

SEMICONDUCTOR

HEADQUARTERS OPERATIONS MITEL SEMICONDUCTOR Cheney Manor, Swindon, Wiltshire SN2 2QW, United Kingdom. Tel: (01793) 518000 Fax: (01793) 518411

MITEL SEMICONDUCTOR

1500 Green Hills Road, Scotts Valley, California 95066-4922 United States of America. Tel (408) 438 2900 Fax: (408) 438 5576/6231

Purchase of Mitel Semiconductor I²C components conveys a licence under the Philips I²C Patent rights to use these components in an I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Internet: http://www.gpsemi.com CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 69 18 90 00 Fax : (1) 64 46 06 07
- GERMANY Munich Tel: (089) 419508-20 Fax : (089) 419508-55 •
- ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 5576/6231 •
 - SOUTH EAST ASIA Singapore Tel:(65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36 •
- TAIWAN, ROC Taipei Tel: 886 2 25461260 Fax: 886 2 27190260 •
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (01793) 726666 Fax : (01793) 518582 These are supported by Agents and Distributors in major countries world-wide. © Mitel Corporation 1998 Publication No. DS3106 Issue No. 3.0 May 1996 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

ORDER OF DATA OUTPUT ON THE I2C BUS

Bit Ord	er	EBU Numbering			
byte 1	bit 7	byte 16	bit 0 - CNI b9		
	bit 6		bit 1 - CNI b10		
	bit 5		bit 2 - PIL b1		
	bit 4		bit 3 - PIL b2		
	bit 3	byte 17	bit 0 - PIL b3		
	bit 2		bit 1 - PIL b4		
	bit 1		bit 2 - PIL b5		
	_bit 0		bit 3 - PIL b6		
byte 2	bit 7	byte 18	bit 0 - PIL b7		
	bit 6		bit 1 - PIL b8		
	bit 5		bit 2 - PIL b9		
	bit 4		bit 3 - PIL b10		
	bit 3	byte 19	bit 0 - PIL b11		
	bit 2		bit 1 - PIL b12		
	bit 1		bit 2 - PIL b13		
	bit 0		bit 3 - PIL b14		
byte 3	bit 7	byte 20			
	bit 6		bit 1 - PIL b16		
	bit 5		bit 2 - PIL b17		
	bit 4		bit 3 - PIL b18		
	bit 3	byte 21	bit 0 - PIL b19		
	bit 2		bit 1 - PIL b20		
	bit 1		bit 2 - CNI b5		
	_bit 0		_bit 3 - CNI b6		
byte 4	bit 7	byte 22			
	bit 6		bit 1 - CNI b8		
	bit 5		bit 2 - CNI b11		
	bit 4		bit 3 - CNI b12		
	bit 3	byte 23	bit 0 - CNI b13		
	bit 2		bit 1 - CNI b14		
	bit 1		bit 2 - CNI b15		
	bit 0		_bit 3 - CNI b16		
byte 5	bit 7	byte 14	bit 0 - PCS b1		
	bit 6		bit 1 - PCS b2		
	bit 5		bit 2 - unallocated		
	bit 4		bit 3 - unallocated		
	bit 3	byte 15	bit 0 - CNI b1		
	bit 2		bit 1 - CNI b2		
	bit 1		bit 2 - CNI b3		
	bit 0		_bit 3 - CNI b4		
byte 6	bit 7	byte 24	bit 0 - PTY b1		
	bit 6		bit 1 - PTY b2		
	bit 5		bit 2 - PTY b3		
	bit 4		bit 3 - PTY b4		
	bit 3	byte 25	bit 0 - PTY b5		
	bit 2		bit 1 - PTY b6		
	bit 1		bit 2 - PTY b7		
	bit 0		_bit 3 - PTY b8		
byte 7	bit 7	byte 13	bit 0 - LCI b1		
	bit 6		bit 1 - LCI b2		
	bit 5		bit 2 - LUF		
	bit 4		bit 3 - unallocated		
	bit 3		-set to 1		
	bit 2		-set to 1		
	bit 1		-set to 1		
	bit 0		set to 1		

