HA16141P/FP, HA16142P/FP

PFC and PWM Controller

HITACHI

ADE-204-036D (Z)

Rev. 4
Sep. 2001

Description

The HA16141P/FP and the HA16142P/FP are power supply controller ICs combining an AC-DC converter switching controllers for power factor correction and off-line power supply switching controllers. PFC (Power factor correction) section employs average current mode PWM and off-line power supply control section employs peak current mode PWM.

The HA16142P/FP is the change version of HA16141P/FP's PWM maximum on duty cycle.
The PFC operation can be turned on and off by external control signal. Use of this on/off function makes it possible to disable PFC operation at a low line voltage, or to perform remote control operation from the transformer secondary side. The PFC power supply boosted output voltage is not only fed to an error amplifier input signal but also fed to as the boost voltage monitor circuit. $\overline{\mathrm{PG}}$ signal is put out if the boost voltage is out-of-spec.

The PWM controller, which begins operation at the same time as release of the IC's UVLO (under-voltage lockout) is suitable for auxiliary power supply use in a multi-output power supply system.

Features

- Synchronized PFC and PWM timing
- Self oscillation with fixed frequency

PFC : $100 \mathrm{kHz}(\pm 15 \%)$
PWM : $200 \mathrm{kHz}(\pm 15 \%)$

- PFC function on/off control
- PFC boosted output voltage monitor
- High-output current gate drivers

PFC driver peak current $: \pm 1.5 \mathrm{~A}$ typ.
PWM driver peak current : $\pm 1.0 \mathrm{~A}$ typ.

- PWM maximum on duty cycle
72% min (HA16141P/FP)
49.5\% max (HA16142P/FP)

HA16141P/FP, HA16142P/FP

Pin Arrangement

Pin Description

Pin No.	Symbol	Function
1	GND	Ground
2	PWM-OUT	Power MOS FET driver output (PWM control)
3	PFC-OUT	Power MOS FET driver output (PFC control)
4	VCC	Supply voltage
5	VREF	Reference voltage
6	$\overline{\text { PG }}$	Power Good signal output (open-drain output)
7	CAO	Average current control error amp. output
8	PFC-CS	PFC control current sense signal input
9	PFC-ON	PFC function on/off signal input
10	IAC	Multiplier reference current input
11	PFC-FB	PFC control error amp. input
12	TIM	Overcurrent timer time setting
13	PFC-EO	PFC control error amp. output
14	O.C	Overcurrent detector signal input
15	PWM-EO	PWM control error amp. output (photocoupler input also possible) (HA16141 only)
		PWM control feedback voltage signal input (HA16142 only)
16	PWM-CS	PWM control current sense signal input

Block Diagram

System Diagram

Note: The constants for the external components are for reference. Please confirm the operation when designing the system.

Absolute Maximum Ratings

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Item	Symbol	Rating	Unit	Note
Supply voltage	$\mathrm{V}_{\text {c }}$	20	V	
Peak PFC-OUT current	Ipk-pfc	± 1.5	A	3
Peak PWM-OUT current	lpk-pwm	± 1.0	A	3
DC PFC-OUT current	Idc-pfc	± 0.15	A	
DC PWM-OUT current	Idc-pwm	± 0.10	A	
Terminal voltage	Vi-group1	-0.3 to V_{cc}	V	4
	Vi-group2	-0.3 to Vref	V	5
CAO voltage	Vcao	-0.3 to Veoh-ca	V	
PFC-EO voltage	Vpfc-eo	-0.3 to Veoh-pfc	V	
PWM-EO voltage	Vpwm-eo	-0.3 to Veoh-pwm	V	
PFC-ON voltage	Vpfc-on	-0.3 to +7	V	
IAC voltage	Vi-ac	-0.3 to +5	V	
IAC current	li-ac	0.8	mA	
PFC-CS voltage	Vi-cs	-1.5 to +0.3	V	
TIM voltage	Vi-tim	-0.3 to +6	V	
VREF current	Io-ref	-20	mA	
$\overline{\mathrm{PG}}$ voltage	Vo-pg	-0.3 to +7	V	
$\overline{\text { PG }}$ current	Io-pg	15	mA	
Power dissipation	P_{\top}	1	W	6
Operating temperature	Topr	-40 to +105	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Junction temperature	Tj	150	${ }^{\circ} \mathrm{C}$	

Notes: 1. Rated voltages are with reference to the GND pin.
2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
3. Shows the transient current when driving a capacitive load.
4. Group1 is the rated voltage for the following pins: PFC-OUT, PWM-OUT
5. Group2 is the rated voltage for the following pins: VREF, PFC-FB, PWM-CS
6. This is the value when the ambient temperature (Ta) is $25^{\circ} \mathrm{C}$ or below. If Ta exceeds $25^{\circ} \mathrm{C}$, the graph below applies. For the SOP package, this value is based on actual measurements on a 10% wiring density glass epoxy circuit board ($40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.6 \mathrm{~mm}$).

