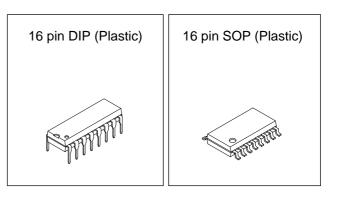
SONY

CXA1100P, CXA1101P/M, CXA1102P/M, CXA1163P/M

Dolby* B Type Noise Reduction System

Description


CXA1100, CXA1101, CXA1102 and CXA1163 are ICs including two separate Dolby B type noise reduction processors. Seven devices with four Dolby levels and two types of package are provided for various applications. These devices feature very few external components, which is achieved by integrated filter circuits using integrated thin film capacitors with high capacitance.

Features

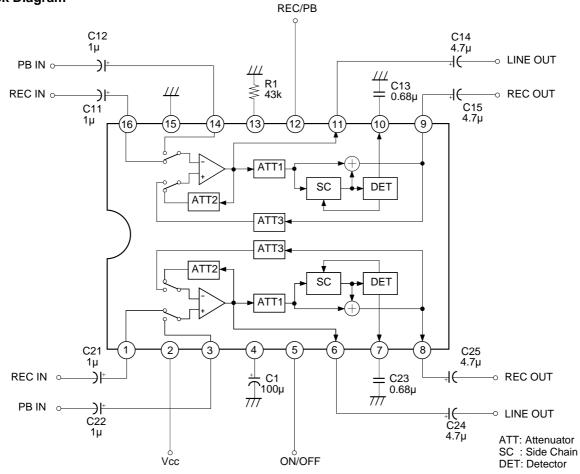
- Minimum number of external components
- NR ON/OFF and REC/PB switchs included
- Small package (DIP16, SOP16)
- Small supply current (~5.5mA, Typ.)
- Dual channel processors in one chip

Absolute Maximum Ratings (Ta = 25°C)

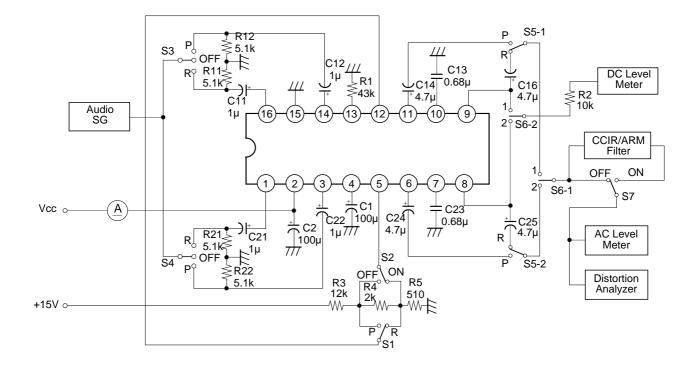
- Supply voltage Vcc 17
- Operating temperature Topr -30 to +85 °C
- Storage temperature Tstg -55 to +150 °C
- Allowable power dissipation PD DIP16 (A1100P/A1101P/A1102P/A1163P)900 mW SOP16 (A1101M/A1102M/A1163M) 500 mW
- Note 1) These ICs are available only to the licensees of Dolby Laboratories Licensing Corporation from whom licensing and application information may be obtaind.
- Note 2) "Dolby" and double D symbols are trade marks of Dolby Laboratories Licensing Corporation.

V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.


Pin Description

(Ta = 25°C, Vcc = 12V (Single supply), No signal)