Bit Value reserved	VPS Equivalence [byte 11
64_network (or programme provide	
16	í I
8	I
4 day	I
2	l
<u>1</u> 8	I I
4	= [[byte 12
2 month	
1	1
16	I
8	1
4 hour	1
2 1	l r
32	= l [byte 13
16	
8	l l
4 minute	I
2	I
1	I
8	l
4	= [[buts 14
2 country 1	[byte 14
32	1
16	I
8 network (or programme provide	er) I
4	I
2	I
1 2 status (define the analog sound	
 status (define the analog sound transmission system) 	
	1
	i
128	1
64	i i
32 country	I
16	_ [
128 64	(byte 15
32	1
16 programme type	
8	I
4	1
2	ł
1 2 Label Channel Identifier	_ [
 Interleave up to four PIL messa Label Update Flag (LUF) 	iges
LUDOI OPULIE I ING (LUI)	

NOTE: Data is output on the I²C bus \underline{MSB} first

CRYSTAL SPECIFICATION

Parallel resonant fundamental frequency 27.750000MHz. AT cut. Tolerance at -10°C to 60°C \pm 50ppm. Tolerance overall \pm 100ppm.

Nominal load capacitance 20pF. Equivalent series resistance <20Ω.

FUNCTIONAL DESCRIPTION

The video signal is sliced to produce data and synchronising signals. Timing circuits monitor the sync signal to enable the MV1820 to lock onto the broadcast signal. A timing window, for the Vertical Blanking Interval (VBI) lines 6 - 22 and 318 - 335, is established to enable the acquisition circuit to monitor the sliced data signal for valid teletext data.

The framing code is checked for valid World System Teletext (WST) data. Magazine, packet and designation code bytes are checked and valid Broadcast Service Data Packets (BSDP) format two type only are accepted. These are known as packet 8/30. Format two is signalled by byte six, data bit two being set high and bits 3 and 4 set low. Bytes 13 to 25 inclusive are Hamming decoded (8,4) and stored in seven registers each of eight bits. If the complete message is correctly received with no uncorrectable Hamming errors, an interrupt to the microprocessor is signalled by the DAV (bar) pin going low. At the same time the data is transferred to a second bank of registers, reorganised with original numbered bytes 14, 15, 24, 25 and 13 placed after byte 23, to be read out on the I2C bus when so requested. Subsequent valid messages will continue to be transferred to the output registers overwriting any existing data. In this way the output registers always contain the latest PDC message.

The MV1820 is configured as an I^2C bus slave transmitter with a selectable address. The I^2C bus address is 0010 0001 (20 + 1 hex) with the address select (AS) pin set high, or 0010 0011 (22 + 1 hex) with the AS pin set low. The read bit (LSB) must always be set, it is not possible to write to the MV1820.

On recognising its address, the MV1820 will send an acknowledge and then transmit on the SDA line the first byte from the output registers (decoded byte 16 and 17) most

significant bit (MSB) first. It will then monitor the SDA line for an acknowledge from the microprocessor. If the microprocessor does NOT send an acknowledge, the MV1820 will release the data line to allow the microprocessor to send a stop condition. If the microprocessor does send an acknowledge, the following bytes of the message will be output provided each byte is acknowledged. The final data will be byte 13 followed by the four '1's.

When readout is complete, the DAV (bar) pin is reset high and the output registers are all set high. If the microprocessor continues to send clocks on the SCL line, the MV1820 will output FF bytes on the SDA line. Also, if the MV1820 is readdressed before another PDC message is received, the MV1820 will output FF bytes on the SDA line. The microprocessor can prematurely stop the message by NOT sending an Acknowledge followed by a STOP condition after any byte has been sent by the MV1820. The registers will then be reset to FF bytes and the DAV pin will be reset high.