HA16141P/FP, HA16142P/FP

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}\right)$							
Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Supply	Start threshold	V_{H}	12.2	13.0	13.8	V	
	Shutdown threshold	V_{L}	9.4	10.0	10.6	V	
	UVLO hysteresis	$\mathrm{dV}_{\text {UVL }}$	2.6	3.0	3.4	V	
	Start-up current	I_{s}	150	200	300	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$
	Is temperature stability	$\mathrm{dl}_{\mathrm{s}} / \mathrm{dTa}$	-	-0.3	-	\%/ ${ }^{\circ} \mathrm{C}$	*1
	Operating current	I_{cc}	4	7	9	mA	$I A C=100 \mu \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{~F}$
	Latch current	$\mathrm{I}_{\text {Latch }}$	230	310	375	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=9 \mathrm{~V}$
	Shunt zener voltage	V_{z}	21.2	22.2	23.2	V	$\mathrm{I}_{\mathrm{cc}}=14 \mathrm{~mA}$
	Vz temperature stability	$\mathrm{dV}_{z} / \mathrm{dTa}$	-	+4	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{cc}}=14 \mathrm{~mA} * 1$
PFC-OUT	Minimum duty cycle	Dmin-pfc	-	-	0	\%	$\mathrm{CAO}=3.6 \mathrm{~V}$
	Maximum duty cycle	Dmax-pfc	90	95	98	\%	$\mathrm{CAO}=0 \mathrm{~V}$
	Rise time	tr-pfc	-	30	100	ns	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{p}$
	Fall time	t_{t}-pfc	-	30	100	ns	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{p}$
	Peak current	Ipk-pfc	-	1.5	-	A	$\mathrm{C}_{\mathrm{L}}=0.01 \mu \mathrm{~F}^{* 1}$
	Low voltage	Vol1-pfc	-	0.05	0.2	V	lout $=20 \mathrm{~mA}$
		Vol2-pfc	-	0.35	1.4	V	lout $=200 \mathrm{~mA}$
		Vol3-pfc	-	0.03	0.7	V	lout $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}$
	High voltage	Voh1-pfc	13.5	13.9	-	V	lout $=-20 \mathrm{~mA}$
		Voh2-pfc	12.6	13.3	-	V	lout $=-200 \mathrm{~mA}$
PWM-OUT	Minimum duty cycle	Dmin-pwm	-	-	0	\%	$\begin{aligned} & \mathrm{PWM}-E O=1.3 \mathrm{~V} \\ & \mathrm{PWM}-\mathrm{CS}=0 \mathrm{~V} \end{aligned}$
	Maximum duty cycle	Dmax-pwm	72	80	88	\%	$\begin{aligned} & \text { PWM-EO }=5 \mathrm{~V} \\ & \mathrm{PWM}-\mathrm{CS}=0 \mathrm{~V}{ }^{2} \end{aligned}$
			42.5	46	49.5	\%	$\begin{aligned} & \mathrm{PWM}-\mathrm{EO}=5 \mathrm{~V} \\ & \mathrm{PWM}-\mathrm{CS}=0 \mathrm{~V}{ }^{* 3} \end{aligned}$
	Rise time	t-pwm	-	30	100	ns	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{p}$
	Fall time	$\mathrm{t}_{\text {t }}$ pwm	-	30	100	ns	$C_{L}=1000 p$
	Peak current	lpk-pwm	-	1.0	-	A	$\mathrm{C}_{\mathrm{L}}=0.01 \mu \mathrm{~F}^{* 1}$
	Low voltage	Vol1-pwm	-	0.05	0.2	V	lout $=20 \mathrm{~mA}$
		Vol2-pwm	-	0.5	2.0	V	lout $=200 \mathrm{~mA}$
		Vol3-pwm	-	0.03	0.7	V	lout $=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}$
	High voltage	Voh1-pwm	13.5	13.9	-	V	lout $=-20 \mathrm{~mA}$
		Voh2-pwm	12.0	13.0	-	V	lout $=-200 \mathrm{~mA}$
VREF	Output voltage	Vref	4.9	5.0	5.1	V	Isource $=1 \mathrm{~mA}$
	Line regulation	Vref-line	-	5	20	mV	$\begin{aligned} & \text { Isource }=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=12 \mathrm{~V} \text { to } 18 \mathrm{~V} \end{aligned}$
	Load regulation	Vref-load	-	5	20	mV	Isource $=1 \mathrm{~mA}$ to 20 mA
	Temperature stability	dVref	-	80	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}{ }^{* 1}$

Note: 1. Design spec.
2. Apply to HA16141.
3. Apply to HA16142.

