TONE/PULSE DIALER WITH TWO-STAGE REDIAL FUNCTION

GENERAL DESCRIPTION

The W91610 series are Si-gate CMOS ICs that provide the signals needed for either pulse or tone dialing.

FEATURES

- DTMF/Pulse switchable dialer
- 32-digit redial memory
- Two-stage redial function
- Pulse-to-tone ($\mathrm{P} \rightarrow \mathrm{T}$) keypad for long distance call operation
- Easy operation with redial, flash, pause and $P \rightarrow T$ keypads
- Pause, pulse-to-tone $(\mathrm{P} \rightarrow \mathrm{T})$ can be stored as a digit in memory
- Tone output duration: as long as key is depressed or 90 mS minimum
- Minimum intertone pause: 90 mS
- Flash time: 100 mS
- Uses 4×5 keyboard
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- Packaged in 18-pin DIP
- The different dialers in the W91610 series are shown in the following table:

TYPE NO.	DIALING RATE	PAUSE	B:M	FLASH
W91610	10 ppS	4 sec	$2: 1$	100 mS
			$3: 2$	

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	PIN NO.	I/O	FUNCTION
Column- Row Inputs	$1-4$ $\&$ $15-18$	I	Keyboard inputs are designed for use with either a standard 4×5 keyboard or an inexpensive single contact (Form A) keyboard. Electronic input from a $\mu \mathrm{C}$ can also be used. Valid key entry is defined by a connection between a single row and a single column.
XT, $\overline{\mathrm{XT}}$	7,8	I, O	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal or ceramic resonator.
T/P $\overline{\text { MUTE }}$	9	O	The T/P $\overline{\text { MUTE is a conventional CMOS inverter output. It is low }}$ during pulse and tone mode dialing sequence and flash break; otherwise, it remains high.
MODE	13	I	Pulling the mode pin to Vss place the dialer in tone mode. Pull to VDD or leave floating: Pulse mode (10 ppS, M/B $=2: 3$ or $1: 2)$

Pin Description, continued

SYMBOL	PIN NO.	I/O	FUNCTION		
HKS	10	1	Hook switch input. Conventional CMOS input with an internal protection diode and a pull-high resistor to VDD. $\overline{\mathrm{HKS}}=\mathrm{VDD}$: On-hook state. Chip in sleep mode, no operation. $\overline{\text { HKS }}=$ Vss: Off-hook state. Chip enabled for normal operation. During dialing, this input ignores $\overline{\text { HKS }}=$ VDD for durations of less than 150 mS (i.e., dialing is not terminated).		
$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$	11	0	Open drain dialing pulse output (Figure 1). Flash key causes $\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$ to be active in both tone mode and pulse mode.		
DTMF	12	0	During pulse dialing In tone mode, output Detailed timing diag	mainta a dua ram for Actual 699 766 848 948 1216 1332 1472	slow st Er single Error \% +0.28 -0.52 -0.47 +0.74 +0.57 -0.30 -0.34
Vdd, Vss	14, 6	1	Power input pins. The P MUTE is a conventional CMOS inverter output. It is high during pulse dialing sequence and flash break. Otherwise, it remains low.		
P MUTE	5	0			

Electronics Corp.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$
1	2	3		$\mathrm{P} \rightarrow \mathrm{T}$
4	5	6	F	P
7	8	9		
*	0	\#	R	

- F: Flash key
- $\mathrm{P} \rightarrow \mathrm{T}$: In pulse mode, this key works as Pulse \rightarrow Tone key
$P \rightarrow T$ key can be stored as a digit in pulse or tone mode
- R: Redial function key
- P: Pause key

Normal Dialing

$$
\begin{array}{|ll}
\hline \text { OFF HOOK }, ~ D 1, ~ D 2 ~
\end{array}, \ldots, \begin{array}{|l|}
\hline \text { Dn } \\
\hline
\end{array}
$$

1. D1, D2, ..., Dn will be dialed out.

W91610 SERIES

rinbond
 Electronics Corp

2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits in normal dialing.
3. Dialing mode is determined at the on/off hook transition.

