TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT

TA31101P, TA31101F TA31101AP, TA31101AF

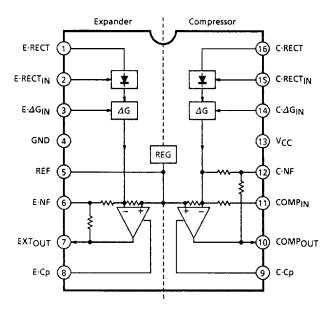
SILICON MONOLITHIC

COMPANDER IC FOR CORDLESS TELEPHONE

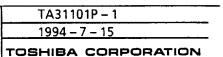
FEATURES

 Low operating supply voltage and small consumption current make this IC suitable for its application to the sets using the battery such as the codeless telephone set.

$$V_{CC}$$
 (MIN) = 1.8 V (Ta = 25°C)
 I_{CCO} = 2.7 mA (Typ.) (V_{CC} = 3 V , Ta = 25°C)

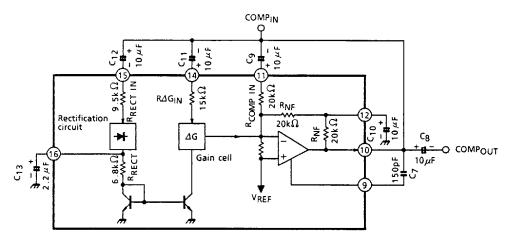

- For noise reduction, compressor and expander are incorporated into a package.
- Wide operating supply voltage range : $V_{CC} = 1.8 \sim 9V$
- Recommendable operating supply voltage : $V_{CC} = 3V$
- Difference between TA31101P, TA31101F and TA31101AP, TA31101AF

NAME OF PRODUCT	INPUT REFERENCE LEVEL (Typ.)	
TA31101P, TA31101F	– 18.5dBV	
TA31101AP, TA31101AF	F – 20.0dBV	

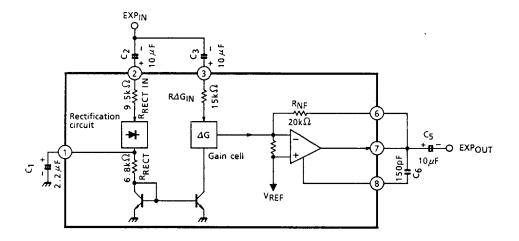

TA31101P TA31101AP DIP16-P-300A TA31101F TA31101AF SSOP16-P-225

Weight DIP16-P-300A : 1.1g (Typ.) SSOP16-P-225 : 0.14g (Typ.)

BLOCK DIAGRAM



The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.) please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve the threatening or critical application, including by not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims filebility for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

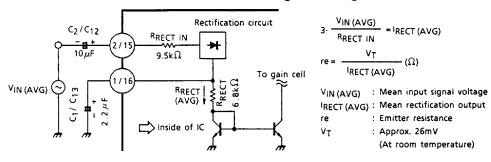


The compressor and the expander of this IC are individually composed of the rectification circuit, the gain cell and the operation amplification circuit as shown in the figure below.

Compressor

Expander

1. Rectification circuit

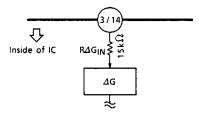

In this circuit, the feedback-type full-wave rectification circuit is applied for improving the precision of detection, and the response characteristics (attack time, recovery time) are determined by the time constant of the smoothing capacitor of the rectifying output current connected to the E-RECT terminal and the C-RECT terminal (pin 1, pin 16) and by the time constant of the internal resistance of IC.

TA31101P – 2
1994 – 7 – 15
TORHIBA CORRODATION

TA31101P, TA31101F TA31101AP, TA31101AF

TECHNICAL DATA

The internal resistance of E-RECT terminal and C-RECT terminal (pin 1, pin 16) becomes the series resistance of the R-RECT 6.8 Ω and the emitter resistance re in the current miller circuit. The emitter resistance re of transistor varies according to the signal level as shown below.