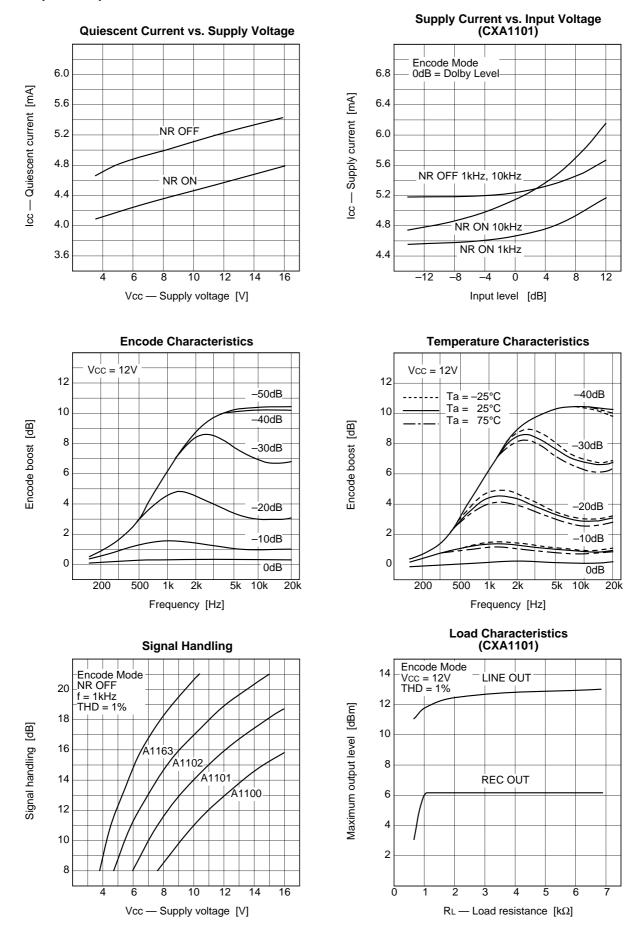

No.	Symbol	Z (in)	VDC	Equivalent Circuit	Description
1, 16	REC IN	40kΩ	6.0V	Vcc 1 16 Vcc/2 GND	Recording (Encode) input
2	Vcc		12.0V		Power supply
3, 14	PB IN	40kΩ	6.0V	3 14 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Playback (Decode) input
4	Vcc/2	1kΩ	6.0V		Single supply \rightarrow Vcc/2 Split supply \rightarrow Ground
5	ON/OFF			5 Vcc 5 Vcc 150µ 150µ GND	Mode control pin for NR ON/OFF "H" → NR OFF "L" → NR ON
6, 11	LINE OUT		6.0V	6 150 C C C C C C C C C C C C C	Line (Decode) output

No.	Symbol	Z (in)	VDC	Equivalent Circuit	Description
7, 10	тс		0.3V	7 10 4μ 8.2k 7 10k 100k 4μ 6ND	Time constant pin for the level detector
8, 9	REC OUT		6.0V	8 9 300 8.2k W GND	Recording (Encode) output
12	REC/PB			(12) ↓ 50µ ↓ 150µ ↓ 150µ ↓ GND	Mode control pin for REC/PB (Encode/Decode) "H" \rightarrow B (Decode) "L \rightarrow EC (Encode)
13	IREF		1.2V	13 (13 (13) (10	Reference current input pin for the active filters
15	GND	—	0V		Single supply \rightarrow Ground Split supply \rightarrow VEE