To prevent any corruption of the data in the output registers during I²C bus activity, valid PDC messages are held in the incoming registers until I²C bus activity ceases. Here they may be overwritten by new PDC messages until the I²C bus activity ceases and they can then be transferred to the output registers.

System clock is provided by an on - chip 27.75MHz oscillator together with an external parallel resonant fundamental frequency AT cut crystal.

Following a reset, RESET pulled low, the output I²C bus registers will contain FF bytes and the DAV pin will be set high. When the power supply is removed, the I²C bus will not be clamped to ground, leaving it free for other I²C bus traffic.

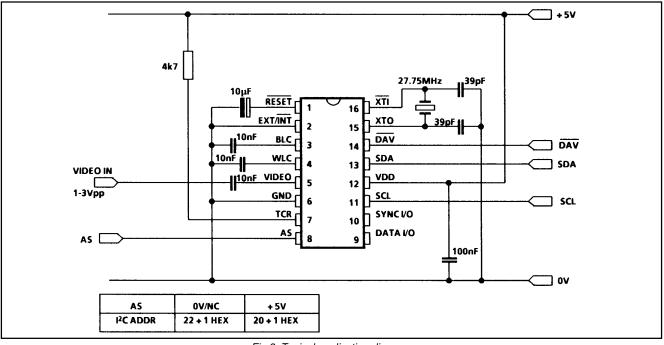


Fig.3 Typical application diagram

ELECTRICAL CHARACTERISTICS (continued)

These characteristics are guaranteed over the following conditions (unless otherwise stated) T_{amb} = 0 to 70°C, V_{DD} = 5V \pm 10%

Characteriatia	Pin	Value		Units	Conditions		
Characteristic	FIII	Min	Тур	Max	Onits	Conditions	
I2C bus							
SCL, SDA Schmitt inputs	11, 13					Not clamped when $V_{DD} = 0V$	
Input voltage Low		0		1.5	v		
Input voltage High		3.5		Vdd	V		
Output voltage Low			0.1	0.4	V	lo∟ = 3.0mA	
SCL clock frequency	11		100	1000	kHz		
DAV data available						100k (nom) pull-up resistor	
Output voltage low			0.2	0.4	V	Іон = 2.4mA	
RESET Schmitt input	1					100k (nom) pull-up resistor	
Input voltage Low		0		0.8	v		
Input voltage High		Vdd-1.0		Vdd	v		
Input current Low		-22	-50	-220	μA	VIN = VSS	
Input current High		-10		+10	μA	Vin = Vdd	

NOTE

Input voltage low and input voltage high for $\overline{\text{EXT/INT}}$, AS and $\overline{\text{XTI}}$ are as specified for DATA I/O.

PIN DESCRIPTION							
Symbol Pin		Pin Name and Description					
RESET	1	Active Low Reset. Includes a 100k Ω pull - up resistor					
EXT/INT	2	Control Pin for SYNC I/O and DATA I/O. Includes a $100k\Omega$ pull - down resistor. When low or not connected, internal SYNC and DATA are used, pins 9 and 10 are outputs. When high, supply SYNC and DATA from an external source, pins 9 and 10 are inputs.					
BLC	3	Black level capacitor.					
WLC	4	White level capacitor.					
VIDEO	5	Input for composite video signal with negative going syncs					
GND	6	Ground 0 volts.					
TCR	7	Time constant resistor. Controlling discharge rate of black and white level capacitor voltages.					
AS	8	Address select for I ² C bus. [0010 0001] with AS set high, or [0010 0011] with AS set low. Includes 100k Ω pull - down resistor.					
DATA I/O	9	Data input/output.					
SYNC I/O	10	Sync input/output.					
SCL	11	I ² C bus serial clock.					
VDD	12	Positive supply voltage +5V \pm 10%					
SDA	13	I ² C bus bi-directional data port.					
DAV	14	Active low open drain output data available signal to microprocessor. Includes $100k\Omega$ pull - up resistor					
XTO	15	Crystal out, 27.75MHz fundamental crystal with on-chip 1M Ω resistor to \overline{XTI} .					
XTI	16	Crystal input.					

