HM6287 Series

Maintenance Only

65536-word x 1-bit High Speed CMOS Static RAM

■ FEATURES

High Speed: Fast Access Time 45/55/70ns (max.)

Single 5V Supply and High Density 22 Pin Package

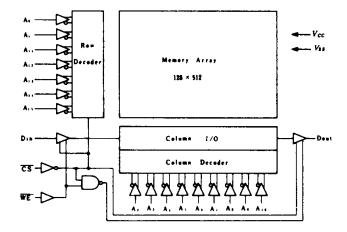
 Low Power Standby and Low Power Operation Standby: 100μW (typ.)/10μW (typ.) (L-version)

Operation: 300mW (typ.)

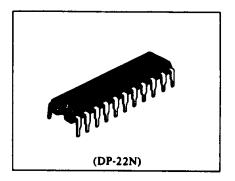
Completely Static Memory

No Clock or Timing Strobe Required

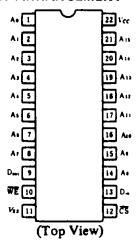
Equal Access and Cycle Times


• Directly TTL Compatible: All Inputs and Output

Capability of Battery Back Up Operation (L-version)


■ ORDERING INFORMATION

Type No.	Access Time	Package		
HM6287P-45	45ns	1		
HM6287P-55	55ns			
HM6287P-70	70ns	300 mil 22 pin		
HM6287LP-45	45ns	Plastic DIP		
HM6287LP-55	55ns			
HM6287LP-70	70ns			
	I	1		


BLOCK DIAGRAM

Refer to HM6287H Series

■ PIN ARRANGEMENT

OHITACHI

TRUTH TABLE

CS	WE	Mode	V _{CC} Current	Dout Pin	Ref. Cycle
Н	X	Not Selected	I _{SB} , I _{SB1}	High Z	-
L	Н	Read	Icc	Dout	Read Cycle
L	L	Write	Icc	High Z	Write Cycle

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to VSS	V_T	-0.5 ^{*1} to +7.0	v
Power Dissipation	P_T	1.0	W
Operating Temperature	Topr	0 to +70	°C
Storage Temperature	Tetg	-55 to +125	°C
Temperature Under Bias	Toias	-10 to +85	°C

Note) *1. -3.5V for pulse width ≤ 20 ns

■ RECOMMENDED DC OPERATING CONDITIONS $(T_a = 0 \text{ to } +70^{\circ}\text{C})$

Item	Symbol	min	typ	max	Unit
	Vcc	4.5	5.0	5.5	V
Supply Voltage	V _{SS}	0	0	0	V
······	V_{IH}	2.2	-	6.0	V
Input Voltage	V_{IL}	-0.5 ^{*1}	-	0.8	V

Note) *1. -3.0V for pulse width ≤ 20 ns

■ DC AND OPERATING CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_a = 0$ to +70°C)

Item	Symbol	Test Conditions	min	typ*1	max	Unit
Input Leakage Current		V_{CC} = 5.5V, V_{in} = V_{SS} to V_{CC}	-		2.0	μΑ
Output Leakage Current	ILOI	$\overline{CS} = V_{IH}, V_{out} = V_{SS} \text{ to } V_{CC}$	-		2.0	μА
Operating Power Supply Current	ICC	$\overline{\text{CS}} = V_{IL}, I_{out} = 0\text{mA}, \text{min. cycle}$	-	60	100	mA
Operating Tower Bupply Content	I _{SB}	$\overline{\text{CS}} = V_{IH}$, min. cycle	T -	10	30	mA
Standby Power Supply Current	-3B	$\overline{CS} \ge V_{CC}$ -0.2V,	_	0.02	2.0	mA
Standby rower Supply Current	I _{SB1}	$0V \le V_{in} \le 0.2V \text{ or } V_{CC} - 0.2V \le V_{in}$	_	2*2	100°2	μA
	VOL	I _{OL} = 8mA		-	0.4	V
Output Voltage	VOH	$I_{OH} = -4.0$ mA	2.4	-	_	V

Notes) *1. Typical limits are at V_{CC} = 5.0V, T_a = 25°C and specified loading.

■ CAPACITANCE (f = 1 MHz, $T_a = 25 ^{\circ}\text{C}$)

Item	Symbol	Test Conditions	min	typ	max	Unit
Input Capacitance	Cin	V _{in} = 0V	-	-	5	pF
Output Capacitance	Cout	V _{out} = 0V	_	_	7.5	pF

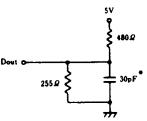
Note) This parameter is sampled and not 100% tested.