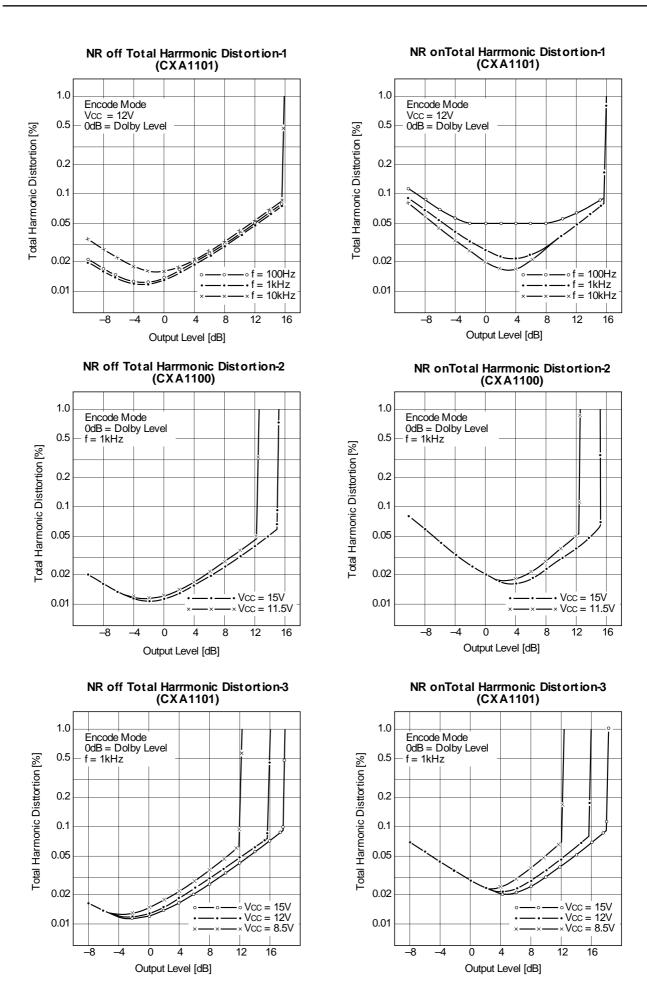
Block Diagram

Test Circuit

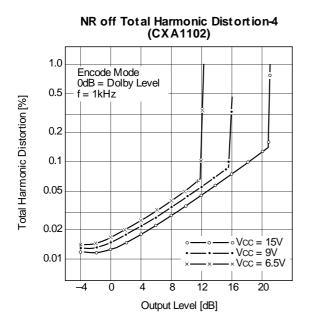
Electrical Characteristics

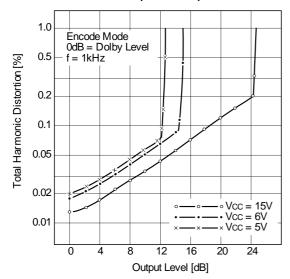

Ta = 25°C, Dolby Level: -10dBm (= 245mVrms) at REC OUT
Vcc = 15V (CXA1100), Vcc = 12V (CXA1101), Vcc = 9V (CXA1102)
Vcc = 6V (CXA1163)

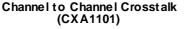
Item	Symbol	Test Condition*			Min.	Тур.	Max.	Unit	
nem	Symbol	R/P	NR	f (Hz)	Other Conditions	101111.	тур.	wax.	Onit
Operating voltage CXA1100 CXA1101 CXA1102 CXA1163	Vopr				Signal Handling ≥ 12dB	11.5 8.5 6.5 5.0		16.0 16.0 16.0 16.0	V V V V
Supply current CXA1100 CXA1101 CXA1102 CXA1163	Icc	R	OFF		No signal	3.5 3.5 3.5 3.5	5.6 5.5 5.3 5.1	7.5 7.5 7.5 7.5	mA mA mA mA
LINE OUT level CXA1100 CXA1101 CXA1102 CXA1163	Vlout	R	OFF	1k		-1.0 -4.0 -7.0 -11.0	0.0 -3.0 -6.0 -10.0	1.0 -2.0 -5.0 -9.0	dBm dBm dBm dBm
REC IN level	Vrin	R	OFF	1k		-32	-30	-28	dBm
PB IN level	Vpin	Р	OFF	1k		-32	-30	-28	dBm
Encode characteristics (Boost) (1) (2) (3) (4) (5)	B-R-1 B-R-2 B-R-3 B-R-4 B-R-5	R R R R	ON ON ON ON	500 2k 5k 10k 10k	-25dB -25dB -25dB -40dB 0dB	1.4 5.5 3.9 9.7 -1.1	2.9 7.0 5.4 10.4 0.4	4.4 8.5 6.9 11.9 1.9	dB dB dB dB dB dB
Signal handling CXA1100 CXA1101 CXA1102 CXA1163	Vomax	R	OFF	1k	THD = 1%	13.5 14.0 14.0 13.0	15.3 15.9 15.9 15.0		dB dB dB dB

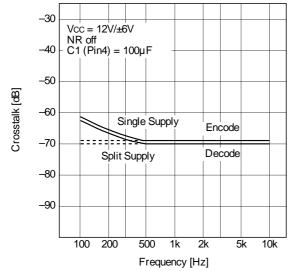

0dBm = 0.775Vrms

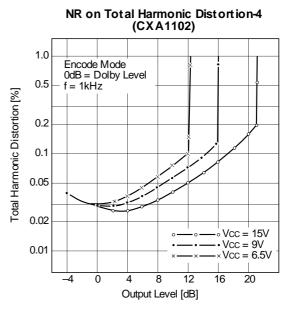
Item	Symbol		Te	st Condi	tion*	Min.	Turn	Max.	Unit
nem	Symbol	R/P	NR	f (Hz)	Other Conditions	11111.	Тур.	Max.	Offic
Total harmonic distortion 1) NR OFF CXA1100 CXA1101 CXA1102	THD (OFF)	R	OFF	1k	+10dB		0.03 0.04 0.05	0.2 0.2 0.2	% % %
CXA1163 2) NR ON CXA1100 CXA1101 CXA1102 CXA1163	THD (ON)	R	ON	1k	+10dB	 	0.06 0.03 0.04 0.06 0.09	0.2 0.3 0.3 0.3 0.3	% % % %
Input impedance REC IN PB IN	Zrec Zpb	_	_	1k 1k		28 28	40 40	57 57	kΩ kΩ
Encode S/N ratio	SN (CCIR)	R	ON	_	$Rg = 5k\Omega$ (CCIR/ARM)	65	69	_	dB
Crosstalk REC-PB PB-REC REC ch to ch PB ch to ch	CT-1 CT-2 CT-3 CT-4	P R R P	OFF OFF OFF OFF	1k 1k 1k 1k	0dB 0dB 0dB 0dB		-82 -81 -70 -70	-65 -60 -60 -60	dB dB dB dB
REC OUT Offset voltage (NR ON — OFF)	Voff	R	ON			-40	0	40	mV
Control voltage "H" Level "L" Level	VC-H VC-L	_				2.5 0	_	Vcc 0.5	V V

