3-MEMORY TONE/PULSE DIALER WITH SAVE, KEYTONE, LOCK AND HANDFREE FUNCTIONS

GENERAL DESCRIPTION

The W91560N series are tone/pulse switchable telephone dialers with three memories, keytone or lock, and handfree dialing control. These chips are fabricated using Winbond's high-performance CMOS technology and thus offer good performance in low-voltage, low-power operations.

FEATURES

- DTMF/pulse switchable dialer
- Two by 32 digit redial and save memory
- Three by 16 digit one-touch direct repertory memory
- Pulse-to-tone (${ }^{*} / T$) keypad for long distance call operation
- Cascaded dialing
- Uses 5×5 keyboard
- Easy operation with redial, flash, pause, and */T keypads
- Pause, $\mathrm{P} \rightarrow \mathrm{T}$ (pulse-to-tone) can be stored as a digit in memory
- On-hook debounce time: 150 mS (Unlock Mode), 200 mS (Lock Mode)
- 0 or 9 dialing inhibition pin for PABX system or long distance dialing lock out
- Dialing rate (10 ppS or 20 ppS) selectable by bonding option
- Minimum tone output duration: 93 mS
- Minimum intertone pause: 93 mS
- Pause time: 3.6 sec .
- 300 mS off-hook delay in lock mode ($\overline{\mathrm{DP}}$ remains low for 300 mS while off hook)
- Flash break time ($73 \mathrm{mS}, 100 \mathrm{mS}, 300 \mathrm{mS}$, or 600 mS) selectable by keypad; pause time is 1.0 S
- Make/break ratio (40:60 or 33.3:66.7) selectable by MODE pin
- Key tone output for valid keypad entry recognition
- On-chip power-on reset
- Uses 3.579545 MHz crystal or ceramic resonator
- 18 or 20-pin dual-in-line plastic package
- The different dialers in the W91560N series are shown in the following table:

TYPE NO.	REPLACEMENT TYPE NO.	PULSE (ppS)	FLASH $(\mathbf{m S})$	KEY TONE	LOCK	HANDFREE DIALING	PACKAGE (PINS)
W91560N	W91560	10	$600 / 300 / 73 / 100$	Yes	-	-	18
W91560AN	W91560A	10	$600 / 300 / 73 / 100$	Yes	-	Yes	20
W91560BN	W91560B	20	$600 / 300 / 73 / 100$	Yes	-	Yes	20
W91561LN	W91561L	10	$600 / 300 / 73 / 100$	-	Yes	-	18
W91561ALN	W91561ALN	10	$600 / 300 / 73 / 100$	-	Yes	Yes	20

PIN CONFIGURATIONS

PIN DESCRIPTION

SYMBOL	18-PIN	20-PIN	I/O	FUNCTION
ColumnRow Inputs	$\begin{gathered} 1-4 \\ \& \\ 15-18 \end{gathered}$	$\begin{gathered} 1-4 \\ \& \\ 17-20 \end{gathered}$	I	The keyboard input is compatible with a standard 5×5 keyboard, an inexpensive single contact (Form A) keyboard, and electronic input. In normal operation, any single button can be pushed to produce dual tone, pulses, or function. Activation of two or more buttons will result in no response except for single tone.
XT	7	7	1	A built-in inverter provides oscillation with an inexpensive 3.579545 MHz crystal. The oscillator ceases when a keypad input is not sensed. The crystal frequency deviation is 0.02%.
$\overline{\mathrm{XT}}$	8	8	0	Crystal oscillator output pin.
T/P MUTE	9	9	O	The T/P MUTE is a conventional CMOS N-channel open drain output. The output transistor is switched on low level during dialing sequence (both pulse and tone mode). Otherwise, it is switched off.
MODE	13	15	1	Pulling mode pin to Vss places dialer in tone mode. Pulling mode pin to VdD places dialer in pulse mode with M/B ratio of 40:60 (10 ppS , except for W91560BN, which is 20 ppS). Leaving mode pin floating places dialer in pulse mode with M/B ratio of 33.3:66.7 (10 ppS , except for W91560BN, which is 20 ppS).
$\overline{H K S}$	10	12	1	The $\overline{\text { HKS }}$ (hook switch) input is used to sense whether the handset is on-hook or off-hook. In on-hook state, $\overline{\text { HKS }}=1$: chip is in sleeping mode, no operation. In off-hook state, $\overline{\text { HKS }}=0$: chip is enabled for normal operation. $\overline{\text { HKS }}$ pin is pulled to VDD by internal resistor.
KT	$\begin{gathered} \hline 5 \\ \left(\begin{array}{c} \text { (except for } \\ \text { W91561LN) } \end{array}\right. \end{gathered}$	$\begin{gathered} 5 \\ \begin{array}{c} \text { (except for } \\ \text { W91561ALN) } \end{array} \end{gathered}$	0	The key tone output is a conventional CMOS inverter. The key tone is generated when any valid key is pressed; the KT pin generates a 1.2 KHz square wave at 35 mS . When no key is pressed, the KT pin remains in low state.