(2) HITACHI

114 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

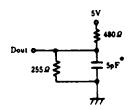
^{*2.} This characteristics is guaranteed only for L-version.

■ AC CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $T_a = 0$ to $\pm 70^{\circ}$ C, unless otherwise noted)


• AC TEST CONDITIONS

Input Pulse Levels: V_{SS} to 3.0V Input Rise and Fall Times: 5ns

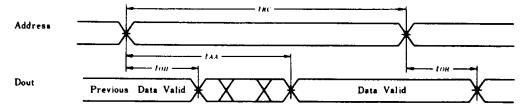
Input and Output Timing Reference Levels: 1.5V


Output Load: See Figure

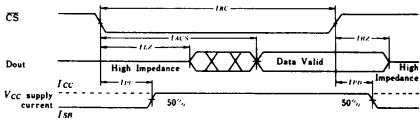
Output Load A

#Including scope & jig capacitance

Output Load B



Including scope & jig capacitance


• READ CYCLE

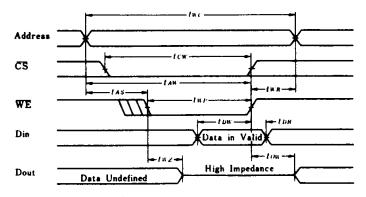
Item	Sumb al	HM6287-45		HM6287-55		HM6287-70		•••	.
item	Symbol	min	max	min	max	min	max	Unit	Notes
Read Cycle Time	†RC	45	_	55	_	70	_	ns	1
Address Access Time	†AA	_	45	_	55	_	70	ns	1
Chip Select Access Time	†ACS	-	45	_	55	_	70	ns	
Output Hold from Address Change	^t OH	5	_	5	-	5	_	ns	1
Chip Selection to Output in Low Z	tLZ	5		5	_	5	_	ns	2, 3, 7
Chip Deselection to Output in High Z	tHZ	0	30	0	30	0	30	ns	2, 3, 7
Chip Selection to Power Up Time	†PU	0	_	0	_	0	-	ns	7
Chip Deselection to Power Down Time	tPD	_	40		40		40	ns	7

Timing Waveform of Read Cycle No. 1⁽⁴⁾⁽⁵⁾

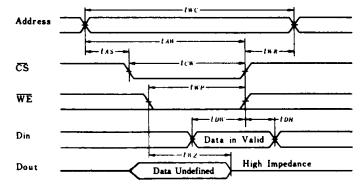
• Timing Waveform of Read Cycle No. 2⁽⁴⁾⁽⁶⁾

Notes:

- 1. All Read Cycle timings are referenced from last valid address to the first transitioning address.
- At any given temperature and voltage condition, t_{HZ} max, is less than t_{LZ} min, both for a given device and from device to device.
- 3. Transition is measured ±500 mV from steady state voltage with specified loading in Load B.
- 4. WE is high for READ Cycle.
- 5. Device is continuously selected, while $\overline{CS} = V_{IL}$.
- 6. Address valid prior to or coincident with CS transition low.
- 7. This parameter is sampled and not 100% tested.


OHITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 115


WRITE CYCLE

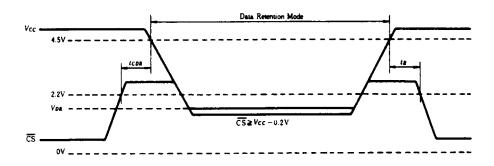
Item	6	HM6287-45		HM6287-55		HM6287-70		Unit	Notes
	Symbol	min	max	min	max	min	max	Unit	Note
Write Cycle Time	tWC	45	_	55	_	70	-	ns	2
Chip Selection to End of Write	tCW	40		50	_	55	-	ns	
Address Valid to End of Write	t _A w	40	_	50	_	55	_	ns	
Address Setup Time	†AS	0		0		0		ns	
Write Pulse Width	tWP	25	_	35		40		ns	
Write Recovery Time	tWR	0	_	0		0		ns	
Data Valid to End of Write	t _{DW}	25	_	25		30		ns	
Data Hold Time	t DH	0	_	0	-	0	_	ns	
Write Enabled to Output in High Z	twz	0	25	0	25	0	30	ЛS	3,4
Output Active from End of Write	tow	0	_	0	-	0	T -	ns	3,4

● Timing Waveform of Write Cycle No. 1 (WE Controlled)

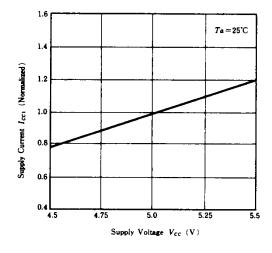
● Timing Waveform of Write Cycle No. 1 (CS Controlled)

- Notes) 1. If $\overline{\text{CS}}$ goes high Simultaneously with $\overline{\text{WE}}$ high, the output remains in a high impedance state.
 - All Write Cycle timings are referenced from the last valid address to the first transitioning address.
 Transition is measured ±500mV from steady state voltage with specified loading in Load B.

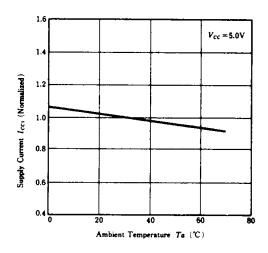
 - 4. This parameter is sampled and not 100% tested.


116 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

■ LOW V_{CC} DATA RETENTION CHARACTERISTICS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$) This characteristics is guaranteed only for L-version.

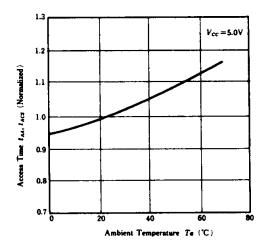

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
VCC for Data Retention	V _{DR}	$\frac{\overline{CS}}{V_{in}} \ge \frac{V_{CC} - 0.2V}{V_{CC} - 0.2V}$ or	2.0	-		V
Data Retention Current	ICCDR	$\begin{array}{c} Vin \leq VCC^{-0.2} \vee GI \\ 0V \leq Vin \leq 0.2 \vee GI \\ \end{array}$	_	1	50*2	μA
Chip Deselect to Data Retention Time	†CDR	See retention wave-	0	_	-	ns
Operation Recovery Time	t _R	form	tRC*1	_		ns

Note) *1. t_{RC} = Read Cycle Time *2. V_{CC} = 3.0V

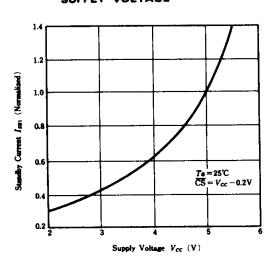

LOW V_{CC} DATA RETENTION WAVEFORM

SUPPLY CURRENT VS. SUPPLY VOLTAGE

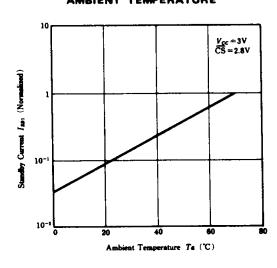
SUPPLY CURRENT VS. AMBIENT TEMPERATURE

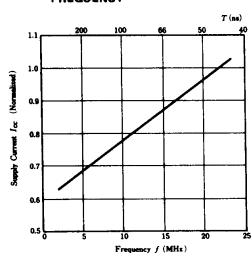

(1) HITACHI

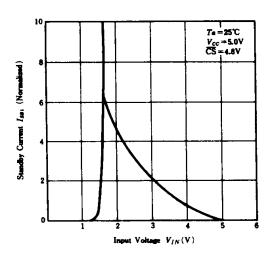
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 117


ACCESS TIME vs. SUPPLY VOLTAGE

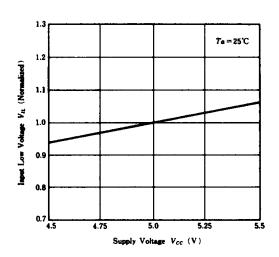
1.2 1.2 1.0 1.0 0.9 0.7 4.5 4.75 5.0 5.25 5.0 5.25 5.0 5.25 5.0


ACCESS TIME VS. AMBIENT TEMPERATURE


STANDBY CURRENT VS. SUPPLY VOLTAGE

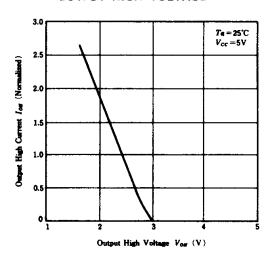

STANDBY CURRENT VS. AMBIENT TEMPERATURE

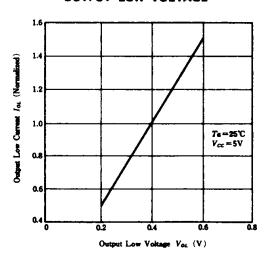
SUPPLY CURRENT VS. FREQUENCY


STANDBY CURRENT VS. INPUT VOLTAGE


@HITACHI

118 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300


INPUT LOW VOLTAGE VS. SUPPLY VOLTAGE


INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE

OUTPUT HIGH CURRENT Vs. OUTPUT HIGH VOLTAGE

OUTPUT LOW CURRENT VS. OUTPUT LOW VOLTAGE

(HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 119