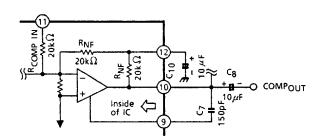
The input resistance of the input E-RECTIN terminal and C-RECTIN terminal (pin 2, pin 15) of the rectification circuit is approximately $9.5k\Omega$.

Gain cell (△G)

This circuit is a variable gain amplifier for controlling the gain with the rectification output current of the rectification circuit.

The input resistance of the input E·△GIN terminal and C·△GIN terminal of the gain cell (pin 3, pin 14) is approximately $15k\Omega$.

3. Operation amplification circuit


In the compressor, since the variable gain amplifier is involved in the feedback loop of the operation amplification circuit, the oscillation is liable to be generated, however, in this circuit, since the C·Cp terminal (pin 9) for phase compensation is provided, the countermeasure can be taken against the oscillation through the external capacitor.

In the compressor, for making the current gain maximum, the capacitor for decoupling the current signal is connected to the C·NF terminal (pin 12).

The cut-off frequency of the compressor is determined by the product of the capacitor C_{10} connected to the C·NF terminal multiplied by RNF 20k Ω of the internal resistance.

The cut-off frequency is obtained by the expression below.

$$f_C = \frac{1}{2\pi \cdot C_{10} \cdot R_{NF}}$$

TA31101P – 3 TOSHIBA CORPORATION

INTEGRATED CIRCUIT **TOSHIBA**

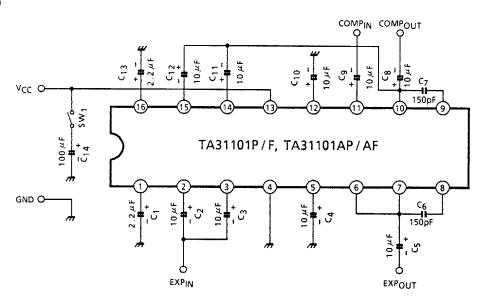
TECHNICAL DATA

TA31101P, TA31101F TA31101AP, TA31101AF

MAXIMUM RATINGS (Ta = 25°C)

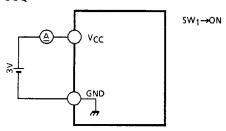
CHARACTERI	STIC	SYMBOL	RATING	UNIT	
Supply Voltage	· · · · · · · · · · · · · · · · · · ·	Vcc	10	V	
Power Dissipation	P type	D-	1000	\0/	
	F type	d PD	370	mW	
Operating Tempera	ture	Topr	- 25∼75	°C	
Storage Temperatu	re	T _{stg}	- 55~150	°C	

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 3V$, f = 1kHz, Ta = 25°C, 0dB = -20dBV)