Pin Description, continued

SYMBOL	18-PIN	20-PIN	I/O	FUNCTION			
LOCK	$\begin{gathered} 5 \\ \text { (only for } \\ \text { w } 91561 \mathrm{LN}) \end{gathered}$	$\begin{gathered} 5 \\ \text { (only for } \\ \text { (991561ALN) } \end{gathered}$	1	The function of this terminal is to prevent " 0 " dialing and " 9 " dialing under PABX system long distance call control. When the first key input after reset is 0 or 9 , all key inputs, including the 0 or 9 key, become invalid and the chip generates no output. The telephone is reinitialized by a reset. The function of the $\overline{\text { LOCK }}$ pin is shown below:			
$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$	11	13	0	N-channel open drain dialing pulse output. Flash key will cause $\overline{\mathrm{DP}}$ to be active in either tone mode or pulse mode. In lock mode, the $\overline{\mathrm{DP}}$ remains low for 300 mS during offhook delay time. The timing diagram for pulse mode is shown in Figure 1 ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$).			
DTMF	12	14	0	During pulse dialing, this pin remains in low state regardless of keypad input. In the tone mode, it will output a dual or single tone. A detailed timing diagram for tone mode is shown in Figure 2(a, b, c, d). OUTPUT FREQUENCY			
					Specified	Actual	Error\%
				R1	697	699	+0.28
				R2	770	766	-0.52
				R3	852	848	-0.47
				R4	941	948	+0.74
				C1	1209	1216	+0.57
				C2	1336	1332	-0.30
				C3	1477	1472	-0.34
Vdd, Vss	14, 6	16, 6	1	Power input pins for the dialer chip. VDD is the main power and Vss is the ground.			

W91560N SERIES

Pin Description, continued

SYMBOL	18-PIN	20-PIN	I/O	FUNCTION				
$\begin{aligned} & \overline{\mathrm{HFI}}, \\ & \mathrm{HFO} \end{aligned}$	-	10, 11	I, O	Handfree control pins. A low pulse on the $\overline{\mathrm{HFI}}$ input pin toggles the handfree control state. Status of the handfree control state is listed in the following table:				
				CURRENT STATE		NEXT STATE		
				Hook SW.	HFO	INPUT	HFO	DIALING
				-	Low	$\overline{\mathrm{HFI}} \downarrow$	High	Yes
				On Hook	High	$\overline{\mathrm{HFI}}$ 『	Low	No
				Off Hook	High	$\overline{\mathrm{HFI}} \downarrow$	Low	Yes
				On Hook	-	Off Hook	Low	Yes
				Off Hook	Low	On Hook	Low	No
				Off Hook	High	On Hook	High	Yes
				$\overline{\mathrm{HFI}}$ pin is pulled to VDD by an internal resistor. Detailed timing diagram is shown in Figure 3.				

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Keyboard Operation

C1	C2	C3	C4	$\overline{\mathrm{DP}} / \overline{\mathrm{C} 5}$
1	2	3	S	M1
4	5	6	F4	M2
7	8	9		M3
*/T	0	\#	R/P	SAVE
F1	F2	F3		

- S: Store function key
- R/P: Redial and pause function key
- */T: * in tone mode and $\mathrm{P} \rightarrow \mathrm{T}$ key in pulse mode
- SAVE: Save function key for one-touch 32-digit memory
- M1 to M3: One-touch memory
- F1, ..., F4: Flash function keys: $\mathrm{F} 1=600 \mathrm{mS}, \mathrm{F} 2=300 \mathrm{mS}, \mathrm{F} 3=73 \mathrm{mS}, \mathrm{F} 4=100 \mathrm{mS}$, and all flash pause time is 1.0 mS Note: $\mathrm{Mn}=\mathrm{M} 1, \ldots, \mathrm{M} 3 ;{ }^{*} / \mathrm{T}, \#$, Pause.

Normal Dialing

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}}{ }^{\top} \mathrm{L}$), D1 $, \mathrm{D} 2, \ldots, \mathrm{Dn}$

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length exceeds 32 digits in nomal dialing.