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions (unless otherwise stated) T_{amb} = 0 to 70°C, V_{DD} = 5V \pm 10%

Ob any stanistic	Value Value		Units	0 and distance			
Characteristic	Pin	Min	Тур	Max	Units	Conditions	
Supply voltage	12	4.5	5.0	5.5	V		
Supply current	12		20	25	mA		
Video input	5						
Video amplitude		0.8	1.8	3.0	Vpp	Bottom of sync to white (pk to pk)	
Source impedance				250	Ω		
TCR input	7						
External resistance		4.7	4.7	200	kΩ	Connected to VDD	
BLC and WLC	3 & 4						
Capacitor value			10		nF	Connected to GND	
Capacitor tolerance		-10%		+10%			
Effective series resistance				5	Ω	1MHz	
DATA I/O and SYNC I/O	9 & 10						
Output voltage High		VDD-1.0	4.5		v	Iон = -1.2mA	
Output voltage Low			0.2	0.4	v	loL = 2.4mA	
Input voltage Low		0		0.8	v		
Input voltage High		VDD-1.0		Vdd	v		
Input current		-30		+30	μA	VIN = VSS OF VDD	
EXT/INT	2					100k (nom) pull-down resistor	
Input voltage Low		0		0.8	v		
Input voltage High		VDD-1.0		Vdd	v		
Input current Low		-10		+10	μA	VIN = VSS	
Input current High		22	50	220	μA	VIN = VDD	
AS	8					100k (nom) pull-down resistor	
Input voltage Low		0		1.0	v		
Input voltage High		VDD-1.0		Vdd	v		
Input current Low		-10		+10	μA	VIN = VSS	
Input current High		22	50	220	μA	VIN = VDD	
XTI Input	16						
Input current Low		-0.5	-5.0	-20	μA	-0.3 <vin<vi∟ max<="" td=""></vin<vi∟>	
Input current High		0.5	5.0	20	μA	VIHmin <vin<(vdd +="" 0.3)<="" td=""></vin<(vdd>	
XTO Output	15						
Output voltage High		VDD-1.0	4.5		v	Іон = -1.0mA	
Output voltage Low			IoL = 2.0mA				
Frequency			27.750		MHz	±100ppm	
	1					I	

2

SEMICONDUCTOR

Video Programme Delivery Control Interface Circuit

Supersedes version in October 1995 Media IC Handbook, HB3120 - 3.0

DS3106 - 3.0 May 1996

MV1820

The MV1820 is a high speed CMOS receiver for Programme Delivery Control (PDC) messages broadcast in World System Teletext (WST) Format Two Broadcast Service Data Packets (BSDP). The PDC message can be read on an I²C bus with data format similar to standard Video Programming Service (VPS) decoders. Additional data is appended to include new PDC features.

It is intended for use in Video Cassette Recorders to provide automatic recording of suitably labelled Television programmes requested by the user.

FEATURES

- On chip data slicing
- Low external component count
- I²C bus for low cost interfacing
- Advanced CMOS technology gives low power dissipation and high reliability