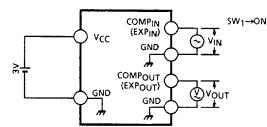

CHARACT	ERIST	IC .	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltag	е		Vcc	_	_	1.8	3.0	9.0	V
Quiescent Current		¹ ccQ	1	V _{CC} = 3.0V	_	2.7	5.0	mA	
Reference TA	TA31	1101P 1101F		2	V _{IN} = V _{OUT}	- 20.0	- 18.5	- 17.0	dBV
	1	1101AP 1101AF	NE.			- 21.5	- 20.0	- 18.5	
Total Harmon	ic	COMP	THDC	3	V _{IN} = 0dB	_	- 55	- 46	-10
Distortion		EXP	THDE]	VIV = 00B	_	- 55	- 46	dB
Output Noise		COMP	VNOC	4	V _{IN} = -∞, f = 15Hz~20kHz	_	0.5	_	mV_{rms}
Voltage		EXP	VNOE	"	V _{IN} = -∞, 1 = 13H2~20KH2		15	_	μ V $_{rms}$
Casas Talle	C→E	CT (C→E)	5	V _{IN} = 0dBV	—	- 95	_		
Cross Talk E→C		E→C	CT (E→C)	6	V _{IN} = - 12dBV	_	- 55		dBV
ı ··		COMP	RRC	7	V _R = 100mV _{rms} , f = 1kHz	_	- 30	_	dB
		EXP	RRE			_	- 60	_	
Maximum Ou ⁻ Voltage (EXP)	•		Vом	8	$R_L = 10k\Omega$	_	800	_	mV _{rms}
Output Deviation			V _{OC1}		V _{IN} = 20dB	-0.4	0.1	0.6	
		COMP	V _{OC2}	9	$V_{IN} = -20$ dB	0.5	0	0.5	dB
	tion		V _{OC3}		V _{IN} = -40dB	- 0.6	- 0.1	0.4	
(Note 1)		1) EXP	VOE1		V _{IN} = 6.5dB	- 1.1	- 0.1	0.9	ub
			V _{OE2}	9	V _{IN} = - 10dB	- 0.9	0.1	1.1	
			V _{OE3}		V _{IN} = -25dB	- 1.0	0	1.0	
Frequency		COMP	FRC	10	$V_{IN} = 0$ dB, $f = 200 \sim 3500$ Hz	_	±0.1		dB
Characteristic EXP		EXP	FRE	7 '0 '	and $f = 1kHz$ are references.	_	±0.1	_	ub

Note 1 : Output deviation = ($V_{OUT} - V_{REF}$) – $V_{IN} \times \alpha\beta$ $\alpha\beta$: (COMP = 0.5, EXP = 2)

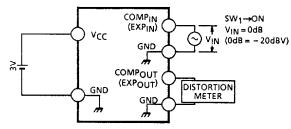
TA31101P - 4	
1994 – 7 – 15	
TOSHIBA CORPORATION	

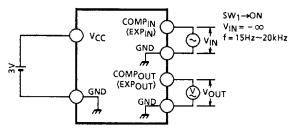

TA31101P, TA31101F TA31101AP, TA31101AF

TEST CIRCUIT



TEST CIRCUIT

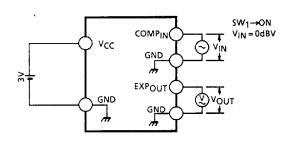

(1) ICCQ


(2) V_{REF}

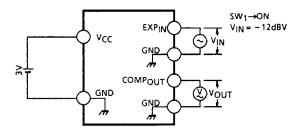
(3) THDC, THDE

(4) VNOC, VNOE

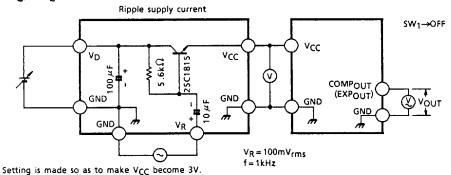
TA31101P - 5 1994 - 7 - 15


TOSHIBA CORPORATION

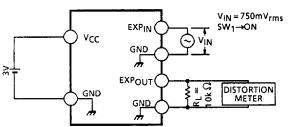
INTEGRATED CIRCUIT **TOSHIBA**

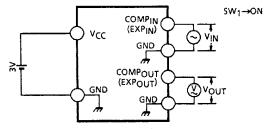

TECHNICAL DATA

TA31101P, TA31101F TA31101AP, TA31101AF



(6) $CT(E \rightarrow C)$


(7) RRC, RRE


(8) ۷ом

(10)

FRC, FRE

(9) VOC1, 2, 3, VOE1, 2, 3

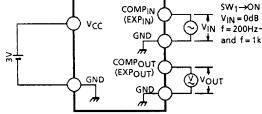
Note: OUTPUT DEVIATION

= $(V_{OUT} - V_{REF}) - V_{IN} \times \alpha \beta$ $\alpha\beta$: (COMP = 0.5, EXP = 2)

(0dB = -20dBV)

