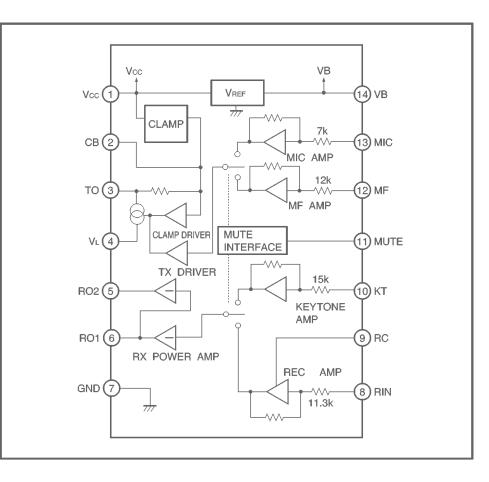
# **Communication ICs**

# Speech network for telephones BA8216

The BA8216 is a speech network IC which possesses the basic functions required for handset communications. In addition to amplifying signals from a transmitter and sending them to a telephone line, it also amplifies only reception signals from a telephone line and drives the receiver.


### Applications

Telephones and telephone equipment

## Features

- 1) Basic speech network functions built in.
  - Handset transmit and receive circuits
  - DTMF transmit circuit
  - · Key tone input circuit
  - · Mute control and side tone masking circuits
- 2) Can be used with  $1.3k\Omega$  loop circuit resistance and  $100\Omega$  telephone resistance.
- 3) A BTL circuit is used for reception output, providing a wide dynamic range which enables use of a ceramic receiver.
- 4) Few external components required.
- 5) 14-pin DIP package.

## Block diagram





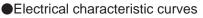
# **Communication ICs**

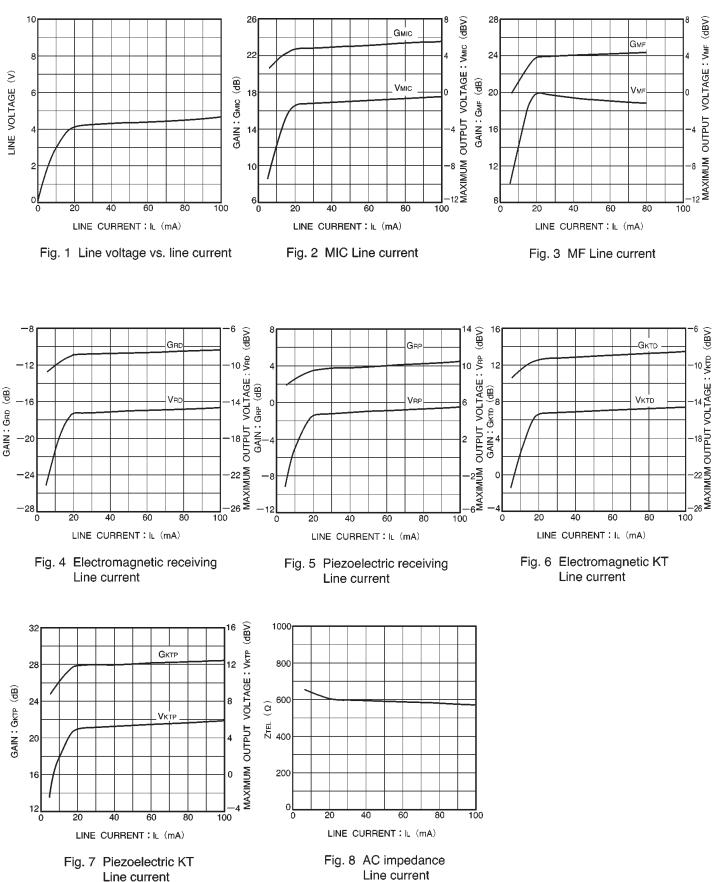
# BA8216

# • Absolute maximum ratings (Ta = $25^{\circ}$ C)

| Parameter             | Symbol | Limits   | Unit |
|-----------------------|--------|----------|------|
| Applied voltage       | V∟     | 18       | V    |
| Current dissipation   | lL I   | 135      | mA   |
| Power dissipation     | Pd     | 900 *    | mW   |
| Operating temperature | Topr   | -25~+75  | °C   |
| Storage temperature   | Tstg   | -55~+125 | Ĉ    |

\* Reduced by 9 mW for each increase in Ta of 1  $^\circ\!\!\!C$  over 25  $^\circ\!\!\!C.$ 





| Electrical characteristics | (unless otherwise noted, $Ta = 25^{\circ}C$ , $S_1 = 1$ , $S_2 = 1$ , $f = 1$ kHz, BPF = 400Hz to 30kHz) |  |
|----------------------------|----------------------------------------------------------------------------------------------------------|--|
|----------------------------|----------------------------------------------------------------------------------------------------------|--|

| Parameter                 |         | Symbol          | Min.  | Тур.  | Max.  | Unit | I∟ (mA) | Conditions                                    | Measurement circui                                               |                                      |  |
|---------------------------|---------|-----------------|-------|-------|-------|------|---------|-----------------------------------------------|------------------------------------------------------------------|--------------------------------------|--|
| Line voltage (20)         |         | VL20            | 3.8   | 4.15  | 4.5   | V    | 20      |                                               |                                                                  |                                      |  |
| Line voltage (120)        |         |                 | VL120 | 4.1   | 4.6   | 5.5  | V       | 120                                           |                                                                  | Fig.11                               |  |
| Input high level voltage  |         |                 | Viн   | 0.8   | —     | —    | V       | 40                                            | S <sub>2</sub> =2                                                |                                      |  |
| Input low level voltage   |         |                 | Vı∟   | —     | -     | 0.5  | V       | 40                                            | S2=2                                                             |                                      |  |
| npu                       | it high | level current   | Ін    | 100   | 200   | 300  | μA      | 40                                            | S₂=2, V⊪=4V                                                      |                                      |  |
| tic                       | /e      | Gain            | Grd   | -13.8 | -10.8 | -7.8 | dB      | 40                                            | V⊤=20dBV                                                         | Fig.12                               |  |
|                           | Receive | Maximum output  | VRD   | -19   | -15   | _    | dBV     | 20                                            | THD=5%                                                           | Fig.12                               |  |
| gnet<br>Re                |         | Input impedance | Zrin  | 8.3   | 11.3  | 14.3 | kΩ      | 40                                            |                                                                  |                                      |  |
| Electromagnetic           |         | Gain            | Gktd  | 10.5  | 13.5  | 16.5 | dB      | 40                                            | S2=3,<br>Vкт=-40dBV                                              | Fig.12                               |  |
| Ď                         | КТ      | Maximum output  | VKTD  | -19   | -15   | -    | dBV     | 20                                            | S2=3, THD=5%                                                     |                                      |  |
|                           |         | Input impedance | Ζκτ   | 11    | 15    | 19   | kΩ      | 40                                            |                                                                  |                                      |  |
| Q                         | e/      | Gain            | Grp   | 0.9   | 3.9   | 6.9  | dB      | 40                                            | S₁=2, V⊤=−20dBV                                                  | Fig.12                               |  |
|                           | Receive | Maximum output  | Vrp   | 1     | 5     | —    | dBV     | 20                                            | S1=2, THD=5%                                                     |                                      |  |
| ezoelectric               | Ĕ       | Input impedance | ZRIN  | 8.3   | 11.3  | 14.3 | kΩ      | 40                                            |                                                                  |                                      |  |
|                           |         | Gain            | Gктр  | 25.1  | 28.1  | 31.1 | dB      | 40                                            | S <sub>1</sub> =2, S <sub>2</sub> =3<br>V <sub>KT</sub> =-40dBV  | Fig.12                               |  |
|                           | кт      | Maximum output  | VKTP  | 1     | 5     | _    | dBV     | 20                                            | S <sub>1</sub> =2, S <sub>2</sub> =3<br>THD=5%                   |                                      |  |
|                           |         | Input impedance | Ζкт   | 11    | 15    | 19   | kΩ      | 40                                            |                                                                  |                                      |  |
|                           |         | Gain            | Gмic  | 19.6  | 22.6  | 25.6 | dB      | 40                                            | V <sub>M</sub> =-40dBV                                           |                                      |  |
|                           | міс     | Maximum output  | Vмic  | 0     | 4     | _    | dBV     | 20                                            | THD=5%                                                           | Fig.13                               |  |
|                           |         | Input impedance | Zміс  | 5     | 7     | 9    | kΩ      | 40                                            |                                                                  |                                      |  |
|                           |         | Gain            | GMF   | 21.1  | 24.1  | 27.1 | dB      | 40                                            | $S_2=3, V_D=-40dBV$                                              | - Fig.13                             |  |
| -                         | MF      | Maximum output  | VMF   | 0     | 4     | -    | dBV     | 15                                            | S2=3, THD=5%                                                     |                                      |  |
|                           |         | Input impedance | Zмғ   | 9     | 12    | 15   | kΩ      | 40                                            |                                                                  |                                      |  |
|                           |         |                 | MRRD  | 30    | 35    | _    | dB      | 40                                            | V <sub>T</sub> =−20dBV<br>S <sub>2</sub> =1→3                    | <b>Fig. 40</b>                       |  |
|                           |         |                 | MRRP  | 30    | 35    | _    | dB      | 40                                            | V <sub>T</sub> =−20dBV<br>S <sub>2</sub> =1→3, S <sub>1</sub> =2 | Fig.12                               |  |
| Mute ratio *              |         | МВміс           | 60    | 67    | _     | dB   | 40      | V <sub>M</sub> =−40dBV<br>S₂=1→3              | - Fig.13                                                         |                                      |  |
|                           |         | MRMF            | 60    | 67    | _     | dB   | 40      | V <sub>D</sub> =−40dBV<br>S <sub>2</sub> =3→1 |                                                                  |                                      |  |
| Attenuation during branch |         | ∆Grd            | _     | -6    | _     | dB   | _       | See Fig. 14                                   | Fig.14                                                           |                                      |  |
|                           |         | ΔGrp            | _     | -5    | _     | dB   | _       | See Fig. 14                                   |                                                                  |                                      |  |
|                           |         | ∆Сміс           | _     | -15   | _     | dB   | _       | See Fig. 14                                   |                                                                  |                                      |  |
| Noise level               |         | Nrd             | _     | -75   | _     | dBV  | 120     | V <sub>T</sub> =0                             | Fig.12                                                           |                                      |  |
|                           |         | Nrp             | _     | -73   | _     | dBV  | 120     | S₁=2, V⊤=0                                    |                                                                  |                                      |  |
|                           |         | Nмic            | _     | -74   | _     | dBV  | 120     | V <sub>M</sub> =0                             | Fig.13                                                           |                                      |  |
|                           |         |                 | NMF   | _     | -71   | _    | dBV     | 120                                           |                                                                  | S <sub>2</sub> =3, V <sub>D</sub> =0 |  |

\* When using 1 kHz bandpass filter







ROHM

### Measurement circuits

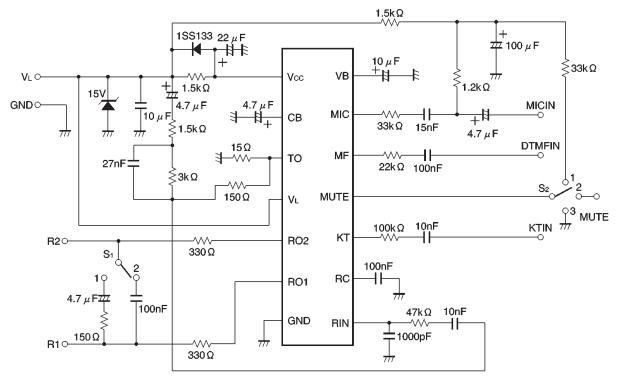



Fig. 9 Basic measurement circuit

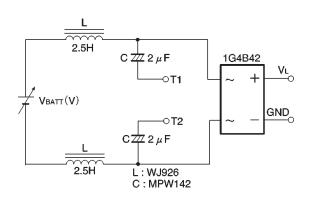



Fig. 10 Trunk circuit

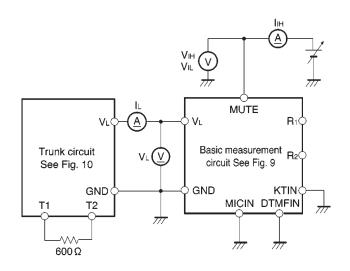



Fig. 11 DC characteristics measurement circuit



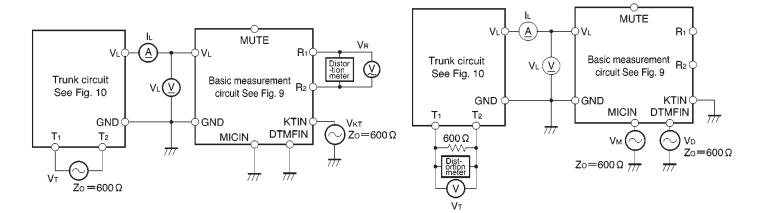



Fig. 12 Reception system measurement circuit

Fig. 13 Transmission system measurement circuit

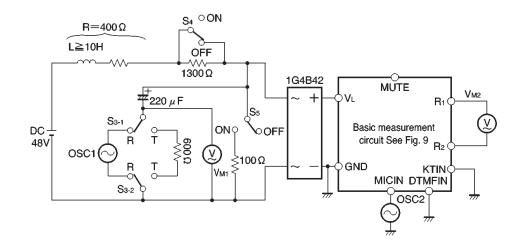



Fig. 14 Branch measurement circuit



Measurement method (MUTE = HIGH)

(1) Reception

1) Set S<sub>3</sub> to R and S<sub>4</sub> and S<sub>5</sub> to OFF, and input a 1kHz signal from OSC1. Adjust to -10dBV if  $V_{M2}$  is piezoelectric, and to -30dBV if  $V_{M2}$  is electromagnetic.

2) With  $S_4\,OFF$  and  $S_5\,ON,$  record the output level of  $V_{M2}$  and note this value as  $V_{M2}$  (2).

3) With S4 ON and S5 ON, measure the output level of V\_{M2}, and note this value as V\_{M2} (3).

 $\Delta G_{R} = 20 \log \left( V_{M2} (3) / V_{M2} (2) \right)$ 

(2) Transmission

1) Set  $S_3 = T$  and  $S_4$  and  $S_5$  to OFF, input a 1kHz signal from OSC2, and adjust so that  $V_{M1}$  is -10dBV.

2) With S4 OFF and S5 ON, record the output level of  $V_{\rm M1}$  and note this value as  $V_{\rm M1}$  (2).

3) With S<sub>4</sub> ON and S<sub>5</sub> ON, measure the output level of  $M_{12}$  and note this value as  $M_{12}$ 

 $V_{\text{M1}},$  and note this value as  $V_{\text{M1}}$  (3).

 $\Delta GMIC = 20 \log \left( V_{M1} (3) / V_{M1} (2) \right)$ 

S<sub>3</sub>: Send and receive switch (reception side)

S4: ON/OFF switch for line resistance (1300 $\Omega$ ) (OFF)

 $S_{5}$ : ON/OFF switch for parallel resistance (100 $\Omega$ ) (OFF)

Circuit opperation

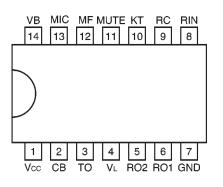
The BA8216 carries out the following basic operations.

(1) Handset talk and receive

The BA8216 receives a voice signal from a telephone line and outputs it to a handset speaker. It also takes a voice signal from the handset microphone and outputs it to the telephone line.

(2) DTMF send and key tone input

The BA8216 has a mute switch which can be switched between a "handset send and receive" mode and a "DTMF send and key tone input" mode by an external logic signal. In the "DTMF send and key tone input" mode, it transmits DTMF signals from the dial pad to the telephone line, and key tones to the handset receiver.


# Operation notes

The maximum power dissipation for the BA8216 is 900mW. Since the maximum power dissipation varies with temperature, the product of the applied voltage  $V_{L}$  and the total current drawn by the IC, after factoring in the temperature, should not exceed the maximum dissipation.

## Pin descriptions

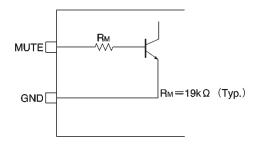
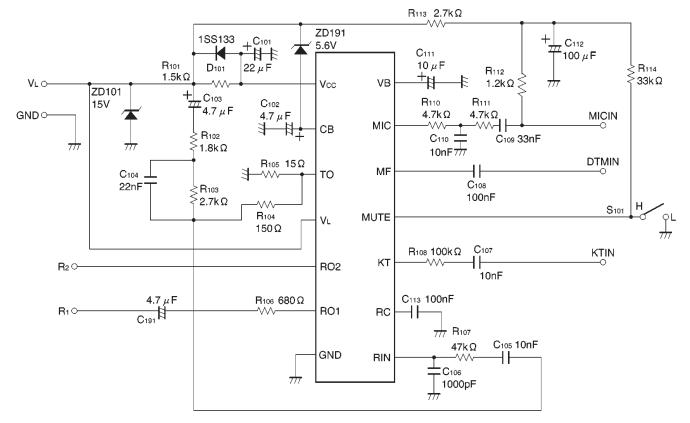
| Pin No. | Symbol          | Name                                                    | Function                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Vcc             | Internal power supply pin                               | Internal power supply pin. Power is supplied from VL through resistor R101, and is smoothed by capacitor C101.                                                                                                                                                                                                                                                               |
| 2       | СВ              | Bypass capacitor<br>connector pin                       | This is used to connect an AC bypass capacitor to form a DC feedback loop for stabilizing the DC potential of the $V_L$ pin.                                                                                                                                                                                                                                                 |
| 3       | то              | Transmit/power<br>dissipation resistor<br>connector pin | This is connected between the power dissipation resistor R <sub>105</sub> and the GND,to eliminate unnecessary power consumption. At the same time, R <sub>105</sub> determines the gain of the final output stage of the transmission driver. R <sub>104</sub> and R <sub>105</sub> form two legs of the side tone suppression bridge, which is also connected to this pin. |
| 4       | VL              | V∟ pin                                                  | This is the power supply pin. The transmit signal is output to the telephone line through this pin. It is connected to the $(+)$ side of the diode bridge.                                                                                                                                                                                                                   |
| 5       | RO <sub>2</sub> | Receive output pin                                      | When a piezoelectric receiver is used, connect a 330- protection resistor $R_{191}$ to this pin. When a dynamic receiver is used, $R_{191}$ may be $0\Omega$ .                                                                                                                                                                                                               |
| 6       | RO1             | Receive output pin                                      | When a piezoelectric receiver is used, connect a 330- protection resistor R <sub>106</sub> to this pin. C <sub>191</sub> is shorted.<br>When a dynamic receiver is used, a 4.7 $\mu$ F DC blocking capacitor (C <sub>191</sub> ) is connected in series with the 680 $\Omega$ resistor (R <sub>106</sub> ) to this pin.                                                      |
| 7       | GND             | Ground pin                                              | This pin has the lowest potential on the IC. It is connected to the $(-)$ pin of the diode bridge.                                                                                                                                                                                                                                                                           |
| 8       | RIN             | Receive input pin                                       | After passing through a side tone suppression circuit, the receive signal frothe telephone line is input to this pin.                                                                                                                                                                                                                                                        |
| 9       | RC              | Receive amplifier bypass capacitor pin                  | This is connected to the AC bypass capacitor of the reception amplifier.                                                                                                                                                                                                                                                                                                     |
| 10      | ΚT              | Key tone input pin                                      | When the MUTE pin is low, key tone signals input on this pin are transmitted to the handset speaker.                                                                                                                                                                                                                                                                         |
| 11      | MUTE            | Mute input pin                                          | When this is high, hand-set transmission is normal. When this is low, DTMF signals applied at the MF input are output to the telephone line, and key tones applied to the KT pin are transmitted to the hand receiver.                                                                                                                                                       |
| 12      | MF              | DTMF signal input pin                                   | When the MUTE pin is low, DTMF signals input to this pin are output to the telephone line.                                                                                                                                                                                                                                                                                   |
| 13      | MIC             | Microphone input pin                                    | Used to input signals from the microphone.                                                                                                                                                                                                                                                                                                                                   |
| 14      | VB              | Bias pin                                                | This is the IC internal bias pin. It is connected to the bypass capacitor C111.                                                                                                                                                                                                                                                                                              |

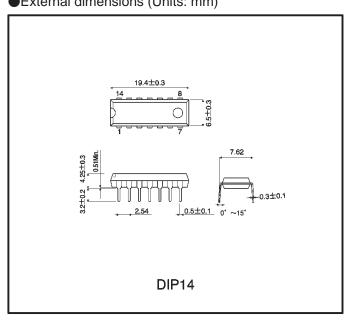
Pin assignments



# Mute control input logic

| MUTE | MIC AMP | MF AMP | REC AMP | KT AMP |  |
|------|---------|--------|---------|--------|--|
| н    | ON      | OFF    | ON      | OFF    |  |
| L    | OFF     | ON     | OFF     | ON     |  |



Fig. 15 Mute input equivalent circuit

ROHM

## Application example







### External dimensions (Units: mm)

246