Rev.4, Sep. 2001, page 6 of 18

Electrical Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$) (cont.)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Oscillator	Initial accuracy	fpwm	170	200	230	kHz	Measured pin: PWM-OUT
		fpfc	85	100	115	kHz	Measured pin: PFC-OUT
	fpwm temperature stability	dfpwm/dTa	-	± 0.1	-	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{Ta}=-40$ to $105^{\circ} \mathrm{C}$ *
	fpwm voltage stability	fpwm(line)	-1.5	+0.5	+1.5	\%	$\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$ to 18 V
	Ramp peak voltage	Vramp-H	-	3.4	3.6	V	
	Ramp valley volatge	Vramp-L	-	0.65	-	V	*
PFC-ON	PFC on voltage	Von-pfc	1.3	1.5	1.7	V	
	PFC off voltage	Voff-pfc	1.0	1.2	1.4	V	
	PFC on-off hysteresis	dVon-off	0.15	0.30	0.45	V	
	Input current	Ipfc-on	-	0.1	1.0	$\mu \mathrm{A}$	PFC-ON $=2 \mathrm{~V}$
Supervisor/$\overline{P G}$	PFC GOOD threshold voltage	Vb-good	2.29	2.34	2.39	V	Input pin: PFC-FB
	PFC FAIL threshold voltage	Vb-fail	1.66	1.70	1.74	v	Input pin: PFC-FB
	$\begin{aligned} & \hline \text { +B High } \\ & \text { PFC inhibit voltage } \end{aligned}$	Vb-h	2.69	2.75	2.81	v	Input pin: PFC-FB
	+B High PFC restart voltage	Vb-res	2.54	2.60	2.66	v	Input pin: PFC-FB
	$\overline{\mathrm{PG}}$ leak current	loff-pg	-	0.001	1.0	$\mu \mathrm{A}$	$\overline{\mathrm{PG}}=5 \mathrm{~V}$
	$\overline{\overline{P G} \text { shunt current }}$	Ion-pg	5	15	-	mA	$\overline{\mathrm{PG}}=3 \mathrm{~V}$ *
	Delay to $\overline{\mathrm{PG}}$	tg-pg	-	0.2	1	$\mu \mathrm{s}$	Step signal (5 to 0 V) to PFC-ON
O.C (Over Current Detector)	O.C threshold voltage	$\mathrm{V}_{\text {oc }}$	0.27	0.30	0.33	v	
	PWM-CS threshold voltage	$\mathrm{V}_{\text {cs }}$	0.9	1.0	1.1	v	
	O.C input current	$\mathrm{I}_{\text {oc }}$	-	-0.1	-1.0	$\mu \mathrm{A}$	O.C $=0 \mathrm{~V}$
Integrator	Sink current	Isnk-tim	3.9	5.2	6.5	$\mu \mathrm{A}$	TIM $=2 \mathrm{~V}$
	Source current O.C trigger	Isrc-tim1	-16	-21	-26	$\mu \mathrm{A}$	$\mathrm{TIM}=2 \mathrm{~V}, \mathrm{O} . \mathrm{C}=0.5 \mathrm{~V}$ *1
	Source Current PWM-CS trigger	Isrc-tim2	-25	-33	-41	$\mu \mathrm{A}$	$\mathrm{TIM}=2 \mathrm{~V}, \mathrm{PWM}-\mathrm{CS}=2 \mathrm{~V}$ *
	Integrated time O.C trigger	t-tim1	88	110	132	$\mu \mathrm{s}$	Step signal (0 to 1 V) to O.C, Ctim = 1000p, Measured pin: $\overline{\mathrm{PG}}$
	Integrated Time PWM-CS trigger	t-tim2	53	67	81	$\mu \mathrm{s}$	Step signal (0 to 2 V) to PWM-CS, Ctim = 1000p, Measured pin: $\overline{\mathrm{PG}}$

Notes: 1. Design spec.

2. Maximum rating of PG current is 15 mA . Use series resistor to limit PG current lower than 15 mA .

HA16141P/FP, HA16142P/FP

Electrical Characteristics

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=14 \mathrm{~V}\right)(\text { cont. })
$$

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
Latch	Threshold voltage for PFC stop	Vlch-pfc	2.4	2.5	2.6	V	Input pin: TIM
	Threshold Voltage for PWM stop	Vlch-sys	3.8	4.0	4.2	V	Input pin: TIM
	Latch Reset Voltage	Vcc-res	6.1	7.1	8.1	V	
PWM-Vamp	Feedback $\mathrm{Vcc}_{\text {c }}$ voltage	Vfb-pwm	14.2	14.8	15.4	V	PWM-EO $=2.5 \mathrm{~V}$ *2
	Open loop gain	Av-pwm	-	45	-	dB	*1, *2
	High voltage	Veoh-pwm	5.1	5.7	6.3	V	$V_{c C}=14 \mathrm{~V},$ PWM-EO: Open
	Low voltage	Veol-pwm	-	0.1	0.3	V	$\begin{aligned} & V_{\mathrm{cc}}=16 \mathrm{~V}, \\ & \text { PWM-EO: Open }{ }^{* 2} \end{aligned}$
	Source current	Isrc-pwm	-	-77	-	$\mu \mathrm{A}$	${ }^{* 1} \mathrm{~V}_{\mathrm{cc}}=11 \mathrm{~V}$
	Sink current	Isnk-pwm	-	77	-	$\mu \mathrm{A}$	${ }^{* 1} \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V}$ *2
	Transconductance respect to V_{cc}	Gm-pwm	19	27	35	$\mu \mathrm{A} / \mathrm{V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}, \\ & \mathrm{PWM}-\mathrm{EO}=2.5 \mathrm{~V}{ }^{* 2} \end{aligned}$
PWM current sense	Delay to output	td-cs	-	210	300	ns	$\begin{aligned} & \mathrm{PWM}-\mathrm{EO}=5 \mathrm{~V}, \\ & \mathrm{PWM}-\mathrm{CS}=0 \text { to } 2 \mathrm{~V} \end{aligned}$
PFC current limit	Threshold voltage	V_{LM}	-0.47	-0.50	-0.53	V	
	Delay to output	$\mathrm{td}_{-\mathrm{Lm}}$	-	280	500	ns	PFC-CS $=0$ to -1V
PFC-VAMP	Feedback voltage	Vfb-pfc	2.45	2.50	2.55	V	PFC-EO $=2.5 \mathrm{~V}$
	Input bias current	Ifb-pfc	-0.30	-0.07	+0.30	$\mu \mathrm{A}$	Measured pin: PFC-FB
	Open loop gain	Av-pfc	-	65	-	dB	*1
	High voltage	Veoh-pfc	5.1	5.7	6.3	V	$\begin{aligned} & \text { PFC-FB = } 2.3 \mathrm{~V}, \\ & \text { PFC-EO: Open } \end{aligned}$
	Low voltage	Veol-pfc	-	0.1	0.3	V	$\begin{aligned} & \text { PFC-FB = } 2.7 \mathrm{~V}, \\ & \text { PFC-EO: Open } \end{aligned}$
	Source current	Isrc-pfc	-62	-77	-93	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{PFC}-\mathrm{FB}=1.0 \mathrm{~V}, \\ & \mathrm{PFC}-E O=2.5 \mathrm{~V} \end{aligned}$
	Sink current	Isnk-pfc	62	77	93	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{PFC}-\mathrm{FB}=4.0 \mathrm{~V}, \\ & \mathrm{PFC}-E O=2.5 \mathrm{~V} \end{aligned}$
	Transconductance	Gm-pfcv	120	160	200	$\mu \mathrm{A} / \mathrm{V}$	$\begin{aligned} & \mathrm{PFC}-\mathrm{FB}=2.5 \mathrm{~V}, \\ & \mathrm{PFC}-E O=2.5 \mathrm{~V} \end{aligned}$

Note: 1. Design spec.
2. Apply to HA16141.