 $V_{OC1} \rightarrow V_{IN} = +20dB$

 $V_{OE1} \rightarrow V_{IN} = +6.5dB$

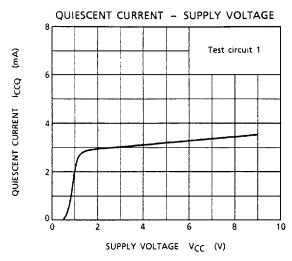

 $V_{OC2} \rightarrow V_{IN} = -20dB$

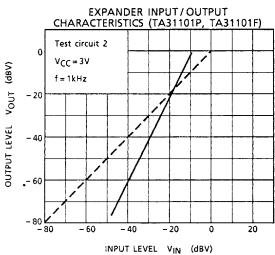
 $V_{OE2} \rightarrow V_{IN} = -10dB$

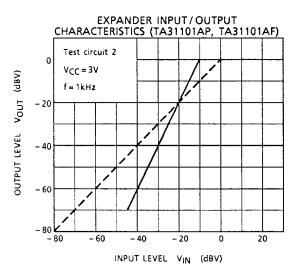
 $V_{OC3} \rightarrow V_{IN} = -40 dB$

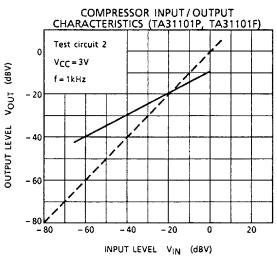
 $V_{OE3} \rightarrow V_{IN} = -25dB$

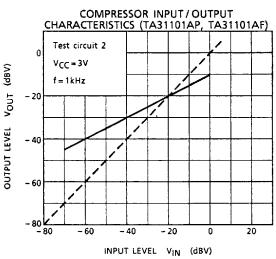
VCC VIN f=200Hz~3.5kHz GND and f = 1kHz are references.