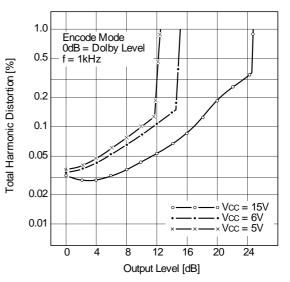

 * 0dB means the level which provides the Dolby level at the recording output in the noise reduction off mode.

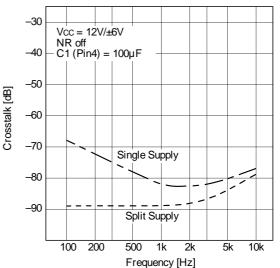

Example of Representative Characteristics

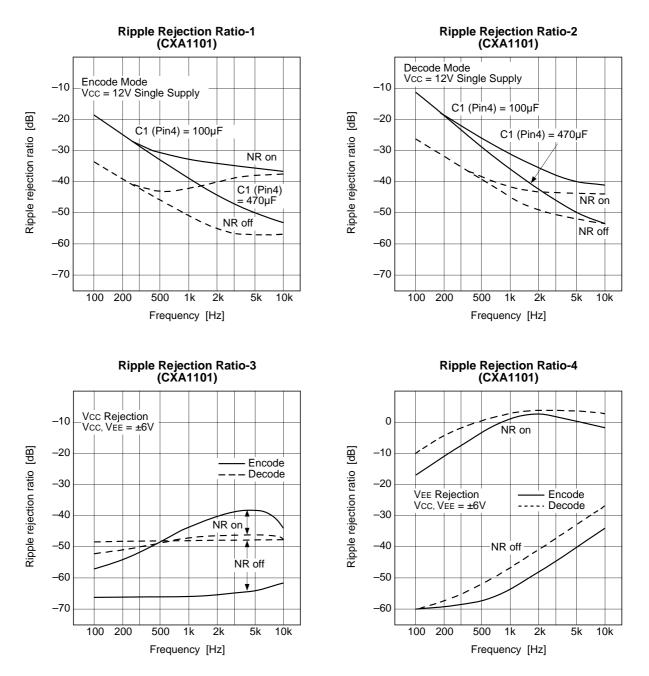



- 8 -








NR on Total Harmonic Distortion-5 (CXA1163)

REC to PB and PB to REC Crosstalk (CXA1101)

-9-

Notes on Applications

1) Power supply

The CXA1100 Series is basically designed to operate on single ended supply. The split supply operation is also possible, however, VEE (negative) supply should provide low noise and ripple characteristics. The ripple rejection ratio of these devices is generally good for Vcc supply (single ended supply and split supply), however, that for VEE supply is not so good in the NR on mode because the integrated capacitors for the side chain filter are connected to pin 15 (VEE on split supply).

When the ripple or noise component of VEE supply is not negligible small, the CR filter shown in Fig. a-1 will be usefull.

The operation voltage range are

CXA1100	11.5	to 16V (±5.75 to ±8V)
CXA1101	8.5	to 16V (±4.25 to ±8V)
CXA1102	6.5	to 16V (±3.25 to ±8V)
CXA1163	5.0	to 16V (±2.5 to ±8V)

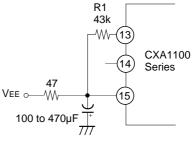


Fig. a-1.

The devices will satisfy the signal handling of 12dB specified by Dolby Laboratories on above voltage range.

