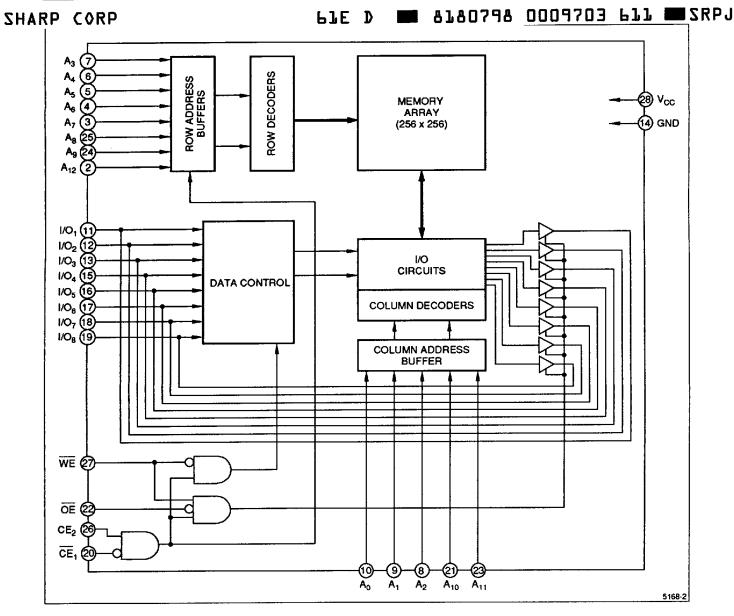


Figure 3. LH5168 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
A ₀ - A ₁₂	Address inputs
CE ₁ - CE ₂	Chip Enable input
WE	Write Enable input
ŌĒ	Output Enable input

SIGNAL	PIN NAME
I/O ₁ - I/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground
NC	Non-connection

TRUTH TABLE

CE ₁	CE ₂	WE	ŌĒ	MODE	I/O ₁ - I/O ₈	SUPPLY CURRENT	NOTE
Н	Х	Х	Х	Deselect	High-Z	Standby (I _{SB})	1
Х	L	Х	Х	Deselect	High-Z	Standby (I _{SB})	1
L	Н	L	X	Write	DiN	Operating (Icc)	
L	Н	Н	L	Read	Dout	Operating (Icc)	
L	Н	Н	Н	Output disable	High-Z	Operating (Icc)	

NOTE:

1. X = H or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	CVMDOL	SYMBOL 80 ns 100 n		UNIT	NOTE
PANAMETER	STMBOL	RATING	RATING	UNII	NOTE
Supply voltage	Vcc	-0.3 to +7.0	-0.3 to +7.0	٧	1
Input voltage	VIN	-0.5 to V _{CC} +0.5	-0.3 to V _{CC} +0.3	٧	1
Operating temperature	Tonr	-10 to +70	-10 to +70	°C	2
Operating temperature	Topr		-40 to +85	°C	3
Storage temperature	Tstg	-55 to +150	-55 to +150	°C	

NOTES:

- 1. The maximum applicable voltage on any pin with respect to GND.
- 2. LH516B/D/N
- 3. LH5168H/HD/HN

RECOMMENDED OPERATING CONDITIONS (Note 1)

PARAMETER	SYMBOL	80 ns				LINUT		
	STMBOL	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.5	5.0	5.5	4.5	5.0	5.5	٧
Input voltage	V _{IH}	2.2		Vcc + 0.5	2.2		V _{CC} + 0.3	V
input voitage	V _{IL}	-0.5		0.8	-0.3		0.8	V

NOTE:

DC CHARACTERISTICS 1 (V_{CC} = 5 V \pm 10%)

PARAMETER	SYMBOL	CONDITIONS			MAX.	UNIT	NOTE
Input leakage current	ارر	$V_{IN} = 0$ to V_{CC}			1.0	μА	
Output leakage current	lιο	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$ or $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{I/O} = 0 \text{ to } V_{CC}$			1.0	μΑ	
		CE ₁ = V _{IL} , V _{IN} = V _{IL} to V _{IH} CE ₂ = V _{IH} , Outputs open	tcycle = 80 ns		55	mA	
0	lcc	CE ₁ = V _{IL} , V _{IN} = V _{IL} to V _{IH} CE ₂ = V _{IH} , Outputs open	tcycle =		45		2
Operating current			100 ns		50		3
		$\overline{CE}_1 = V_{IL}, V_{IN} = 0.2 \text{ V to}$ $V_{CC} - 0.2 \text{ V}$ $CE_2 = V_{IH}, \text{ Outputs open}$	tcycLE = 1.0 μs		10 mA		
	I _{SB1}	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 =$	V _{IL}		10	mA	
Standby current	Isa	CE ₂ ≤ 0.2 V or	T _A ≤ 70°C		1.0	μА	2
	isa	CE ₁ , CE ₂ ≥ V _{CC} - 0.2 V	T _A ≤ 85°C		3.0	μА	3
Output voltage	Vol	l _{OL} = 2.1 mA			0.4	٧	
Output Voltage	VoH	I _{OH} = -1 mA				>	

NOTES:

- 1. $T_A = -10$ to 70° C (LH5168/D/N/T/TR), $T_A = -40$ to $+85^{\circ}$ C (LH5168H/HD/HN)
- 2. LH5168/D/N/T/TR
- 3. LH5168H/HD/HN

^{1.} $T_A = -10$ to +70°C (LH5168/D/N), $T_A = -40$ to +85°C (LH5168H/HD/HN).