Redialing

1. The redial memory content will be D1, D2, ..., Dn.
2. The R/P key can execute the redial function only as first key-in after off-hook; otherwise, it will execute the pause function.

W91560N SERIES

Number Store

1. OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFl}}{ }^{\circ} \mathrm{I}$), $\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}, \mathrm{S}$

$$
, \mathrm{S}, \mathrm{Mn}
$$

a. If the sequence of dialed digits D1, D2, ... Dn has not S will be ignored. finished,

b. D1, D2, ..., Dn will be dialed out and stored in memory location Mn.
2.

a. D1, D2, ..., Dn will be stored in memory location Mn but will not be dialed out.
b. R/P and */T keys can be stored as a digit in memory, but R/P key cannot be the first digit. In store R / P is the pause function key. mode,
c. The store mode is released after the store function is executed or when the state of the hook switch changes or the flash function is executed.

Save

a. D1, D2, ..., Dn will be dialed out.

duplicated to save memory.
2.

D1 to Dn will be dialed out after the SAVE key is pressed.
Repertory Dialing
OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFl}^{\top}} \mathrm{L}$), Mn (or SAVE)

The content of memory location Mn (or save) will be dialed out.

Access Pause

1. The pause function can be stored as a digit in memory.
2. The pause function is executed in normal dialing or redialing or memory dialing.
3. The pause function timing diagram is shown in Figure 4.

Pulse-to-Tone (*/T)

D1', D^{\prime}, $\ldots, \mathrm{Dn}^{\prime}$

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause, D1', D2', ..., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

$$
\begin{aligned}
& \text { D1, D2, ..., Dn, * , D1', D2', ..., Dn' } \\
& \text { (Tone) } \\
& \text { (Tone) }
\end{aligned}
$$

3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode only by going on-hook.
4. The function timing diagram is shown in Figure 5.

Flash

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFl}^{\sigma} \mathrm{I}}$), Fn

1. $\mathrm{Fn}=\mathrm{F} 1, \ldots$, F 4 .
2. If Fn is pressed, the dialer will execute flash break time of 600 mS (F1), 300 mS (F2), 73 mS (F3), or 100 mS (F4). The flash pause time is 1.0 second.
3. Flash key cannot be stored as a digit in memory. The flash key has first priority among keyboard functions.
4. The system will return to the initial state after the flash pause time is finished.
5. The flash function timing diagram is shown in Figure 6.

Cascaded Dialing

OFF HOOK (or ON HOOK \& $\overline{\mathrm{HFI}^{\sigma} \perp}$),
1.

2.

3.
 Repertory dialing
4. Redialing and save dialing is valid only as the first key-in.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD-VSS	-0.3 to +7.0	V
Input/Output Voltage	VIL	Vss -0.3	V
	VIH	VDD +0.3	V
	VoL	$\mathrm{Vss}-0.3$	V
	VoH	VDD +0.3	V
Power Dissipation	PD	120	mW
Operating Temperature	ToPR	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC CHARACTERISTICS

(VdD-Vss $=2.5 \mathrm{~V}$, Fosc. $=3.58 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$, All outputs unloaded)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	VDD	-	2.0	-	5.5	V
Operating Current	Iop	Tone	-	0.40	0.60	mA
		Pulse	-	0.20	0.40	mA
Standby Current	IsB	HKS $=0$, No load \& No key entry	-	-	15	$\mu \mathrm{A}$
Memory Retention Current	IMR	$\overline{\mathrm{HKS}}=1, \mathrm{VDD}=1.0 \mathrm{~V}$	-	-	0.2	$\mu \mathrm{A}$
Tone Output Voltage	Vто	Row group, $\mathrm{RL}=5 \mathrm{~K} \Omega$	130	150	170	$\begin{gathered} \mathrm{mVrm} \\ \mathrm{~s} \end{gathered}$
Pre-emphasis	-	Col/Row, VDD $=2.0$ to 5.5V	1	2	3	dB
DTMF Distortion	THD	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \mathrm{VDD}=2.0 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	-	-30	-23	dB
DTMF Output DC Level	Vtdc	$\begin{aligned} & \mathrm{RL}=5 \mathrm{~K} \Omega, \mathrm{VDD}=2.0 \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	1.0	-	3.0	V
DTMF Output Sink Current	ITL	V TO $=0.5 \mathrm{~V}$	0.2	-	-	mA
$\overline{\mathrm{DP}}$ Output Sink Current	IPL	$\mathrm{VPO}=0.5 \mathrm{~V}$	0.5	-	-	mA