2) Operation mode control

The CXA1100 series provide fully electronic switching circuits. The functions are controlled by DC voltages of the two control pins of REC/PB (pin 12) and ON/OFF (pin 5). The switching truth tables are shown in Fig. a-2.

V⊦ and V∟ are defined as	REC/PB	Vн	VL
(a) Single ended supply operation	Function	PB (Decode)	REC (Encode)
$Vcc \ge VH \ge 2.5V$		l	<u> </u>
$0.5V \ge V_L \ge 0V$	ON/OFF	Ин	VI
(b) Split supply operation		۷n	VL
$V_{CC} \ge V_{H} \ge V_{EE} + 2.5V$	Function	NR off	NR on
$Vee + 0.5V \geq Vl \geq Vee$		Fig. a-2.	

It is desirable to provide CR time constant circuits at the mode control pins with time constant from 100msec to 1sec, which will reduce switching clicks effectively.

3) Reference levels

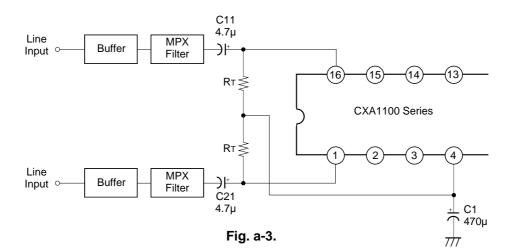
Characteristics and specifications of the Dolby noise reduction processor are defined as the levels and measured with reference to the Dolby level. This particular level in these devices is -10dBm (245mVrms), and is measured at the recording output (REC OUT) in the NR off mode.

The reference levels of the recording input (REC IN), play back input (PB IN) and line output (LINE OUT) are defined the levels which provide the Dolby level at the recording output in the NR off mode.

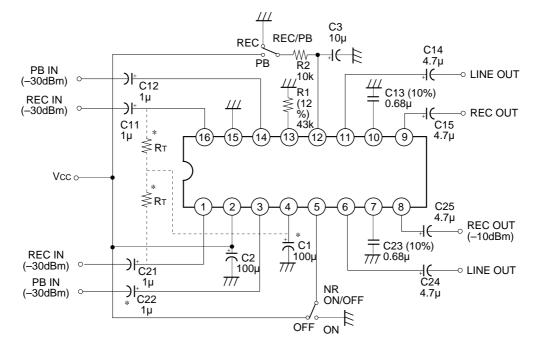
The CXA1100 series has a common silicon die, and has different internal connection. The series provides four different line output levels for various applications. Other reference levels, recording input level, playback input level and recording output level (= Dolby level) are identical in all devices.

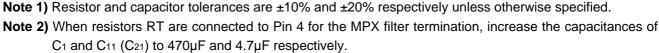
The reference levels are as follows

Recording output level	–10dBm	(245mVrms)	
Recording input level	–30dBm	(24.5mVrms)	
Play back input level	–30dBm	(24.5mVrms)	
Line output level	CXA1100	0dBm	(775mVrms)
	CXA1101	–3dBm	(548mVrms)
	CXA1102	–6dBm	(388mVrms)
	CXA1163	–10dBm	(245mVrms)

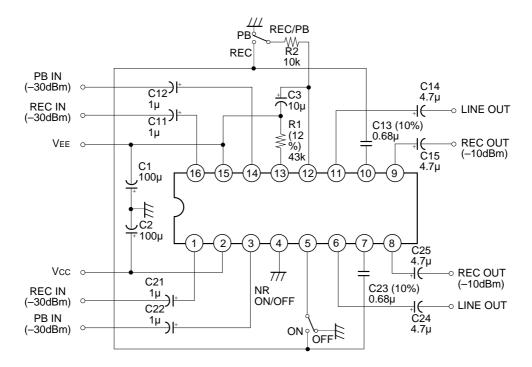

4) MPX filter termination and C1 for Vcc/2 (Pin 4)

The MPX (multiplex) filter termination method shown in Fig. a-3 allows saving the coupling capacitors between the buffer amplifiers and MPX filters. However, the channel to channel separation and REC to PB crosstalk of low frequency signals will be degraded by the termination resistor RT. For example, $5k\Omega$ of R₁ will degrade the channel to channel separation to 50dB. Better separation can be obtained by increasing the capacitance of C₁ (Pin 4) to 220µF or 470µF.