Redialing

1. OFF HOOK , D1, D2 , D , $\mathrm{D}, \mathrm{Dn} \begin{aligned} & \text {, Busy, } \\ & \text { Come }\end{aligned}$, ON HOOK,$~$ OFF HOOK , R The R key executes the redialing $\begin{gathered}\text { function. }\end{gathered}$
2. Redial content = D1, D2, ..., Dn

a. D1, D2, ..., Dn, D1', D2', P \rightarrow T, D3', D4' will be dialed out.
b. Redial register is changed to D1, D2, ..., Dn, D1', D2', P \rightarrow T, D3', D4'.
c.

D1, D2, ..., Dn, D1', D2', will be dialed out,
$R \quad$ (2nd); $\mathrm{P} \rightarrow \mathrm{T}, \mathrm{D} 3$ ', D4' will be dialed

Access Pause

1. The pause function can be stored in memory.
2. The pause function may be executed in normal dialing, redialing, or memory dialing (4.0 sec/pause).
3. The pause function can be stored as the first digit in memory.
4. The pause time depends on the number of times the P key is depressed. For example, if the sequence $1,2, P, P, 4,5,6$ is keyed in, then the pause time is 8 seconds.
5. The pause function timing diagram is shown in Figure 3.

Pulse-to-tone ($\mathrm{P} \rightarrow \mathrm{T}$)

1. OFF HOOK, $\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}, \mathrm{P} \rightarrow \mathrm{T}, \mathrm{D} 1$,, D 2 , , $, \mathrm{Dn}, \mathrm{D}$
a. If the mode switch is set to pulse mode, then the output signal will be as follows:

D1, D2, ..., Dn, no pause, D1', D2', ..., Dn'
(Pulse)
(Tone)
In this case, the device can be reset to pulse mode only by going on-hook, because tone mode remains enabled after the digits have been dialed out.

W91610 SERIES

Yinbond
 Electronics Corp.

b. If the mode switch is set to tone mode, then the output signal will be as follows:

D1, D2, ..., Dn, no pause, D1', D2', ..., Dn'
(Tone)
(Tone)
c. The $\mathrm{P} \rightarrow \mathrm{T}$ key may be pressed before the first sequence is dialed out completely.
2. OFF HOOK, R
a. If the mode switch is set to pulse mode, then the output signal will be as follows:

D1, D2, ..., Dn
(Pulse)
b. In the first redial operation, only the digits before the tone key are dialed out.

R (2nd)
D1', D2', ..., Dn' are dialed out.
(Tone)
c. In the second redial operation, the digits after the tone key are dialed out.

Flash

1. F key may be pressed before digits D1, D2, D3 are sent completely. Digits D4, D5, D6 may The

be pressed during the 100 mS . flash period.
2. The flash key cannot be stored as a digit in memory or in the redial register.
3. The content of the redial register is D1, D2, D3, D4, D5, D6. The
 register.
4. The flash does not have first priority among the keyboard functions.
5. The flash pause time is 800 mS , so there is a pause of 800 mS between the flash and the next digit dialed (see Figure 5).
6. The dialer will not return to the initial state after the flash break time has elapsed.
7. The flash function timing diagram is shown in Figure 5.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VSS	-0.3 to +7.0	V
Input/Output Voltage	VIL	$\mathrm{VSS}-0.3$	V
	VIH	$\mathrm{VDD}+0.3$	V
	VOL	$\mathrm{VSs}-0.3$	V
	VoH	$\mathrm{VDD}+0.3$	V

Power Dissipation	PD	120	mW
Operating Temperature	TOPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(Fosc. $=3.58 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, all outputs unloaded)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VdD	-	2.0	-	5.5	V
Operating Current	Iop	Tone, VDD $=2.5 \mathrm{~V}$	-	0.30	0.50	mA
		Pulse, VDD $=2.5 \mathrm{~V}$	-	0.15	0.30	
Standby Current	ISB	$\overline{\mathrm{HKS}}=0$, No load $\&$ No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\overline{\mathrm{HKS}}=1, \mathrm{VDD}=1.0 \mathrm{~V}$	-	-	0.2	$\mu \mathrm{A}$
DTMF Output Voltage	Vto	Row group, RL = $5 \mathrm{~K} \Omega$	130	150	170	mVrms
Pre-emphasis		Col/Row, $\mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V}$	1	2	3	dB
DTMF Distortion	THD	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-30	-23	dB
DTMF Output DC Level	VTDC	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega \\ & \mathrm{VDD}=2.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	1.0	-	3.0	V
DTMF Output Sink Current	ITL	$\begin{aligned} & \hline \mathrm{VTO}=0.5 \mathrm{~V} \\ & \mathrm{VDD}=2.5 \mathrm{~V} \end{aligned}$	0.2	-	-	mA
$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$ Output Sink Current	IPL	$\begin{aligned} & \mathrm{VPO}=0.5 \mathrm{~V} \\ & \mathrm{VDD}=2.5 \mathrm{~V} \end{aligned}$	0.5	-	-	mA
P MUTE \& T/P MUTE Output Drive Current	Імн	$\begin{aligned} & \mathrm{VMO}=2.0 \mathrm{~V} \\ & \mathrm{VDD}=2.5 \mathrm{~V} \end{aligned}$	0.2	-	-	mA
P MUTE \& T/P MUTE Output Sink Current	IML	$\begin{aligned} & \mathrm{VMO}=0.5 \mathrm{~V}, \mathrm{VDD}= \\ & 2.5 \mathrm{~V} \end{aligned}$	0.5	-	-	mA
Keypad Input Drive Current	IkD	$\mathrm{VI}=0 \mathrm{~V}, \mathrm{VDD}=2.5 \mathrm{~V}$	4	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	Iks	$\mathrm{VI}=2.5 \mathrm{~V}, \mathrm{VDD}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Keypad Resistance	Rk	-	-	-	5.0	K Ω
$\overline{\text { HKS }}$ Input Pull High Resistance	Rнк	-	-	300	-	$\mathrm{K} \Omega$

Input Voltage Low Level	VIL	Pins 1, 2, 3, 4, 10, 13,	0	-	$\begin{aligned} & \hline 0.2 \\ & \text { VDD } \end{aligned}$	V
Input Voltage High Level	VIH	15, 16, 17, 18	$\begin{gathered} \hline 0.8 \\ \text { VDD } \end{gathered}$	-	VdD	V

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Keypad Active in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TkRD	-	-	20	-	mS
Pre-digit Pause	TPDP1	Mode Pin = Floating	-	33.3	-	mS
	10 ppS	Mode Pin = VDD	-	40	-	
Interdigit Pause (Auto Dialing)	TIDP	10 ppS	-	800	-	mS
Make/Break Ratio	M/B	M/B $=1: 2$	-	33:67	-	\%
		$\mathrm{M} / \mathrm{B}=2: 3$	-	40:60	-	
DTMF Output Duration	Ttd	Auto Dialing	-	90	-	mS
Intertone Pause	TITP		-	90	-	mS
Flash Break Time	Tfb	-	-	100	-	mS
Flash Pause	TfP	-	-	800	-	mS
Pause Time	TP	-	-	4.0	-	S
Pre-tone Mute	TPTM	-	-	70	-	mS

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega$, $\mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

TIMING WAVEFORMS

Figure 1. Pulse Mode Timing Diagram
Timing Waveforms, continued

Figure 2(a). Tone Mode Normal Dialing Timing Diagram

Figure 2(b). Tone Mode Auto Dialing Timing Diagram

Timing Waveforms, continued

Figure 3. Pause Function Timing Diagram

Figure 4. $\mathrm{P} \rightarrow$ T Operation Timing Diagram in Normal Dialing

Timing Waveforms, continued

Figure 5. Flash Operation Timing Diagram

Headquarters

No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006
Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong
TEL: 852-27516023
FAX: 852-27552064

Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502