AC CHARACTERISTICS 1

(1) READ CYCLE (VCC = $5 V \pm 10\%$)

PARAMETER		SYMBOL	80	กร	100 ns		UNIT	NOTE
		STMBOL	MIN.	MAX.	MIN.	MAX.	1 0,4,,	
Read cycle		trc	80		100		ns	
Address access time)	taa		80		100	ns	
Chip enable	(CE ₁)	tace1		80		100	ns	
access time	(CE ₂)	tace2		80		100	ns	
Output enable access time		toe		40		40	ns	
Output hold time		tон	10		10		ns	
Chip enable to	(CE ₁)	tLZ1	10		10		ns	2
output in Low-Z	(CE ₂)	tLZ2	10		10		กร	2
Output enable to out Low-Z	tput in	toLz	5		5		กร	2
Chip enable to	(CE ₁)	tHZ1	0	30	0	30	ns	2
output in High-Z	(CE ₂)	tHZ2	0	30	0	30	ns	2
Output disable to output in High-Z		tonz	0	20	0	20	ns	2

NOTES:

- 1. $T_A = -10 \text{ to } +70 ^{\circ}\text{C} \text{ (LH5168/D/N/T/TR)}, T_A = -40 \text{ to } +85 ^{\circ}\text{C} \text{ (LH5168H/HD/HN)}$
- 2. Active output to high-impedance and high-impedance to output active tests specified for a ±500 mV transition from steady state levels into the test load. CLOAD = 5 pF.

(2) WRITE CYCLE (V_{CC} = $5 V \pm 10\%$)

PARAMETER	SYMBOL	80 ns		100 ns		UNIT	NOTE
	SIMBUL	MIN.	MAX.	MIN.	MAX.	ONII	HOIL
Write cycle time	twc	80		100		ns	
Chip enable to end of write	tcw	70		80		ns	
Address valid to end of write	taw	70		80		ns	
Address setup time	tas	0		0		ns	
Write pulse width	twp	60		60		ns	
Write recovery time	twn	0		0		ns	
Data valid to end of write	tow	40		40		ns	
Data hold time	tон	0		0		ns	
Output active from end of write	tow	10		10		ns	1
WE to output in High-Z	twz	0	30	0	30	ns	1
OE to output in High-Z	tonz	0	20	0	20	ns	1

NOTE:

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	(1TTL + C _L = 100 pF)

^{1.} Active output to high-impedance and high-impedance to output active tests specified for a ±500 mV transition from steady state levels into the test load. CLOAD = 5 pF.

SHARP CORP

6]E D ■ 8]80798 0009706 320 ■ SRPJ

CAPACITANCE 1 (TA = 25°C, f = 1MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN	V _{IN} = 0 V			7	рF
Input/output capacitance	C _{VO}	V _{VO} = 0 V			10	pF

NOTE:

DATA RETENTION CHARACTERISTICS 1

PARAMETER	SYMBOL CONDITIONS		MIN.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$CE_2 \le 0.2 \text{ V or}$ CE_1 , $CE_2 \ge V_{CC} - 0.2 \text{ V}$	2.0		٧	
Data retention current	ICCDR	VCCDR = 3 V,		0.6	μΑ	2
		$CE_2 \le 0.2 \text{ V or } \overline{CE}_1$, $CE_2 \ge V_{CCDR} - 0.2 \text{ V}$		1.5	μА	3
Chip disable to data retention	tcor		0		ns	
Recovery time	t _{RDR}		tRC		ns	4

NOTES:

- 1. $T_A = -10$ to +70°C (LH5168/D/N/T/TR), $T_A = -40$ to +85°C (LH5168H/HD/HN)
- 2. LH5168/D/N/T/TR at T_A ≤ 70°C
- 3. LH5168H/HD/HN at T_A ≤ 85°C
- 4. t_{RC} = Read cycle time

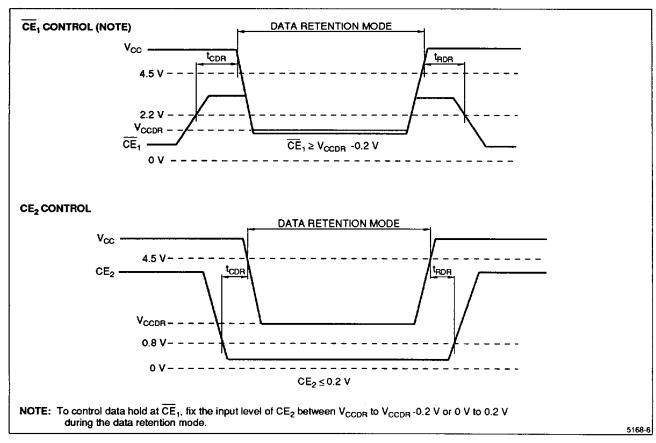


Figure 4. Low Voltage Data Retention

^{1.} This parameter is sampled and not production tested.

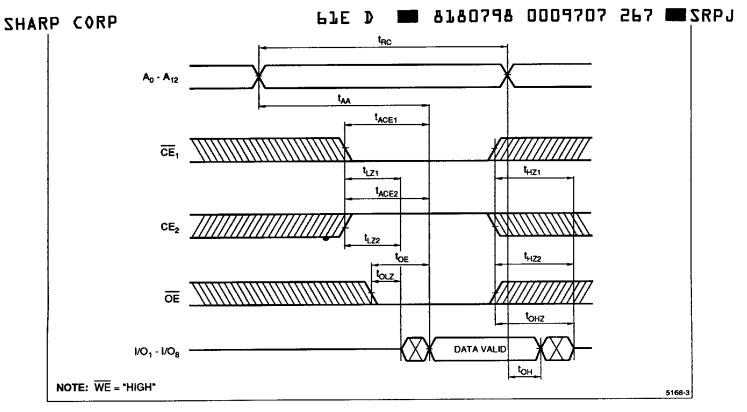


Figure 5. Read Cycle

output will remain high-impedance.

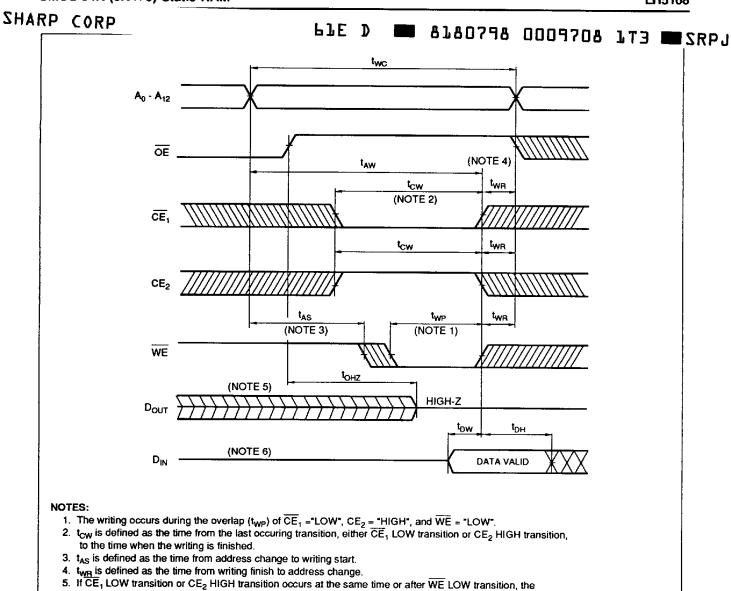


Figure 6. Write Cycle 1

6. While the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

5168-4

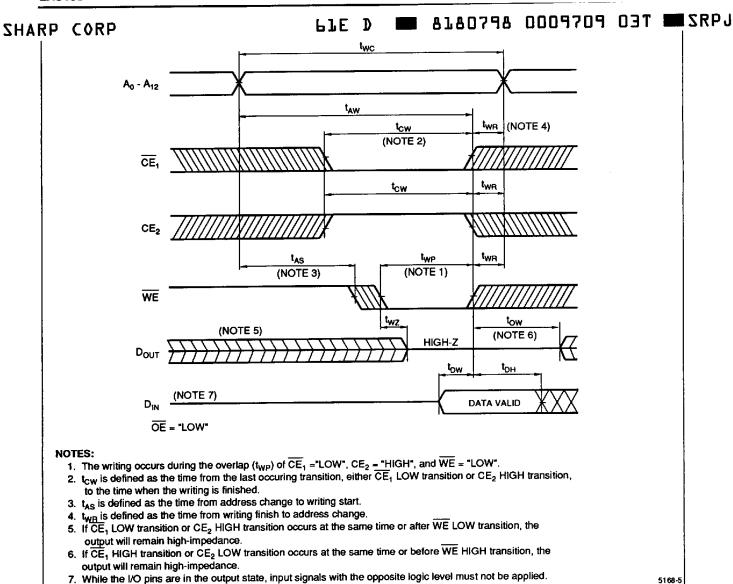
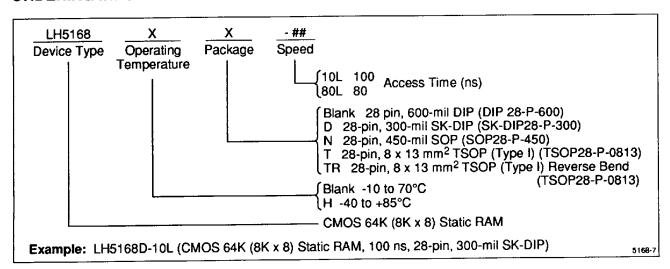



Figure 7. Write Cycle 2

ORDERING INFORMATION