DC Characteristics, continued

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T/P MUTE Output Sink Current	IML	Vмо $=0.5 \mathrm{~V}$	0.5	-	-	mA
KT Drive/Sink Current	IKTH	$\mathrm{VKTH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IKTL	$\mathrm{VKTL}=0.5 \mathrm{~V}$	0.5	-	-	mA
HFO Drive/Sink Current	IHFH	$\mathrm{VHFH}=2.0 \mathrm{~V}$	0.5	-	-	mA
	IHFL	$\mathrm{VHFL}=0.5 \mathrm{~V}$	0.5	-	-	mA
Keypad Input Drive Current	IKD	$\mathrm{VI}=0 \mathrm{~V}$	4	-	-	$\mu \mathrm{A}$
Keypad Input Sink Current	IKS	$\mathrm{VI}=2.5 \mathrm{~V}$	200	400	-	$\mu \mathrm{A}$
Keypad Resistance	-	-	-	-	5.0	$\mathrm{K} \Omega$

AC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Key-in Debounce	TKID	-	-	20	-	mS
Key Release Debounce	TKRD	-	-	20	-	mS
On-hook Debounce	TOHD	Lock Mode	-	20	-	mS
		Unlock Mode	-	150	-	mS
Pre-digit Pause ${ }^{1}$	TPDP1 10 ppS	Mode Pin = VDD	-	40	-	mS
		Mode Pin = Floating	-	33.3	-	mS
Pre-digit Pause ${ }^{2}$	TPDP2 20 ppS	Mode Pin = Vdd	-	20	-	mS
		Mode Pin = Floating	-	16.7	-	mS
Interdigit Pause (Auto dialing)	TIDP	10 ppS	-	800	-	mS
		20 ppS	-	500	-	mS
Make/Break Ratio	M $: B$	Mode Pin = VDD	-	40:60	-	\%
		Mode Pin = Floating	-	33.3:66.7	-	\%
Tone Output Duration	TTD		-	93	-	mS
Intertone Pause	TITP		-	93	-	mS
Flash Break Time	TFB	F1	-	600	-	mS
		F2	-	300	-	
		F3	-	73	-	
		F4	-	100	-	

AC Characteristics, continued

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Flash Pause Time	TFP		-	1.0	-	S
Pause Time	TP		-	3.6	-	S
Key Tone Frequency	FKT		-	1.2	-	KHz
Key Tone Duration	TKTD		-	35	-	mS
Off-hook Delay	TOFD	Lock Only	-	300	-	mS
First Key-in Delay	TFKP	Lock Only	-	300	-	mS

Notes:

1. Crystal parameters suggested for proper operation are $\mathrm{Rs}<100 \Omega, \mathrm{Lm}=96 \mathrm{mH}, \mathrm{Cm}=0.02 \mathrm{pF}, \mathrm{Cn}=5 \mathrm{pF}, \mathrm{Cl}=18 \mathrm{pF}$, Fosc. $=3.579545 \mathrm{MHz} \pm 0.02 \%$.
2. Crystal oscillator accuracy directly affects these times.

TIMING WAVEFORMS

Figure 1a. Normal Dialing Timing Diagram (Pulse Mode Without Lock Function)

Timing Waveforms, continued

Figure 1b. Normal Dialing Timing Diagram (Pulse Mode with Lock Function)

Figure 1c. Auto Dialing Timing Diagram (Pulse Mode Without Lock Function)

Timing Waveforms, continued

Figure 1d. Auto Dialing Timing Diagram (Pulse Mode with Lock Function)

Figure 2a. Normal Dialing Timing Diagram (Tone Mode Without Lock Function)

Timing Waveforms, continued

Figure 2b. Normal Dialing Timing Diagram (Tone Mode with Lock Function)

Figure 2c. Auto Dialing Timing Diagram (Tone Mode Without Lock Function)

Timing Waveforms, continued

Figure 2(d) Auto Dialing Timing Diagram (Tone Mode with Lock Function)

Figure 3. Handfree Timing diagram

Timing Waveforms, continued

Figure 4. Pause Function Timing Diagram

Figure 5 Pulse-to-Tone Timing Diagram

Figure 6. Flash Timing Diagram

Headquarters
No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5792697
http://www.winbond.com.tw/
Voice \& Fax-on-demand: 886-2-7197006
Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.
Rm. 803, World Trade Square, Tower II, Winbond Memory Lab.
123 Hoi Bun Rd., Kwun Tong, Winbond Microelectronics Corp.
Kowloon, Hong Kong Winbond Systems Lab.
TEL: 852-27516023
FAX: 852-2755206

Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-7190505
FAX: 886-2-7197502
Note: All data and specifications are subject to change without notice.