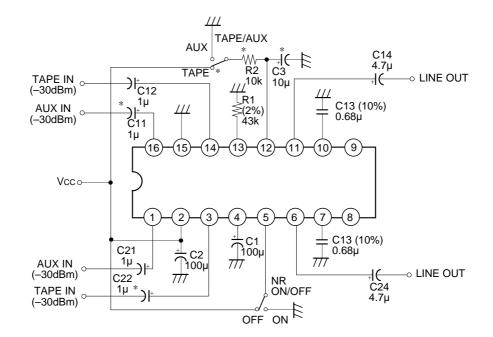

The allowable minimum value of C₁ is 47μ F, and 100μ F is the standard recommended value. Larger values of C₁ are generally desirable in order to improve the crosstalk and ripple rejection ratio.


5) Application for dubbing cassette decks

The CXA1100 series generates non decoded signal at the recoding output in the decode mode, and can simplify the structure of dubbing decks. See the SONY' Dolby B/C type IC (CX20187/CXA1097Q or CX20188/CXA1098Q) data sheet in detail.



Switchable Processor with Single Supply

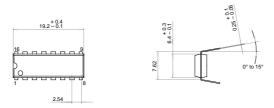


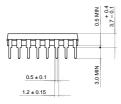
Switchable Processor with Split Supply

Note 1) Resistor and capacitor tolerances are ±10% and ±20% respectively unless otherwise specified.

Playback Processor with AUX input

Note 1) Resistor and capacitor tolerances are ±10% and ±20% respectively unless otherwise specified.
Note 2) When AUX inputs are not necessary, reject R₂, C₃, C₁₁, C₂₁ and TAPE/AUX switch, and connect Pin 12 to Vcc.

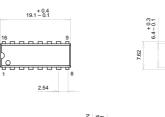

+ 0.1 0.25 - 0.05

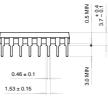

00 10

Package Outline Unit: mm

CXA1101P, CXA1101P CXA1102P, CXA1163P

16PIN DIP (PLASTIC) 300mil

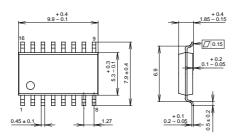

DIP-16P-01 *DIP016-P-0300-A


Similar to MO-001-AE

SONY CODE

JEDEC CODE

PACKAGE STRUCTURE						
PACKAGE MATERIAL	EPOXY RESIN					
LEAD TREATMENT	SOLDER PLATING					
LEAD MATERIAL	COPPER					
PACKAGE WEIGHT	1.0 g					

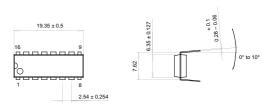


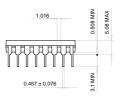
		PACKAGE MATER
SONY CODE	DIP-16P-03	LEAD TREATMEN
EIAJ CODE	*DIP016-P-0300-B	LEAD MATERIAL
JEDEC CODE	Similar to MO-001-AE	PACKAGE WEIGH

PACKAGE STRUCTURE					
EPOXY RESIN					
SOLDER PLATING					
COPPER / 42 ALLOY					
PACKAGE WEIGHT 1.0g					

CXA1101M, CXA1102M CXA1163M

16PIN SOP (PLASTIC) 300mil





CXA1100P, CXA1101P CXA1102P

16PIN DIP (PLASTIC) 300mil

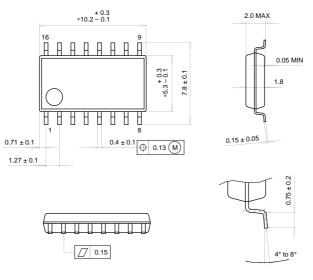
SONY CODE

EIAJ CODE

JEDEC CODE

PACKAGE STRUCTURE

SOLDER PLATING


COPPER

1.0g

	PACKAGE MATERIAL
DIP-16P-191	LEAD TREATMENT
DIP016-P-0300-AU	LEAD MATERIAL
MS-001-AA	PACKAGE WEIGHT

CXA1100P, CXA1101P/M, CXA1102P/M, CXA1163P/M

16PIN SOP (PLASTIC) 300mil

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

		PACKAG	E MATERIAL	EPOXY RESIN
SONY CODE	SOP-16P-L122	LEAD TR	EATMENT	SOLDER PLATING
EIAJ CODE	SOP016-P-0300-BX	LEAD MA	TERIAL	COPPER
JEDEC CODE		PACKAG	E WEIGHT	0.21g