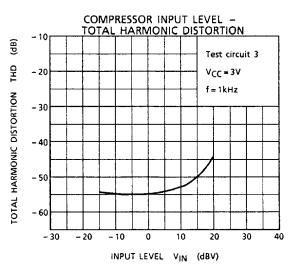

TA31101P - 6 1994 - 7 - 15

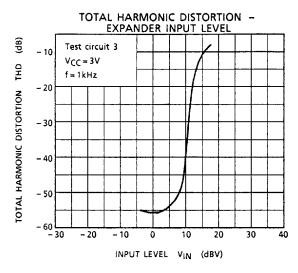

TOSHIBA CORPORATION

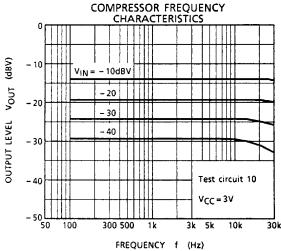

INTEGRATED CIRCUIT **TOSHIBA**

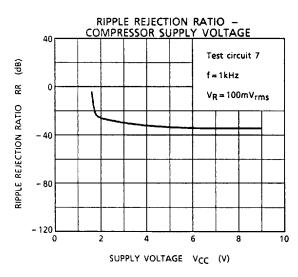

TECHNICAL DATA

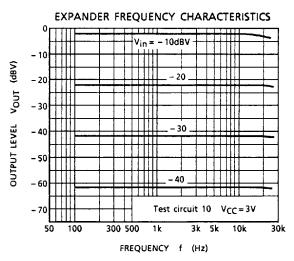

TA31101P, TA31101F TA31101AP, TA31101AF

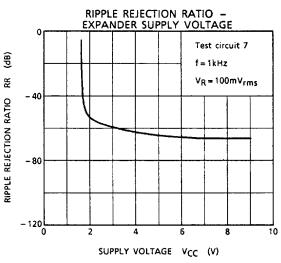


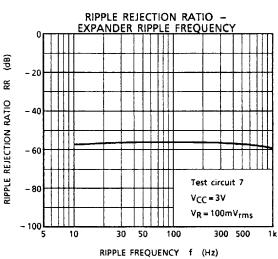


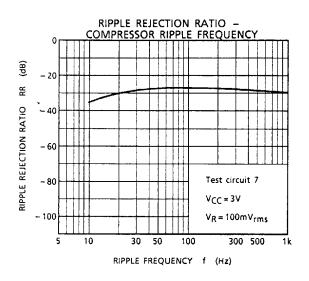

TA31101P - 7 1994 - 7 - 15TOSHIBA CORPORATION

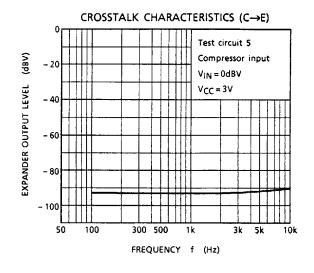

INTEGRATED CIRCUIT TOSHIBA

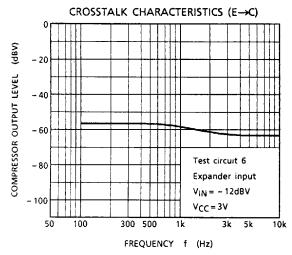

TECHNICAL DATA


TA31101P, TA31101F TA31101AP, TA31101AF



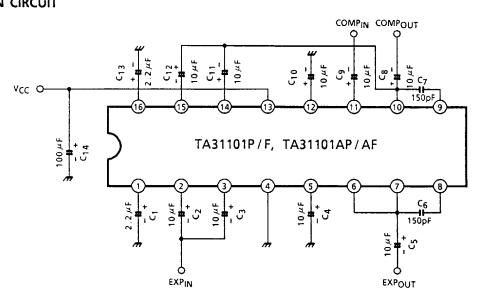



TA31101P - 8 1994 - 7 - 15 TOSHIBA CORPORATION

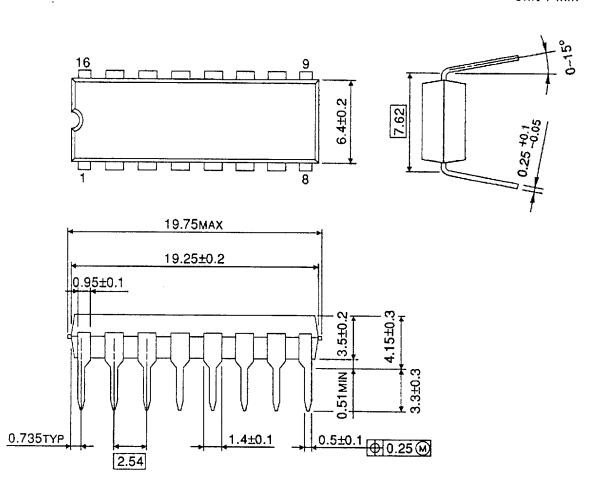

INTEGRATED CIRCUIT

TECHNICAL DATA

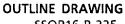
TA31101P, TA31101F TA31101AP, TA31101AF

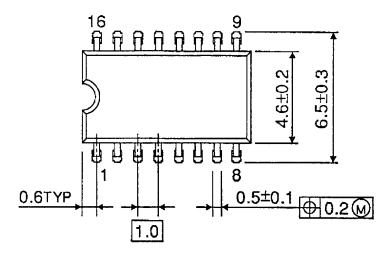


TA31101P-9 1994-7-15 TOSHIBA CORPORATION

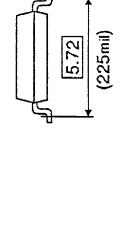

APPLICATION CIRCUIT

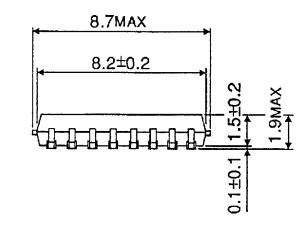
TA31101P - 10 1994 - 7 - 15 TOSHIBA CORPORATION

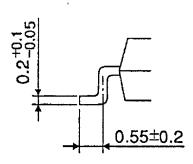

Unit: mm


Weight: 1.1g (Typ.)

TA31101P - 11 1994 - 7 - 15


TOSHIBA CORPORATION





Weight: 0.14g (Typ.)

TA31101P - 12*	
1994 – 7 – 15	