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=14 \mathrm{~V}\right)$ (cont.)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions
PFC-Camp	Input offset voltage	Vio-ca	-	± 7	-	mV	*1
	Open loop gain	Av-ca	-	65	-	dB	*1
	High voltage	Veoh-ca	5.1	5.7	6.3	V	
	Low voltage	Veol-ca	-	0.1	0.3	V	
	Source current	Isrc-ca	-	-77	-	$\mu \mathrm{A}$	$\mathrm{CAO}=2.5 \mathrm{~V}$ *1
	Sink current	Isnk-ca	-	77	-	$\mu \mathrm{A}$	$\mathrm{CAO}=2.5 \mathrm{~V}$ *1
	Transconductance	Gm-pfcc	120	160	200	$\mu \mathrm{A} / \mathrm{V}$	*1
IAC/ Multiplier	IAC PIN voltage	Viac	0.7	1.0	1.3	V	$I A C=100 \mu \mathrm{~A}$
	Terminal offset current	Imo-offset	-56	-75	-94	$\mu \mathrm{A}$	$\mathrm{IAC}=0 \mathrm{~A}, \mathrm{PFC}-\mathrm{CS}=0 \mathrm{~V},$ Measured pin: PFC-CS
	Output current (PFC-ON = 3.4V)	Imo1	-	-25	-	$\mu \mathrm{A}$	$\begin{aligned} & P F C-E O=2 V \\ & I A C=100 \mu A * * 1, * 2 \end{aligned}$
		Imo2	-	-75	-	$\mu \mathrm{A}$	$\begin{aligned} & P F C-E O=4 V \\ & I A C=100 \mu A{ }^{* 1,} *^{2} \end{aligned}$
	Output current (PFC-ON = 3.9V)	Imo3	-	-5	-	$\mu \mathrm{A}$	$\begin{aligned} & P F C-E O=2 V \\ & I A C=100 \mu A *^{1}, *^{2} \end{aligned}$
		Imo4	-	-15	-	$\mu \mathrm{A}$	$\begin{aligned} & P F C-E O=4 V \\ & I A C=100 \mu A{ }^{11, *^{2}} \end{aligned}$
	PFC-CS resistance	Rmo	-	2.7	-	$\mathrm{k} \Omega$	*1
Gain selector	Threshold voltage for $K=0.05$	$\mathrm{V}_{\mathrm{K} \text { + }}$	3.71	3.83	3.95	V	
	Threshold voltage for $\mathrm{K}=0.25$	V_{k-L}	3.51	3.63	3.75	V	
	V_{k} hysteresis voltage	$\mathrm{dV}_{\text {k }}$	0.15	0.20	0.25	V	*1

Notes: 1. Design spec.
2. Imo1 to Imo4 are defined as, Imo = (PFC-CS Terminal Current) - (Imo-offset)

Internal Timing

1. UVLO

2. Oscillator, Gate driver output

Note: All numeric values in the figure are typical values.

3. PFC controller status

Notes: 1. All numeric values in the figure are typical values.
2. PFC-ON

The HA16141P/FP can perform on/off control of the PFC function using the PFC-ON pin.
If an AC voltage that has undergone primary rectification and has been divided with an external resistance is input, PFC stoppage is possible in the event of a low input voltage.
On/off control by means of a logic signal is also possible.
3. PFC-FB

The input to this pin is the voltage obtained by dividing the stepped-up PFC output voltage.
The pin voltage is fed back to the PFC control system, and is also used for step-up voltage logic decisions.
This is outlined in the figure below.

PFC-OUT pulse stoppage
(Reduction of step-up voltage overshoot)
$\overline{\mathrm{PG}}$ (Power Good) signal is output
(Note 3 is continued on the next page)

HA16141P/FP, HA16142P/FP

3. PFC controller status (cont.)

Notes: 3. PFC-FB (cont.)
The actual input voltage to the PFC-FB pin is the step-up voltage divided with a resistance (see figure below). If $R 1$ is set as $710 \mathrm{k} \Omega$ and R 2 as $4.7 \mathrm{k} \Omega$, the decision voltage at the step-up pin $(+\mathrm{B})$ is as shown in the figure below.

Precondition: VREF GOOD, PFC-ON, Non latched.

Notes: 4. All numeric values in the figure are typical values.

4. PFC-ON pin

The following functions are effected by inputting an AC voltage that has undergone primary rectification and has been divided with an external resistance to the PFC-ON pin (see figure below).
a) Turning PFC operation off when AC voltage is low
b) Switching multiplier gain with AC 100 V system and 200 V system input

Precondition: VREF GOOD, Non latched.

Note: All numeric values in the figure are typical values.

HA16141P/FP, HA16142P/FP

5. Integrator (OC detection operation)

Rev.4, Sep. 2001, page 14 of 18
6. Integrator (PWM-CS detection operation)

Mark Pattern

Notes: 1. Example of lot indication.
For example, a product manufactured in May 2000 has the markings " 0 E " in positions 12 in the above figure.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	A	B	C	D	E	F	G	H	J	K	L	M

2. Laser marking is used.

Package Dimensions

Disclaimer

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

HITACHI
Hitachi, Ltd.
Semiconductor \& Integrated Circuits
Nippon BIdg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL http://www.hitachisemiconductor.com/

For further information write to:

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