ABSOLUTE MAXIMUM RATINGS

ORDERING INFORMATION

MV1820F/CG/DPAS MV1820F/CG/MPES

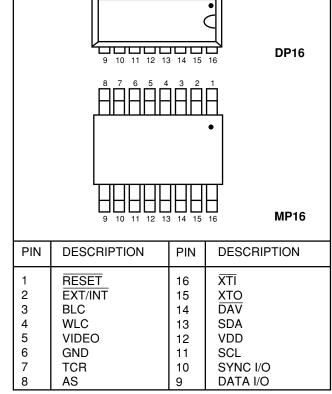
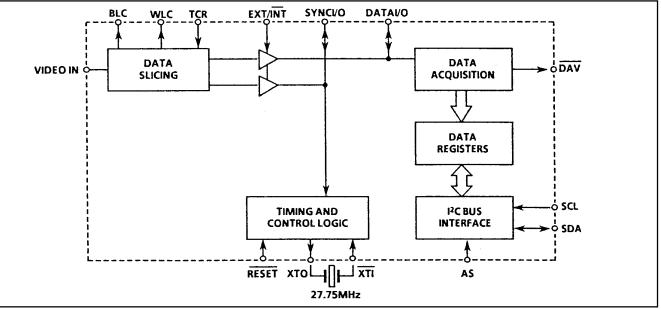
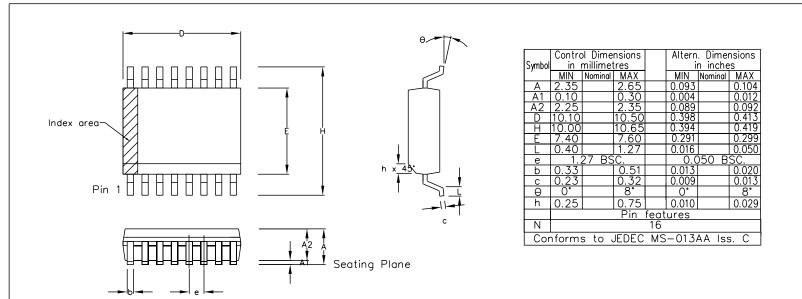
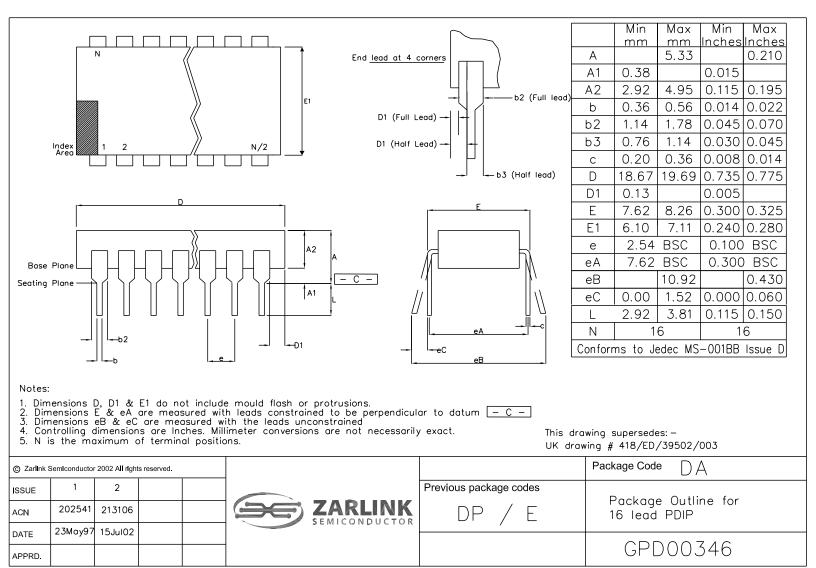


Fig.1 Pin connections - top view


Fig.2 MV1820 block diagram

Notes:

- 1. The chamfer on the body is optional. If it not present, a visual index feature, e.g. a dot, must be located within the cross-hatched area.
- Controlling dimension are in millimeters.
 Dimension D do not include mould flash, protrusion or gate burrs. These shall not exceed 0.006" per side.
 Dimension E1 do not include inter-lead flash or protrusion. These shall not exceed 0.010" per side.
- 5. Dimension b does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.004" total in excess of b dimension.

© Zarlink Semiconductor 2002 All rights reserved.			s reserved.			Package Code
ISSUE	1	2	3		Previous package codes	Package Outline for
ACN	6745	201939	213097		MP / S	16 lead SOIC (0.300" Body Width)
DATE	7Apr95	27Feb97	15Jul02	JEMICONDUCTOR		
APPRD.						GPD00013

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE